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Abstract

In the �rst chapter, building on the de�nition of vulnerability as expected poverty, we
train supervised machine-learning algorithms and a baseline Ordinary least squares
regression (OLS) using the German Socio-Economic Panel (version 37) data for years
1984-2020 under two scenarios: 1) considering only cross-sectional data; 2) using over
time information on the relative position of the household in the income distribution.
Random forests (RF), Gradient boosted trees (GBT), and Neural networks (NN) pre-
dict the vulnerable group on average by 23%, 18%, and 16% more than the OLS in
the �rst scenario. The hit rate and the overall accuracy of all vulnerability estimates
increase in the second scenario, but the sensitivity gains shrink to 19.3%, 12%, and 5.5%,
respectively. With Shapely values from the RF model, we explain the sources of vulner-
ability and their evolution. We �nd that weak ties to the labour market, single-person
households, the number of dependants in the family, living in East Germany, and the
sociodemographic characteristics of household head are associated with vulnerability
to poverty.

In the second chapter, using the European Union Statistics on Income and Living
Conditions (EU-SILC) microdata and applying machine learning (ML) algorithms, I
explore the questions: 1) How accurately can one classify unseen individuals' depriva-
tions status given their observable personal, household, and country-speci�c factors?
2) What is the performance of targeting subsets of features, such as sociodemographic,
socioeconomic, health, and location, to identify the deprived? 3) What are the key
predictors and their partial e�ects? Key results of the empirical analysis demonstrate
that the relative accuracy gained by using the sophisticated tree-based ML algorithm
is positive and signi�cant compared to that of the standard Generalised linear model
(7.3% relative gain with the Extreme gradient boosted trees and 5.9% with the Ran-
dom forests). Socioeconomic factors yield a classi�cation accuracy as close as when the
whole set of features is considered. Feature importance and partial e�ect analysis iden-
ti�ed with Shapley's value reveal insightful relationships consistent with theoretical
and empirical evidence.

In the third chapter, using a unique harmonised real-time data set from the COME-
HERE longitudinal survey that covers �ve European countries (France, Germany, Italy,
Spain, and Sweden) and applying a non-parametric machine learning model, we iden-
tify the main individual and macro-level predictors of self-protecting behaviours against
the coronavirus disease 2019 (COVID-19) during the �rst wave of the pandemic. Ex-
ploiting the interpretability of a Random forest algorithm via Shapely values, we �nd
that a higher regional incidence of COVID-19 triggers higher levels of self-protective

x



behaviour, as does a stricter government policy response. The level of individual knowl-
edge about the pandemic, con�dence in institutions, and population density also ranks
high among the factors that predict self-protecting behaviours. We also identify a steep
socioeconomic gradient with lower levels of self-protecting behaviours being associated
with lower income and poor housing conditions. Among socio-demographic factors,
gender, marital status, age, and region of residence are the main determinants of self-
protective measures.
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Introduction

This dissertation consists of three essays examining the measurement and the prediction

of individual well-being.

Previous studies show the e�ective use of prediction methods for policy analysis, for

instance, in education, labour market policy, public health, criminal justice, �nance, and

social policy (Kleinberg et al., 2015; Rocko� et al., 2011; Kang et al., 2013; Chandler et al.,

2011; Kleinberg et al., 2018). These illustrative studies demonstrate that some relevant

policy problems are inherently prediction problems. However, despite the widespread

application of prediction for policy problems, the limitations of the traditional empirical

approach bound our ability to predict with accuracy on real-world data. In response, a

�exible data-driven machine-learning method has gained increasing traction in many

�elds of study over the past few years. Big data, cheap computational power, and

algorithmic advance fuel the recent resurgence of interest in applied machine learning

(ML). 1 More recently, economists have started experimenting with machine learning

algorithms as feasible alternatives to address various prediction problems (Athey, 2018;

Mullainathan and Spiess, 2017; Varian, 2014).

Using machine learning techniques and three di�erent large micro datasets, this

dissertation answers research questions in three vital areas of individual well-being:

measurement of vulnerability to poverty, classi�cation of material and social depri-

vations, and identifying factors associated with individuals self-protective behaviour

during a public health crisis.

The �rst chapter examines vulnerability to poverty as an important measure of

economic well-being to proactively target those families who will experience poverty

in the future. In a joint work with Conchita D'Ambrosio, we use the German Socio-

Economic Panel (SOEP) data covering 1984-2020 to build a data-driven interpretable

model for predicting vulnerability to poverty and understanding its direct and indirect

1Machine learning is a sub-�eld of arti�cial intelligence. Arti�cial intelligence (AI) refers to systems or
machines that emulate the problem-solving and decision-making capabilities of the human intelligence
and can iteratively improve their abilities based on the data (Russell, 2010).
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determinants. The most pursued de�nition in the literature characterises vulnerability

as the probability of becoming poor in the future. However, the existing empirical

implementation of this concept imposes strong assumptions about the distribution

of income and its mapping with observable household characteristics that could not

necessarily be warranted in real-world data, which could, in turn, negatively impact the

accuracy of vulnerability estimates.

This study contributes to the literature by providing the �rst application of an

explainable machine learning approach (ExpML) to predict vulnerability to poverty. We

use Random forests, Gradient boosted trees, Neural networks, and penalised regressions

as examples of ML algorithms. As the vulnerability issue is even more prevalent in

developing nations where panel data is commonly scarce, the study builds and examines

the performance of the ExpML model under two scenarios�only using cross-sectional

information and then incorporating the past relative position of the households in the

income distribution. Finally, we document the drivers of household income, the pro�les

of the vulnerable group and their evolution over the past three decades in Germany.

The results from this study demonstrate a substantial advantage of the non-

parametric Random forests algorithm in accurately targeting the vulnerable group.

These results are robust to varying the cross-sectional year, extending the prediction

time horizon, and using alternative vulnerability cuto�s. Additionally, by applying

the Shapley values on the RF algorithm, we identify that the past year's income decile,

household's ties to the labour market, human capital, household's composition (by age

and activity status), and region of residence are the potent signal to the sources of

vulnerability.

The second chapter is concerned with material deprivations, which is an absolute,

non-monetary, outcome-based ('standards of living') measure of individual well-being.

Using supervised machine learning algorithms, such as extreme gradient boosted trees

(Xgboost) and Random forests (RF), this chapter analyses the prediction of unseen indi-

viduals' deprivation status and identi�es the main predictors and their partial e�ects.

It investigates the performance of targeting subsets of indicators, such as sociodemo-

graphic, socioeconomic, health, and location, to identify the deprived. I carry out the

empirical analysis using the European Union Statistics on Income and Living Condi-

tions (EU-SILC) microdata, a nationally representative sample of individuals aged 16

or above in 28 European countries, covering a range of material and social deprivation

indicators, sociodemographic, socioeconomic, and health variables. This study makes

several contributions to the related literature. First, as far as the author is concerned,

this study is the �rst to evaluate the usefulness of the nonparametric extreme gradient

2



boosted trees classi�er algorithm augmented with Shapley values to model the complex

nature of deprivations by comparing the ML algorithms with the traditional logistic re-

gression and documenting their heterogeneity by country. Second, using the newly

revised 13-item deprivation indicators proposed by Guio et al. (2016), this study analy-

ses deprivations in material and social aspects instead of those based on the old 9-item

indicators, which mainly capture household-level hardship in durable goods. Finally,

while remaining highly relevant to the previous studies, this study reveals non-linear

relationships between key variables and the likelihood of poor living conditions.

The results indicate that the relative accuracy gained by using the more sophisti-

cated ML algorithm is positive and signi�cant compared to logistic regression. The

socioeconomic and location features have the best classi�cation power compared to so-

ciodemographic and health characteristics. The relative feature importance identi�ed

with Shapley's values shows that the individual's relative economic position to others,

general health status, level of education, age, and housing wealth is the most promi-

nent predictor of deprivation. These results are robust to using di�erent cross-sectional

years.

