Reference : Dihedral Galois representations and Katz modular forms
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
Dihedral Galois representations and Katz modular forms
Wiese, Gabor mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit >]
Documenta Mathematica
123--133 (electronic)
Yes (verified by ORBilu)
[en] We show that any two-dimensional odd dihedral representation \rho over a finite field of characteristic p>0 of the absolute Galois group of the rational numbers can be obtained from a Katz modular form of level N, character \epsilon and weight k, where N is the conductor, \epsilon is the prime-to-p part of the determinant and k is the so-called minimal weight of \rho. In particular, k=1 if and only if \rho is unramified at p. Direct arguments are used in the exceptional cases, where general results on weight and level lowering are not available.

File(s) associated to this reference

Fulltext file(s):

Open access
DihedralFromDocumenta.pdfPublisher postprint154.49 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.