Article (Scientific journals)
On mod $p$ representations which are defined over $\Bbb F_p$: II
Kilford, L. J. P.; WIESE, Gabor
2010In Glasgow Mathematical Journal, 52 (2), p. 391--400
Peer reviewed
 

Files


Full Text
Glasgow-Published.pdf
Publisher postprint (103.16 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] The behaviour of Hecke polynomials modulo p has been the subject of some study. In this note we show that, if p is a prime, the set of integers N such that the Hecke polynomials T^{N,\chi}_{l,k} for all primes l, all weights k>1 and all characters \chi taking values in {+1,-1} splits completely modulo p has density 0, unconditionally for p=2 and under the Cohen-Lenstra heuristics for odd p. The method of proof is based on the construction of suitable dihedral modular forms.
Disciplines :
Mathematics
Author, co-author :
Kilford, L. J. P.
WIESE, Gabor  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Language :
English
Title :
On mod $p$ representations which are defined over $\Bbb F_p$: II
Publication date :
2010
Journal title :
Glasgow Mathematical Journal
ISSN :
0017-0895
Volume :
52
Issue :
2
Pages :
391--400
Peer reviewed :
Peer reviewed
Commentary :
2610982 (2011m:11090)
Available on ORBilu :
since 20 November 2013

Statistics


Number of views
52 (0 by Unilu)
Number of downloads
43 (1 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
WoS citations
 
0

Bibliography


Similar publications



Contact ORBilu