The third chapter answers the question: what predict self-protecting behaviours dur-

ing the earliest wave of the pandemic? During the �rst wave of the pandemic, without

a vaccine or therapeutic measures, governments had to rely on behavioural interven-

tions to slow the spread of the virus and reduce the number of infections. Authorities

launched con�nement policies - such as lockdowns, travel restrictions, and social dis-

tancing requirements - and preventive sanitary measures - such as mask-wearing and

frequent handwashing. Even though it is apparent that human behaviour largely in�u-

ences the spread of the virus, it is unclear which factors are most strongly associated with

protective behaviours. Identifying these factors is of paramount importance for devis-

ing e�ective policies to manage the current pandemic as well as to be better prepared for

future ones. In a joint work with Liyousew G. Borga, Samuel Grei�, Claus Vögele, and

Conchita D'Ambrosio, we use a unique harmonized real-time data set, the COME-HERE

(COVID-19, MEn- tal HEalth, Resilience, and Self-regulation) longitudinal survey, col-

lected by the University of Luxembourg in �ve European countries (France, Germany,

Italy, Spain, and Sweden) covering a range of individual-level information such as

sociodemographic variables, income and wealth, health and behavioural risk factors,

awareness about the pandemic, and trust in major public institutions. Additionally, we

consult country-level information describing the evolution of the pandemic itself, as

well as the policy responses to COVID-19, from the Blavatnik School of Government of

the University of Oxford COVID-19 government response tracker.

3



Using a machine learning approach, we examine how individual characteristics and

government policy responses predict self-protecting behaviours during the earliest wave

of the pandemic. This study makes several contributions to the related literature. First,

we use a combination of complex non-parametric machine learning model and state-

of-the-art model explanation method to explain factors impacting the adoption of self-

protecting behaviours during the COVID-19 pandemic. To the best of our knowledge,

this is the �rst attempt in the literature. Second, we demonstrate a tree-based algorithm's

advantages and relative gains over linear regression. Third, we train a highly predictive

model with original data with a universe of items speci�cally constructed to measure

the behavioural change in response to COVID-19. This allows us to minimise the bias

from measurement error, which is a common limitation in related studies that only

focus on a few measures. Moreover, we use causal theory to justify the reason for

including or omitting variables, and our data o�er a large number of features. This

enables us to minimise bias in the partial e�ects of features that may occur when an

important variable is omitted in a causal model. Fourth, our approach allows for the

presence of interaction e�ects among key features. And �nally, we identify key policy

relevant individual and social predictors of self-protecting behaviours and document

their heterogeneity by country.

The results suggest that a higher regional incidence of COVID-19 triggers higher lev-

els of self-protective behaviour, as does a stricter government policy response. The level

of individual knowledge about the pandemic, con�dence in institutions, and popula-

tion density also ranks high among the factors that predict self-protecting behaviours.

We also identify a steep socioeconomic gradient with lower levels of self-protecting

behaviours being associated with lower income and poor housing conditions. Among

sociodemographic factors, gender, marital status, age, and region of residence are the

main determinants of self-protective measures. This work is forthcoming in Scienti�c

Reports.

4



References

Athey, S. (2018). The impact of machine learning on economics. In The economics of

arti�cial intelligence: An agenda, pages 507�547. University of Chicago Press.

Chandler, D., Levitt, S. D., and List, J. A. (2011). Predicting and preventing shootings

among at-risk youth. American Economic Review, 101(3):288�92.

Guio, A.-C., Marlier, E., Gordon, D., Fahmy, E., Nandy, S., and Pomati, M. (2016).

Improving the measurement of material deprivation at the european union level.

Journal of European Social Policy, 26(3):219�333.

Kang, J. S., Kuznetsova, P., Luca, M., and Choi, Y. (2013). Where not to eat? improving

public policy by predicting hygiene inspections using online reviews. In Proceedings of

the 2013 conference on empirical methods in natural language processing, pages 1443�1448.

Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., and Mullainathan, S. (2018). Human

decisions and machine predictions. Quarterly Journal of Economics, 133(1):237�293.

Kleinberg, J., Ludwig, J., Mullainathan, S., and Obermeyer, Z. (2015). Prediction policy

problems. American Economic Review, 105(5):491�95.

Mullainathan, S. and Spiess, J. (2017). Machine learning: an applied econometric

approach. Journal of Economic Perspectives, 31(2):87�106.

Rocko�, J. E., Jacob, B. A., Kane, T. J., and Staiger, D. O. (2011). Can you recognize an

e�ective teacher when you recruit one? Education �nance and Policy, 6(1):43�74.

Russell, S. J. (2010).Arti�cial intelligence a modern approach. Pearson Education, Inc.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspec-

tives, 28(2):3�28.

5



Chapter 1

Vulnerability to Poverty: an Explainable

Machine Learning Approach �

with Conchita D'AMBROSIO (University of Luxembourg)

� The data used in this study come from the German Socio-Economic Panel Study (SOEP) at the
German Institute for Economic Research (DIW), Berlin.
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1.1 Introduction

Following the World Development Report, 2000/01 entitled 'Attacking Poverty,' the

analysis of households' well-being has evolved to incorporate a measure that allows

predicting individuals and families that might su�er well-being loss due to a high

chance of facing poverty in the future. Proactive social policy recognises the paramount

importance of also targeting vulnerability to poverty (VP) instead of solely relying on

the current poverty status. Result in increased attention among researchers, several ap-

proaches have been devised to conceptualise and estimate vulnerability to poverty. The

favoured approach in the literature de�nes "Vulnerability as Expected Poverty" (VEP),

that is, the household's probability of becoming poor in the future (Chaudhuri et al.,

2002; Chaudhuri, 2003; Christiaensen and Subbarao, 2005; Christiaensen and Boisvert,

2000). This approach is preferred for its interpretability since the household's wel-

fare losses are expressed in terms of consumption expenditures or disposable income.

VEP can also be applied using panel and cross-sectional data. However, the practical

implementation of VEP imposes strong assumptions regarding the distribution of the

well-being indicator and its mapping with observable household characteristics that

could not necessarily be warranted in real-world data and could, in turn, negatively

impact vulnerability estimates' accuracy (see, e.g., Klasen and Povel, 2013; Dutta et al.,

2011). Similarly, (Bérgolo et al., 2012; Celidoni, 2013; Haughton and Khandker, 2009;

Hohberg et al., 2018) point out the need for improvement as the VP estimate cannot

accurately target the vulnerable group.

To this aim, we propose a data-driven technique using a state-of-the-art an ex-

plainable machine learning (ExpML) approach to predict VP. Besides the advantage of

panel data in allowing the dynamic analysis of vulnerability, evaluating the accuracy of

VP estimates requires knowledge of realised poverty status of the predicted vulnerable

households, which is only obtained from panel data. Thus, this study uses a high-quality

longitudinal panel data of households: the German Socio-Economic Panel (SOEP). Our

results show that the empirically optimised ML algorithms: Random forests (RF), Gra-

dient boosted trees (GBT), and Neural networks (NN) improve the prediction of the

vulnerable group on average by 23%, 18%, and 16% compared to the baseline Ordi-

nary least squares model (OLS) when cross-sectional data is used. When we consider

past information on the relative position of the household in the income distribution,

the hit rate and the overall accuracy of all vulnerability estimates increase. However,

this impact is more pronounced in the linear models than in the more sophisticated

machine learning algorithms. From Shapley values and pro�le analysis of vulnerable
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households, we �nd factors such as households tie to the labour market, single-person

households, the number of dependants in the family, region of residence (East Germany

vs. West), and the sociodemographic characteristics of household head to be associated

with vulnerability to poverty in Germany.

This study makes several contributions to the related literature. First, to the best of

our knowledge, this study is the �rst to apply ExpML to predict VP. Second, since VP

is very relevant also in the developing world where panel data is commonly scarce, we

estimate our models under two scenarios. 1) when only cross-sectional data is available

vs. 2) when historical information on the relative position of the households in the

income distribution is available. Finally, we document the drivers of household income,

the determinant of VP and their evolution over the past three decades in Germany.

The rest of the chaper is structured as follows. In Section 1.2 we de�ne the concept of

vulnerability to poverty and provide an overview of the existing empirical approaches

to measuring it. The data used and the measurement of the outcome variable and set

of features is described in Section 1.3. In Section 1.4 we present the empirical strategy

to predict VP with ML, set out prediction metrics, and o�er a detailed treatment of

the considered ML algorithms. In Section 1.5 are contained the results and discussion.

