Partial clones; Partial functions; Sheffer function; Cloning; Many valued logics
Résumé :
[en] A partial function f on a κ-element set Eκ is a partial Sheffer function if every partial function on Eκ is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on Eκ, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on Eκ. We show that for each κ ≥ 3 there exists a unique minimal covering.
Disciplines :
Mathématiques
Auteur, co-auteur :
SCHÖLZEL, Karsten ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Minimal coverings of maximal partial clones
Date de publication/diffusion :
2009
Nom de la manifestation :
39th International Symposium on Multiple-Valued Logic, ISMVL 2009
Date de la manifestation :
21 May 2009 through 23 May 2009
Manifestation à portée :
International
Titre du périodique :
Proceedings of The International Symposium on Multiple-Valued Logic
ISSN :
0195-623X
Pagination :
114-119
Peer reviewed :
Peer reviewed
Organisme subsidiant :
Graduate School of Information Sciences of Tohoku University;IEEE Computer Society;Japan MVL Research Group