Paper published in a journal (Scientific congresses, symposiums and conference proceedings)
Minimal coverings of maximal partial clones
SCHÖLZEL, Karsten
2009In Proceedings of The International Symposium on Multiple-Valued Logic, p. 114-119
Peer reviewed
 

Files


Full Text
covering.pdf
Author postprint (240.54 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Partial clones; Partial functions; Sheffer function; Cloning; Many valued logics
Abstract :
[en] A partial function f on a κ-element set Eκ is a partial Sheffer function if every partial function on Eκ is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on Eκ, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on Eκ. We show that for each κ ≥ 3 there exists a unique minimal covering.
Disciplines :
Mathematics
Author, co-author :
SCHÖLZEL, Karsten ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Language :
English
Title :
Minimal coverings of maximal partial clones
Publication date :
2009
Event name :
39th International Symposium on Multiple-Valued Logic, ISMVL 2009
Event date :
21 May 2009 through 23 May 2009
Audience :
International
Journal title :
Proceedings of The International Symposium on Multiple-Valued Logic
ISSN :
0195-623X
Pages :
114-119
Peer reviewed :
Peer reviewed
Funders :
Graduate School of Information Sciences of Tohoku University;IEEE Computer Society;Japan MVL Research Group
Available on ORBilu :
since 19 November 2013

Statistics


Number of views
33 (0 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
WoS citations
 
0

Bibliography


Similar publications



Contact ORBilu