Section 1.6 concludes.

1.2 Review of Related Literature

In the context of poverty analysis, vulnerability can be theoretically de�ned as the like-

lihood of an individual to su�er a substantial shock that reduces its welfare below

a socially accepted level (Kühl, 2003). This de�nition characterises vulnerability to

poverty as a forward-looking, ex-ante evaluation of welfare losses as opposed to the

assessment of poverty, which is an ex-post concept. Therefore, assessing households'

vulnerability status instead of the current poverty level could allow social protection

policies to proactively target those families with a higher likelihood of experiencing it

(Celidoni, 2013, 2015). The welfare losses are usually assessed in terms of household

disposable income or consumption expenditures.

Studies that aim to quantify vulnerability to poverty empirically can be classi�ed into

the following four approaches: (i) "vulnerability as uninsured exposure to risk" (VER),

(ii) "vulnerability as a low expected utility" (VEU), (iii) "vulnerability by mean risk"

(VMR), and (iv) "vulnerability as expected poverty" (VEP) (Gallardo, 2018). 1 The �rst

1For an extensive critical review of each approach, see Gallardo (2018) and Klasen and Povel (2013).
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approach retrospectively assesses whether an observed income shock translates into

consumption changes. Vulnerability, as uninsured exposure to risk (VER), is identi�ed

via regression analysis by estimating the impact of idiosyncratic and covariate income

shocks on consumption expenditure (e.g., Ca�ero and Vakis, 2006; Dutta et al., 2011).

Although VER has advanced the �eld of consumption smoothing and insurance, it

doesn't directly match the concept of vulnerability to poverty since the impact of shocks

is assessed ex-post. This approach is built on the notion that it's essential to focus

on the change/growth rate of consumption per capita with respect to the previous

period instead of the current consumption per capita falling below certain level of

consumption deemed adequate. Moreover, the concept of VER does not directly capture

the likelihood of adverse shocks (idiosyncratic and covariate shocks), and the individual

risk preference is also not accounted for in this approach (Grimm et al., 2016).

The second approach, VEU, as formalised by Ligon and Schechter (2003) measures

vulnerability in terms of utility gaps. The utility gaps consider the discrepancy between

utility derived from certainty-equivalent consumption and expected utility obtained

from actual consumption (Calvo and Dercon, 2005; Günther and Maier, 2014). Al-

though vulnerability as a low expected utility has the advantage of capturing the risk

preference of the household, it has limitations stemming from non-interpretability and

its dependency on the form of an assumed utility function and its risk aversion param-

eter (Celidoni, 2013; Christiaensen and Subbarao, 2005; Gaiha and Imai, 2008).

The third approach characterises vulnerability to poverty by mean risk, and a house-

hold's vulnerability is assessed based on a mean-risk dominance criterion. The VP

estimate under this approach evaluates the household's preference ordering between

the contingent welfare outcomes, which are estimated using the expected value of an

individual's consumption and an aggregate risk parameter measured with the standard

deviation of consumption (Chiwaula et al., 2011; Gallardo, 2018). Individuals are then

declared vulnerable if their expected consumption level plus the estimated aggregate

risk falls below a poverty threshold. This strand of literature was formerly treated

under the VEP category of Hoddinott and Quisumbing's (2003) classi�cation of VP

approaches but was later presented as a stand-alone approach in Gallardo (2018) as it

does not require a probability distribution function.

Finally, vulnerability as expected poverty measures households' vulnerability as the

likelihood of falling into poverty in the period to come. This approach is a widely applied

method in the literature because of its advantage of suitability to be applied using either

cross-sectional or panel data, and it is also easily interpretable as household disposable

income expressed in monetary terms (Celidoni, 2013; Gallardo, 2018; Hohberg et al.,

9



2018).2 Formally speci�ed by Chaudhuri et al. (2002) as:

Vht = Pr(yh,t+ 1 � z), (1.1)

where Vh,t is vulnerability to poverty of the household h in period t, yh,t+ 1 is the house-

hold disposable income in period t + 1. The poverty line is z. A standard application

to empirically estimate this probability with cross-sectional data identi�es the income-

generating process as follow:

ln(y)ht = X hb + eh, (1.2)

where yh is disposable income, Xh represents a bundle of observable household char-

acteristics, but also national or climate variables or past years consumption indicators

(e.g., Christiaensen and Subbarao, 2005).eh is a random error term that captures any

idiosyncratic shocks when shock are identically and independently distributed over

time. Then the expected disposable income, E(.) and its variance, Var(.) (shown in

the following equations) are estimated with ordinary least square regression via three-

step feasible generalised least squares (FGLS). For a step-by-step strategy to estimating

vulnerability via the FGLS (see, Chaudhuri et al., 2002).

Ê[ln(yh)jX h] = X hb̂, (1.3)

dVar[ln(yh)jX h] = cse,h =
q

X hq̂, and (1.4)

bVh = cPr( ln(yh) < ln(z)jX h) = F

0

@ln(z) � X hb̂
q

X hq̂

1

A . (1.5)

Under a log normal distributional assumption of household disposable income, the

probability of vulnerability will be drawn parametrically from the standard normal

distribution F (.) . Commonly in most applications (for instance, see, Chaudhuri et al.,

2002; Chaudhuri, 2003; Christiaensen and Subbarao, 2005; Hohberg et al., 2018; Ka-

manou and Morduch, 2002; Landau et al., 2012; Pritchett et al., 2000; Zereyesus et al.,

2017), households with a probability larger than or equal to 0.5 are identi�ed as vulner-

able.

The measurement of VP is inherently very challenging since it depends on the

adequate prediction of the future (Haughton and Khandker, 2009). This study builds

2However, panel data is required to estimate vulnerability to poverty under the VEU and VER
approaches (Azeem et al., 2018).
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on vulnerability as expected poverty. This is our preferred approach since it is forward-

looking, interpretable, and popular in the extant literature. We then propose entirely

data-driven machine learning approaches that target the vulnerable group with better

accuracy while still utilising the VEP's original de�nition.

More speci�cally, we investigate the possible technical re�nements in the VEP ap-

proach with respect to the following limitations:

(i) The vulnerability estimate via the FGLS method has multiple sources of potential

noises, which are coming from the �rst-stage estimation of the expected value of

household income, its variance, and the probability distribution in the �nal stage.

However, employing complex models or improving the model's �tting parameters

can minimise the reducible error component (model bias or approximation error)

in the �rst-stage regression (Hastie et al., 2009).

(ii) The log-normality assumption of the household income distribution could not

necessarily be warranted in real-world data. Several empirical applications posit

departure from log normality (Battistin et al., 2009; Celidoni, 2013; Hohberg et al.,

2018; McDonald and Ransom, 2008; Sohn et al., 2015).

(iii) Several authors challenge an assumption that there is a parametric linear relation-

ship between household income yh and each observable household characteristic

Xh in the �rst-stage regression. For instance, Kamanou and Morduch (2004) esti-

mate vulnerability to poverty using the observed distribution of the errors of the

�rst-stage equation, using bootstrapping.

(iv) Several studies point out this approach's limitation regarding an arbitrary proba-

bility cuto� below which a household is regarded as vulnerable. Hohberg et al.

(2018) argue that the vulnerability threshold at 50 percent disregard the variability

a household faces. Similarly, other studies posit that when the expected value of

household income coincide with the poverty line (on the log scale), the probability

is 50 percent independent of the standard deviation (Gallardo, 2018; McCarthy

et al., 2016).

In Section 1.4 we discuss our proposed method in detail: And how we aim to tackle

the above drawbacks. We explain how the machine learning technique works in this

context. We also outline the steps we take, such as model training, cross-validation,

hyperparameter optimisation, model testing, and model interpretation.
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1.3 Data and Summary Statistics

To build the ML-based vulnerability estimates and assess their predictive power, we

use the high-quality longitudinal panel data of private households, the German Socio-

Economic Panel (SOEP) (Goebel et al., 2019). We employ SOEP-core data for years

1984-2020 (v37). Consistent with the extant literature, we keep the unit of analysis at

the household level, assuming the possibility of resource sharing within the households.

We restrict our analyses to households with equivalent disposable income below 100,000

Euros because the wealthy households above this limit will be less susceptible to a short

period ahead of poverty. Our main empirical exercises require that a given household's

income should be available in three consecutive waves. For instance, in a one-year

ahead VP prediction, we train the algorithms using available information in the �rst

two waves and the third wave is used to validate the performance of our prediction.

To check the robustness of our prediction to di�erent years (the obtained prediction

accuracy should be survey-year independent) and to see how the income-generating

function evolves in Germany, we perform the empirical exercise retrospectively at three

di�erent years i.e., 1997, 2007, and 2017 with sample size of 5827, 9433, and 11026

households, respectively. In order to do so, we create a three-year balanced panel: 1996-

1998, 2006-2008, and 2016-2018. Last, we expand our analysis to a three-year ahead

vulnerability to poverty. We again use the �rst two waves of each sample to train ML

models and then conduct performance evaluation with the �fth wave. Put formally,

for instance, using the information of year t and the previous year (t � 1), we predict

if the household would become poor in t + 3. We then evaluate the accuracy using the

realised poverty status in t + 3.

1.3.1 Measures

The outcome variable in the income-generating function is the equivalized household

disposable income. To adjust for price variation across time, the annual disposable

income expressed in PPP (at constant 2010 price) is used. To control for di�erences in

the household size and the resulting economies of scale, we assign the square root of

household size to compute the equivalent income.

The features set employed to train the income-generating function are variables at the

household level and the household's head characteristics. In particular, features on the

household's head consist of socio-demographic variables, such as gender, the achieved

highest level of education degree (with International Standard Classi�cation of Educa-
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tion (ISCED) three levels aggregation: low, middle, and high), marital status (single,

married, widowed, divorced, and separated). In addition, we consider variables that

measure the labour market participation of the household's head, including the number

of hours worked, occupation class (self-employed, blue-collar, and white-collar), and

employment industry (based on one-digit industry aggregation). Features relating to

family head's health conditions have also been considered. These measures are objec-

tive health indicators, such as disability status and hospitalisation i.e., a dichotomous

variable asking whether a person stayed overnight in a hospital in the previous year.

Household characteristics include the previous year household's relative position

in the distribution of equivalent disposable income (by decile), household size, the

federal state of residence (sixteen states), household's composition by age group (i.e., the

number of individuals below 18, [18, 34), [34, 59), and above 59), and home ownership

status. We measure a household's ties to the labour market by the number of individuals

in the family belonging to either of three categories of activity status (i.e., the number of

individuals employed as full-time, part-time, and those unemployed). We also consider

nationality and region of residence (West Germany vs. East Germany).

1.3.2 Summary Statistics

Table 1.1 presents descriptive statistics of selected features over the three cross-sectional

years. All samples mainly consist of household head of working age, male, married, with

vocational education degrees. With respect to the form of dwelling ownership, nearly

39% of the households owned their residence in the 1997 sample, but this proportion

increased to 51% in 2007 and 47% in 2017. On average, approximately 40% of the sample

has an inactive or unemployed household head, which could be because of a higher

percentage of retirees, as the average age of the household head was 52 years of age.
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Table. 1.1 Summary statistics of selected variables

I. Household characteristics 1997 2007 2017

Household size 2.65 (1.31) 2.34 (1.18) 2.50 (1.36)
HH's composition by age:

Under 18 0.62 ( 0.95) 0.42 ( 0.81) 0.62 ( 1.03)
18-34 years old 0.62 ( 0.78) 0.39 ( 0.67) 0.36 ( 0.66)
34-59 years old 0.96 ( 0.87) 0.91 ( 0.86) 0.91 ( 0.85)
� 60 years old 0.45 ( 0.72) 0.62 ( 0.81) 0.59 ( 0.79)

HH's ties to labour market:
› of full-time worker 0.87 ( 0.78) 0.70 ( 0.74) 0.65 ( 0.70)
› of non-working 0.83 ( 0.81) 0.85 ( 0.82) 0.79 ( 0.83)
› of part-time worker 0.41 ( 0.59) 0.41 ( 0.60) 0.50 ( 0.63)

Home owner 38.74 51.28 46.74
Region of residence:

West Germany 71.58 74.72 77.34

II. Information on household head

Age 48.67 (15.55) 53.47 (15.62) 54.04 (15.60)
Gender (female = 1) 37.84 40.28 48.75
Occupation class:

Blue-collar 37.03 25.85 23.69
White-collar 45.2 51.14 56.82
Self-employed 5.19 4.55 3.84

Marital Status:
Divorced 8.62 11.78 15.46
Married 63.94 57.98 54.25
Separated 2.99 3.12 3.71
Single 13.55 15.84 17.61
Widowed 10.18 10.74 8.68

Education:
High 24.54 35.15 36.06
Middle 57.69 55.94 54.62
Low 17.77 8.90 9.32

Health status:
Hospitalized 12 12.84 14.71
Disability 12.78 13.85 13.29

N 5827 9433 11026

Notes: This table presents summary statistics of key features used in the �nal prediction. The numbers in the tables show the
percentages. The other numbers, followed by parenthesis, are the average and standard deviation, respectively.

1.4 Method

We estimate vulnerability to poverty in two steps. First, we apply Supervised ML models

to learn the household income-generating function from the training data. We make

abstract from a large body of theoretical and empirical literature about the household-
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level income-generating function, we mainly refer to (Miles, 1997; Chaudhuri et al.,

2002; Christiaensen and Subbarao, 2005). We build the models under two scenarios

of the household income-generating process: In the �rst scenario, we consider only

cross-sectional data, i.e., without yh,t � 1 in the following speci�cation and this follows

Chaudhuri et al.'s (2002) formulation of the income-generating process (described in

Section 1.2). In the second scenario, we introduceyh,t � 1, the past information on the

relative position of the household in the income distribution as an additional covariate.

We thus have

yht = f (yh,t � 1, Xh) + eht (1.6)

where yht is the equivalent disposable household income, f is some �xed but unknown

function of input features, yh,t � 1 is the lag of equivalent disposable household income,

Xh represents a vector of observable household characteristics (described in Section 1.3),

eht is a random error term that captures any idiosyncratic shocks that contribute to

di�erential household disposable income. The accuracy of byht as a predictor of yht

depends on the component of the error term often called reducible error: It is reducible

because one can potentially minimize it with the use of suitable ML algorithm to estimate

f (.).

E (yht � byht )
2 = E

h
f (.) + e � bf (.)

i 2
=

h
f (.) � bf (.)

i 2

| {z }
Reducible

+ Var (e)
| {z }

Irreducible

(1.7)

where E (yht � byht )
2 is the expected value of the squared di�erence between the pre-

dicted and actual value of yht, and Var (e) represents the variance associated with the

error term.

The supervised ML technique has speci�c desirable properties relevant to our goal

of predicting f (.) with better accuracy by extracting the most generalizable patternon

the unseen individuals. To control over-�tting in the learning process, particular im-

portance is given to model hyperparameters (details in the subsequent sections). The

ML algorithms can handle high dimensionality, and more importantly, the �exibility of

ML allows the model to �t complex relationships in the data that were not speci�ed in

advance.3 Hence, the FGLS's assumptions about the distribution of the dependent vari-

able and the parametric mapping of input features onto the outcome could no longer

be restrictive.

3For a dedicated discussion of ML technique vis-a-vis the traditional econometric approach, see
(Athey and Imbens, 2019; Mullainathan and Spiess, 2017).
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In the second stage, we identify vulnerability to poverty at time t as being in poverty

in the next period. Unlike the FGLS based estimates, in this step, we perform binary

categorisation of household vulnerability status without relying on the lognormality of

the income distribution. Formally,

bvht =

8
<

:
1, if eyh,t+ 1 = bf (yht, Xh) � z

0, if eyh,t+ 1 = bf (yht, Xh) > z
(1.8)

where eyh,t+ 1 is the forecast of household equivalized income in period t + 1 that is

inferred from the �rst-stage regression. To identify households' vulnerability to poverty,

one must specify the appropriate poverty line z. We experiment with the commonly

used poverty thresholds: a) the absolute poverty line computed as the mean relative

poverty lines over the years, approximately 11000 Euros. b) the relative poverty lines

set at 60% of the median the observed equivalized income at time t, and c) the relative

poverty lines set at 60% of the median of forecasted income for period t + 1.

Finally, to see of how well these models perform in predicting VP vis-a-vis the

baseline OLS, we set evaluation metrics that capture local and global accuracy. We

construct sensitivity, the so-called hit rate, the probability of detection, or the true

positive rate (TPR), i.e., a percentage of households predicted vulnerable in period t

(bvht = 1) and actually became poor in period t + 1 (ph,t+ 1 = 1). In addition, we look at

overall accuracy,which is a proportion of households in the sample N that were correctly

classi�ed as vulnerable ( bvh = 1) and non-vulnerable ( bvh = 0).

sensitivity =
å n

h= 1 I (ph,t+ 1 = 1jbvht = 1)
å n

h= 1 I (ph,t+ 1 = 1jbvht = 1) + å n
h= 1 I (ph,t+ 1 = 1jbvht = 0)

(1.9)

accuracy=
å n

h= 1 I (ph,t+ 1 = 1jbvht = 1) + å n
h= 1 I (ph,t+ 1 = 0jbvht = 0)

N
. (1.10)

Hence, in addition to the predicted VP status of households, we utilise the observed

household poverty status in the last year of each panel when constructing the sensitivity

and accuracy of each model. The idea is that, for example, say we were in 1997 and

observe a household's information during this year and the previous year. Using this

information, we predict if a given household will be poor in 1998. Then once the

household's actual poverty status was revealed in 1998, we retrospectively validate the

accuracy of our prediction using the realised poverty status of 1998. In a similar vein,

for a three-year ahead VP prediction, we employ information of 1997 and the previous
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year to make the prediction if a given household will be poor in 2000 and then validate

the accuracy of our estimate using the realised poverty status in 2000.

The remaining part of this section describes the selected ML algorithms.

1.4.1 Which ML Algorithms?

Supervised ML consists of a myriad of algorithms, and hence the question of which

algorithms work best seeks case-speci�c treatment.4 To suggest a robust algorithm for

predicting vulnerability to poverty, we rely on an extensive experimental approach.

We employ �ve ML models from di�erent function classes, namely the Least absolute

shrinkage and selection operator (LASSO), Ridge regression (RIDGE), Random forests,

Gradient boosted trees, and deep learning Neural networks model.

LASSO and Ridge regression are widely used to predict continuous outcomes vari-

ables. These models are analogous to OLS with a crucial exception that these models

penalise the model's complexity by adding regularisation parameters in the least square

loss function and shrinking all non-zero coe�cients. 5Both models are generally e�cient

when applied to data sets with many features. However, the critical di�erence between

LASSO and Ridge is that the former automatically discard variables insigni�cant to the

model's predictive power using a replicable selection mechanism�by pushing some of

the regression coe�cients precisely equal to zero. Thus, resulting in a parsimonious

solution and helps avoid multicollinearity and over�tting problems that often a�ict

OLS models, especially when the number of explanatory factors is large (Tibshirani,

1996). On the other hand, ridge regression keeps the estimated coe�cients di�erent

from zero (Hoerl and Kennard, 1970). Generally, it suits prediction problems where

sparsity is not the priority issue. In this study, these models are utilised to examine if

we can improve VP prediction without diverging from the linearity assumption of the

standard approach in the extant literature.

Random forests (RF) are an ensemble of manyde-correlatedtrees. These trees are

grown from subsamples of the training set using many random subsets of the features

4A well-known theorem in machine learning literature states that there is 'no free lunch' in ML�
meaning that no one algorithm is best for all problems (Wolpert, 2002; Wolpert and Macready, 1997). So,
determining a suitable algorithm often remains at the researcher's discretion.

5

bb = argminb

N

å
i= 1

�
Yi � b

0
X i

� 2
+ l

�
jj bjj q

� 1/ q
; bb = bbols if l = 0; bb = bblasso if q = 1; bb = bbridge if q = 2,

were jj bjj q = å K
k= 1 jbkj

q and l � 0 is a complexity parameter that controls the amount of shrinkage: the
bigger the value of l , the greater the amount of shrinkage.
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(Breiman, 2001). In a regression task, the �nal prediction is then rendered as the average

prediction across all trees, while in a classi�cation task forest's best prediction is chosen

on a majority vote. Hence, random forests overcome the over�tting problem that is

often a�icting the decision tree regressor by averaging many noisy but unbiased trees.

This ensemble of trees increases model stability by inducing smoother estimation of the

function underlying the data-generation process, which results in a robust and accurate

prediction. For a rigorous mathematical characterisation of reduction in over�tting,

while retaining the predictive accuracy of the trees, see (Breiman, 2001; Hastie et al.,

2015).

Gradient boosted trees (GBT) is an ensemble of trees in which the model is built

sequentially with base learners �tting simple models to current pseudo-residuals by

least-square at each iteration (Friedman, 2002). In ML, boosting is a technique of

combining several simple supervised ML models (known as weak learners) into a

powerful composite model (Schapire, 2003; Freund et al., 1999; Drucker, 1997; Mason

et al., 1999). The term g̀radient'in GBT refers to how pseudo-residuals are obtained with

the gradient descent of the loss function being minimised with respect to the model's

values at every training data point. Unlike the RF, an ensemble of trees in the GBT is

not built parallelly and independently. Instead, the weak learners are �rst trained on

a random subsample of the full training data, and then in each boosting iteration, a

tree is grown sequentially on a modi�ed data (the residuals as an outcome variable)

by correcting past mistakes with sample weighting�i.e., more weights on the wrong

predicted samples (Friedman, 2001, 2002).

Neural networks (NN) is a �exible supervised ML algorithm that can generally learn

nonlinear function f (x; q) (governed by unknown parameter q) by mapping an input

vector x onto an output vector y. This mapping consists of one or more nonlinear

layers referred to as hidden layerand NN with many of these layers called ` deep'neural

networks. Each node in the hidden layer (often called ` neuron') transforms the value

from the previous layer with a weighted sum. Then a nonlinear activation function is

applied to yield the �nal result (Goodfellow et al., 2016). Hence, the NN's complexity is

controlled by the number of hidden layers, the number of neurons per hidden layer, the

connectivity of each layer (the architecture of the networks), and the type of activation

function used. Unlike the classical linear models, the coe�cients of NN (often called

weights) are trained �exibly by �rst assigning some arbitrary values and then updated by

evaluating the loss function, which is speci�ed as mean squared error for regression or

cross-entropy for classi�cation. The updating task is conducted via Stochastic Gradient

Descent (SGD) of the loss function being minimised with respect to a parameter to be
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updated (Goodfellow et al., 2016; Bottou, 2010; LeCun et al., 2012).

1.5 Results and Discussion

1.5.1 Prediction Process with Di�erent ML Algorithms

This study trains the above algorithms as implemented in the scikit-learn package

(version 0.22.2), the most prominent Python library for ML (Pedregosa et al., 2011). The

objective is to �nd a generalizable estimate of the income-generating function outlined

in Equation 6 under the two scenarios: 1) when only cross-sectional data is available

and 2) when historical information on the relative position of the households in the

income distribution is available. For the sake of systematic presentation, henceforth,

speci�cations 6 (a) and 6 (b) denote scenario one and two, respectively. Before feeding

the dataset into the models, it is always essential to perform the necessary feature

engineering/pre-processing (Zheng and Casari, 2018; Kotsiantis et al., 2006). As the

SOEP dataset is complete and clean, we pre-process the non-numerical categorical non-

ordinal variables (e.g., federal state of residence, marital status, occupation industry)

and perform feature scaling. Assigning an integer value, say from 1 to k, to each of k

possible categories of non-ordinal variables makes the model assume a natural ordering

between categories, resulting in poor performances or unexpected results. Therefore,

we apply one-hot encoding. 6 Although the tree-based algorithms are insensitive to the

monotonic transformation of features, heterogeneous scales may generate incomparable

or convoluted importance in models that are smooth functions of the input or anything

that involves a matrix. In general, quick convergence in the Neural networks also

requires the predictors to be on the same scale. Hence, we train the linear models and

NN using standardised predictors.

To avoid data leakage, we use 80% random sample of the dataset as training set and

the remaining as test set. Then the models are trained on the training set model's gen-

eralisability to the unseen households is tested using the test set. The hyperparameters

are empirically tuned via grid search with �ve-fold cross-validation (CV). The optimal

hyperparameters are obtained based on high mean test prediction accuracy measured

by R-squared in the process of �ve-fold CV. We tune the regularised linear models by

the complexity parameter. In the RF algorithm, we discover that the maximum depths

of trees ('max_depth') and the number of features used in each split (' max_feature'), are

6One-hot encoding is a technique to create a group of dummy variables�each variable represents a
possible category if the variable does not belong to multiple categories at once.
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consequential hyperparameters to the predictive accuracy. We control the learning pro-

cess of GBT using the number of boosting stages ('n_estimator'), the maximum depth

of the tree ('max_depth') and learning rate (0 < 'learning_rate' � 1). Last, considering

the size of our datasets, a NN with two hidden layers is built. Many hyperparameters

could be tuned for Neural Nets. In this work, hyperparameters related to neural net-

works architectures (i.e., the number of neurons per hidden layer) and the learning rate

are tuned jointly; we run the above procedure over a grid of three-dimensional values

(See Appendix 1.B for a comprehensive training work�ow, model inspection, and the

chosen hyperparameters of all ML algorithms under both speci�cations on the three

panels).

1.5.2 Performance Evaluations

We are now able to predict a year ahead of VP in 1997, 2007, and 2017. Besides

parsimony, the ten years gap between the years will allow us to capture heterogeneity in

VP prediction over time, which could be explained by a mixture of the German business

cycle over the three decades and the variation that is sample-speci�c.

First, we analyse the performance of the modes' vulnerability estimate with speci-

�cation 6 (a) under the three alternative poverty cuto�s: zabsolute, zrelative
t , and zrelative

t+ 1

(as described in Section 1.4). Starting from the 1997 and focusing on the estimated

vulnerability by the linear machine learning algorithms vis-a-vis the baseline OLS with

the relative vulnerability cuto� seen in the second column of Figure 1.1 (a), it is possible

to notice that the true positive rate or the hit rate of the baseline model is small (approx-

imately 44.5%). We �nd negligible relative sensitivity and accuracy gains from LASSO

and Ridge regressions. These observations hold for the vulnerability estimates of 2007

and 2017 regardless of the type cuto�s used. Hence, we can conclude that regularising

the linear model could not improve vulnerability estimates. These algorithms generally

work better when the OLS model is over�tting. They penalise model's complexity by

adding a penalty term on the least square loss function. For instance, LASSO generally

performs better than OLS when a slim fraction of the included features signi�cantly im-

pacts the response. In our VP setup, however, we train the algorithms on large sample

sizes and sets of clean and non-redundant predictors, which are theoretically expected

to impact the response. In both LASSO and Ridge regression the tuned complexity

parameters are close to zero (See Figure 1.7 and Figure 1.8 in the appendix), meaning

that the coe�cient estimates from the regularised models are very close to the ones with

OLS.
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Figure. 1.1 Performance of models' VP estimate under speci�cation 6 (a)

(a) Sensitivity

(b) Accuracy

In contrast, we obtain remarkable prediction accuracy by relaxing the over-

simplifying linearity assumption of FGLS. For instance, predictions with the RF al-

gorithm target future poverty with much better sensitivity of 26%, 28%, and 16% than

the baseline estimate in 1997, 2007, and 2017. Similarly, with the Gradient boosted trees,

the gain is 23%, 22%, and 9% more per each survey year analyzed, followed by the

Neural Network's prediction, which resulted in 18%, 24%, and 6% higher sensitivity

vis-a-vis the OLS estimates. Furthermore, results show that the patterns of sensitivity

and accuracy gains with the non-linear ML models are robust to the poverty cuto�s.

These results suggest the presence of interactions and non-linearities in the house-

hold income-generating process. In other words, if the feature's contribution is inde-

pendent of one another and there was linear mapping between these input features and

the target variable, then algorithms from the linear function class would perform well.

This empirical exercise suggests that the Explainable ML approach to VP with empir-
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ically optimised tree-based algorithms (and Neural networks) shows high potential in

targeting future poverty with better accuracy, as these models are speci�cally designed

to learn non-linearity and feature interactions.

Figure. 1.2 Performance of models' VP estimate under speci�cation 6 (b)

(a) Sensitivity

(b) Accuracy

Next, we investigate if there is accuracy gain by considering the household's relative

position in the national income distribution in the past year. This is performed by re-

training the models to learn speci�cation 6 (b) , which includes the deciles of the past

year's household disposable equivalent income. We decided to consider only the pre-

ceding one year's income information because including many lagged information did

not improve model accuracy signi�cantly but resulted in unstable model interpretabil-

ity due to the high collinearity of these features. Hence, as can be seen in the second

column of Figure 1.2 (a), the hit rate of the VP estimate based on the re-trained model

increased to 54%, 62%, and 60% over the three years in the baseline OLS model. In
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other words, averaged over the years, the linear models predict vulnerability by ap-

proximately 7% more hit rate than they do when past household income is not in the

model. Nonetheless, the average prediction gains with the introduction of the income

feature are 3.5, 1.2., and -3.3 percent in RF, GBT, and NN, respectively. These results

suggest that historical information regarding the relative position in the income distri-

bution has a more prominent role in increasing the prediction performances of linear

models. Last, from this experiment, we can also reiterate the conclusions that the gain

from LASSO and ridge regression is marginal compared to the baseline estimate vs.

the gain from Random forests, which is 25, 15, and 18 percent more than the baseline

estimate.

1.5.3 Drivers of Household Income and their Evolution: ML Inter-

pretability

Understanding the prediction of a household income-generating process is equally es-

sential to obtain actionable insights that can ultimately contribute to social policies that

aim at poverty eradication. Many state-of-the-art algorithms such as RF and GBT often

produce better accuracy. However, unlike parametric linear models, these ML algo-

rithms lack model-speci�c or intrinsic interpretability. Nevertheless, these algorithms

report feature importance, i.e., increase in the mean squared errors (MSE) of prediction

when a feature is randomly permuted from the model. However, the feature ranking

generated by these models does not provide the direction and magnitude of the associ-

ation between the predictors and the target variable, posing a challenge to the domain

expert to have a gist of ML-produced results. To overcome this limitation, we use the

visualisation tool SHapley Additive exPlanations (SHAP) proposed by Lundberg and

Lee (2017), to reveal insights into a complex outcome. SHAP is based on a solution

concept in a cooperative game setup that aims to `fairly' allocate the gains among play-

ers as suggested in the seminal work of Shapley (1953). SHAP has the advantage of

consistency and provides both local and global interpretability (see Guidotti et al., 2018;

Pedregosa et al., 2011; Molnar, 2020, for a comprehensive review of black-box ML model

interpretation techniques).

In what follows, we will look at Shapley's value analysis to identify the key predic-

tors and disentangle their partial e�ects. First, we analyse Shapley values of features

capturing households' characteristics without past year income decile, i.e., model 6 (a);

these results are in Appendix 1.D. We then introduce the past income decile to see

how the features' impact change (model 6 (b)), as shown in Figure 1.3. We report the
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top 25 signi�cant predictors of household income during the three cross-sectional years

in the text for illustration reasons�full results showing all covariates used to estimate

the income-generating function are reported in Appendix 1.C. The top 25 predictors

are placed in descending order of signi�cance to the prediction, and the direction of

impacts of these variables are consistent with the economic intuition (well summarised

in the bar graph). Model 6 (b) has a higher mean test R-squared (shown in Figure 1.9

in the appendix) and higher average hit rate (and overall accuracy) of VP predictions

than model 6 (a) for all the years analysed. This fact clearly shows that the households'

relative position in the income distribution of a given year is an essential positive pre-

dictor of their income in the following year. Our model captures an interesting positive

non-linear association for all the years investigated, as plotted in panel (a) of Figure 1.3.

Controlling for other household characteristics, on average, the wealthiest families (in

the 10th decile of the previous year's income distribution) will have 13,000 Euros more

in the next year than the average income. In comparison, the poorest households (in

the �rst decile) will likely have approximately 5000 Euros less than the average income.

We observe a consistent gentle slope until the �fth decile, which gets steeper above the

seventh decile in all the years analysed, suggesting that the between-decile variation

gets bigger only on the right side of the distribution.

Note that the beeswarm plots on the left side of each panel in the following �gure are

SHAP summary plots of the best-performing Random forests model during the years.

This plot displays the top 25 features of prediction (the top on the y-axis is the most

important) and the distribution of the impacts of each predictor on the model prediction,

which includes a set of distributions where each dot corresponds to a household. When

multiple dots arrive at the same coordinate in the plot, they pile up to show density. The

colours correspond to the feature values: red for larger values and blue for smaller ones.

A negative SHAP value (extending to the left) shows a decrease in the outcome variable,

while a positive (extending to the right) shows an increased value. The long-right tails in

the summary plot indicate that the variables are highly predictive for some respondents

but not others, i.e., predictors with minor global importance can still be very important

for speci�c respondents. The bar plot on the right side of each panel displays three-fold

information. (i) The direction of association captured by the correlation between the

feature and SHAP values (red for positive and blue for negative). (ii) The darkness of

each colour gradient shows the strength of the direction of the association. (iii) The

feature's marginal impact magnitude is measured as the absolute SHAP values average

and indicated by the horizontal length of the bars.
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Figure. 1.3 Key predictors of household income over the years

(a) 2017

25



(b) 2007

(c) 1997

Feature showing the households' strong ties to the labour market is the second

most important predictor in 2007 and 1997 and holds the fourth tier in 2017. The

number of full-time workers in the family is positively associated with households'

disposable income. The magnitude of impact (mean absolute SHAP value) of this

variable increased when we drop the past year's household income decile from the

model. The number of individuals in part-time employment is also a positive predictor

but has a smaller impact than the full-time workers. In contrast, the number of non-

working individuals in the households is inversely associated with the target variable

with a minor e�ect on the model. We �nd a similar positive pattern between hours
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worked by the head of the family and household income. We see a sizeable earnings

di�erence between occupational groups: households whose heads of the family work

in a blue-collar job are associated with lower income than those whose heads are self-

employed or working in white-collar jobs. The relative importance of these features has

been relatively consistent across the years.

The highest achieved level of education is the next critical predictor. As can be seen

in Figure 1.3 families headed by highly educated individuals tend to have a higher

income than those with a middle and lower level of education. This relationship is

consistent with the human capital literature (Grossman, 2017; Heckman and Carneiro,

2003; Jolli�e, 2002; Miles, 1997). In terms of feature importance over time, the high

education variable has ascended to being the second and the third most important

feature in 2017 and 2007, respectively, from the �fth position in 1997. This pattern can

be linked to the observed increase in the proportion of degree holders over time in the

dataset. The magnitude of the impact of these features diminishes when we control for

the household's position in the past year income distribution.

Homeownership status is the other in�uential predictors of household disposable

income and thereby vulnerability to poverty�appear in third, �fth, and fourth positions

over the years. Consistent with the positive association between housing wealth and

disposable income (and consumption) documented in the literature, (e.g., Aladangady,

2017; Browning et al., 2013). Households living in owner-occupied homes are associated

with higher household disposable income than those living in rented housing. In the

next tier of feature importance, we see a household's location as a key predictor of a

household's disposable income in Germany. Looking at the average income by region of

residence depicted in Figure 1.3 (b), we �nd a persistent di�erence by region of residence,

i.e., households in West Germany are associated with higher household incomes than in

East Germany (the former German Democratic Republic). This attributed to the wage

di�erentials between the regions. Previous studies attribute the source of the wage

gap to the characteristics of establishments than observable di�erences in employees'

demographics (Gollin et al., 2014; Heise and Porzio, 2019; Moretti, 2011; Smolny and

Kirbach, 2011), suggesting that establishments in the West pay a signi�cantly higher

real wage than in the East, and labour market frictions prevent workers' reallocation

across �rms and across spaces. We observe a narrowing of this gap in 2017 compared

to the previous decades, stipulating a diminishing impact of regional di�erences over

the three decades.
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Figure. 1.3 Partial e�ect of past year's income, household size, gender of head of the household
& region of residence

(a) (b)

(c) (d)

Notes: This �gures display SHAP dependence boxplots of the past year income decile and a regional dummy variable in the three
years. The diamond symbol in the boxes denotes the average of SHAP value distribution per each category. In panel (iii) for the
sake of presentation, we exclude households with a size of seven or bigger which represent only 1% of the sample.

The household's size and family's composition by age are consistently in the top 25

predictors in all the years we analyse. The number of individuals living together a�ects

the income distribution because of income sharing within households. However, we

observe a non-monotonic association between the number of individuals in the family

and their disposable income, as shown in Figure 1.3 (c). A single-person household is

associated with a lower equivalent income; in contrast, two-person families (followed

by a family with three members) are associated with the higher one. As the household

size increases further, the positive impact vanishes; and the household composition

underpins this e�ect. Consistent with the prediction from a life-cycle model (e.g.,

Gourinchas and Parker, 2002), a family is less likely to be poor as it comprises more

working-age adults (above 34 years of age) and the elderly (60 years of age and above)

due to accumulated wealth e�ect, and fewer children (below 18 years of age). We do

not �nd a similar positive impact of having more young adults between 18 and 34 in the

family. One reason for this result is that this age group coincides with the life stage of

dependent college students or family formation and childbearing stage, which implies
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low or no income. In Figure 1.3 (d), we see a slight persistent disparity in equiva-

lent disposable income according to the gender of the family head: a female-headed

household predicts lower income than a family with a non-female head. With respect

to family status: households headed by a single person (never married), separated, or

divorced is associated with lower equivalent income than households with married or

even widowed family heads. Last, disability status negatively predicts the household

equivalent income in all the years examined and appears among the top 25 predictors

of 2007.

1.5.4 Pro�les of Vulnerable Households

Once we can accurately estimate those households that will become poor in the next

period and determine the factors associated with household income, the next crucial

step is understanding the direct determinants of vulnerability. To do so, we study

the predicted vulnerable households for the years with respect to several indicators

of household pro�les: family status, occupation class, and region of residence. This

analysis is based on the Random forests' VP estimate under speci�cation 6 (b) with a

poverty cuto� of 60% of the median of the observed equivalized income at time t (shown

in Figure 1.2). See Appendix 1.E for the pro�le analysis that is based on speci�cation 6

(a). For each pro�le element, the percentage of the predicted vulnerable households is

reported in Table 1.2 below.

Table. 1.2 Sociodemographic pro�les of vulnerable households

Sociodemographic variables 1997 2007 2017

Female HH head 60.88% 60.74% 63.89%
Marital Status:
Divorced 20.78% 26.70% 26.83%
Married 26.65% 20.96% 23.57%
Separated 8.07% 6.70% 6.16%
Single 20.54% 31.70% 34.66%
Widowed 21.52% 13.19% 8.34%
Occupation class:
Blue-collar 38.63% 34.47% 34.37%
White-collar 23.72% 27.23% 28.64%
Self-employed 3.18% 2.98% 2.76%
Region: West Germany 7.41% 8.86% 11.22%

From the pro�le analysis, in 1997 and 2007, we observe that approximately 61%

of vulnerable households have a female household head, and this �gure rose to 64%

in 2017. Looking at the relationship status of heads of the vulnerable families, we
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�nd that single-person households represent the largest percentage, followed by those

families whose leaders are divorced, married, widowed, and separated. These rankings

are consistent for the years 2007 and 2017. However, in 1997, most of the vulnerable

were families with married heads. This can be because households with such a pro�le

represented the vast majority of the sample in 1997 compared to the other years (see,

Table 1.1). Similarly, the percentage of vulnerable single-headed households is lower

than in the other years by 10% at least. However, families with widowed heads that were

vulnerable were more present in 1997 as opposed to the other years. Next, we assess the

vulnerable families with respect to employment status and occupation class of the head

of the household. Consistent over the years, families with blue-collar heads represent

the largest percentage of the vulnerable, followed by those with unemployed, white-

collar, and self-employed pro�les. We observe an increasing pattern in the proportion of

vulnerable households with white-collar heads over the years, while the opposite is true

for blue-collar household heads. Note that this pattern is re�ected in the composition

of the SOEP samples over the years, as described in Section 2. Moreover, the more

signi�cant proportion of households identi�ed as vulnerable was from East Germany.

But this percentage slightly dropped (by 4%) from 1997 to 2017, which was also re�ected

in the partial e�ect of the region of residence.

1.5.5 Extending the Time Horizon

Thus far, we have analysed one year ahead vulnerability. We also considered n years

ahead vulnerability, i.e., whether the household will fall into poverty in the n period. To

be comparable with previous research, for instance, (Hohberg et al., 2018), we expand

the time horizon of our prediction to three years ahead of vulnerability to poverty. As

the future poverty line is unknown, we use the absolute and relative poverty lines (based

on the income distribution in year t and the forecasted income in time t + 1). Figure 1.4

displays the results of the ML algorithms and the baseline OLS's sensitivity score under

the two speci�cations.
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Figure. 1.4 Performance of models' in predicting three years ahead VP

(a) Speci�cation 6 (a)

(b) Speci�cation 6 (b)

The non-linear ML algorithms have shown powerful predictive performance com-

pared to the standard linear model in identifying if households will become poor in

period t + 3. However, the level of sensitivity degenerates for all models (looking at the

second column of each panel) compared to the one year ahead vulnerability prediction.

For instance, the prediction of vulnerability with linear models falls on average by 6.5%

with both speci�cations. Similarly, the VP prediction with Random forests drops by

10% with both speci�cations.

1.6 Conclusions

This study examines households' vulnerability to poverty as an important measure-

ment that can be used for proactive social protection policies to target those families
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who will experience poverty in the future. The most pursued approach in the liter-

ature de�nes "vulnerability as expected poverty", that is, the household's probability

of becoming poor in the future. This study proposes a data-driven approach to bet-

ter predict VP with explainable ML algorithms. Several empirical experiments were

conducted using the German Socio-Economic Panel (SOEP), a high-quality longitudi-

nal panel data of private households in Germany. First, we analyse if better accuracy

can be obtained without departing from the FGLS's linearity assumption by employing

regularised linear ML algorithms. Second, we introduce �exibility by embedding the

household income-generating function into non-parametric complex ML algorithms,

such as Neural networks, Random forests, and Gradient boosted trees. We ran these

experiments under two scenarios. 1) when only cross-sectional data is available vs. 2)

when historical information on the relative position of the households in the income

distribution is available. Finally, we address the FGLS's arbitrary VP cuto� by consid-

ering absolute and relative poverty lines that are standard in poverty analysis. To check

whether the results are dependent on the speci�c cross-sectional year from which VP

is predicted, we conducted the analysis retrospectively for multiple years (1997, 2007,

and 2017). From the results of this study, the following conclusions can be obtained:

The regularised linear ML algorithms do not enhance the level of predictive sen-

sitivity compared with the baseline OLS. With empirically optimised, �exible non-

parametric ML algorithms, such as Random forests, Gradient boosted trees, and Neural

networks, one can target VP with better sensitivity. Notably, a solid predictive per-

formance can be obtained with RF. This predictive power is robust to varying the

cross-sectional year, extending the time horizon of prediction, and using di�erent vul-

nerability cuto�s.

A higher sensitivity of VP prediction can be obtained by utilising the previous year's

income information. A more signi�cant impact is re�ected in the linear models than

in the nonlinear ML models. Including multiple past years' household income does

not further enhance the predictive power of models on our data. However, uncaptured

signals could be fetched by utilising multi-period past information in an environment

where household income is highly volatile from year-to-year.

The highly predictive RF model can be e�ectively interpreted by SHAP values locally

and globally. Although feature importance inferred from the coe�cients of the OLS

estimates reported in the related literature and Shapley values from RF produce results

di�erently, the two models arrive at the same conclusion about the critical predictor of

VP. Looking at the Shapley values ranking of the most in�uential predictors, the past

year income decile, variables relating to household's ties to the labour market, human
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capital, household's composition (by age and activity status), and region of residence

are the potent signal to the sources of VP.

Future studies can complement the highly predictive data-driven approach by non-

parametrically estimating the degree to which a given household will face the risk of

future poverty. E�ective social policy can be devised with an accurate targeting of the

disadvantaged group; hence it is essential if researchers assess and report the sensitivity

of VP prediction when using panel data. We �nd a comparable pattern in terms of the

predictive power of models for a given cuto� employing absolute and relative poverty

concepts. Farther sensitivity can also be achieved by adjusting the cuto�.
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Appendices

1.A Distribution of HH Equivalent Income and its Evolu-

tion

Figure 1.5 shows the distribution of the dependent variable in the three years. The

distribution's shape has changed over time, with a dramatic shift of the density from

the middle towards the right and left tail of the distribution, showing increased average

equivalent disposable household income from 1997 to 2007. Likewise, in 2017, the

distribution spread with a more pronounced shift towards the right tail, resulting in a

decreased mean distribution from 2007; this reveals the high mobility of households

from the middle class to the upper and lower class during these years.

Figure. 1.5 Evolution of household income distribution in 1997, 2007, and 2017

Notes: This �gure shows the evolution of the empirical densities of equivalent household dispos-
able income. The annotated �gures correspond to the mean value of each distribution.
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Figure. 1.6 Absolute and relative poverty lines in Germany 1997 to 2017

1.B How we Train the Models

In this section we describe the prediction process for the supervised ML models more

speci�cally on sampling of the data, tuning of the parameters and how to evaluate them.

In all prediction exercises we used six models as implemented in the Scikit-learn.

Data Pre-processing and Overall Work�ow

For the VP prediction exercise described in the main part of the paper, we want to

train a generalizable estimate of income-generating function (as outlined in equation 6a

and 6b) that can be used to predict VP status of households. In training these models

(including the baseline OLS model), we followed the following work�ow.

Before training the models, we perform the necessary feature engineering/pre-

processing (Zheng & Casari, 2018). Our covariates come in di�erent forms: (a) numer-

ical discrete, e.g., household size and the number of hours worked, (b) dichotomous

variables, such as gender and disability status, (c) categorical ordinal, namely last year's

income decile, and (d) categorical non-ordinal, e.g., region of residence, marital status,

occupation class. Assigning an integer value, say from 1 to k, to each of k possible cat-

egories of non-ordinal variables makes the model assume a natural ordering between

categories, resulting in poor performance or unexpected results. Therefore, we apply

one-hot encoding, a technique to create a group of dummy variables�each variable

represents a possible category if the variable does not belong to multiple categories at

once. Moreover, heterogeneous scales of features may generate incomparable or con-

voluted importance in models that are smooth functions of the input or anything that
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involves a matrix. On the other hand, the tree-based algorithms are insensitive to the

monotonic transformation of features. Quick convergence in the Neural networksalso

requires the predictors to be on the same scale. Hence, we train the linear models and

NN using standardised predictors.

After random splitting of the datasets. On the training sample, we run each of the

algorithms: For models that do not require any tuning, e.g., OLS, we simply �t the

model on the full training sample and store estimated function. On the other hand, for

algorithms that involve a regularisation parameter, we empirically select the optimum

hyperparameters on the training sample through grid search with cross-validation.

Once we have chosen an optimal hyperparameter, we re-train the models with tuned

hyperparameter on the full training sample.

We next assess the performance of each algorithm in predicting household income

on the 20% unseen households. We employ the commonly used evaluation metrics in

regression settings, namely Mean Absolute Errors (MAE) and the ( R2), to evaluate how

intelligently the models predict for out-of-sample households.

MAE s =
1
n

n
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jys
i � bys

i j and R2 = 1 �
å n

i= 1

�
ys

i � bys
i

� 2

å n
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�
ys

i � ys� 2 (1.11)

where s 2 f Trainset,Testsetg. The best model is the one that has a smaller value in both

MAE (ideally close to zero) and a higher R2, meaning that it produces predictions that

are very close to the true responses. Moreover, the prediction accuracy on the train and

test set should be comparable enough to establish the model's generalisability.

Tuning Hyperparameters and Inspecting CV Results

For each ML algorithms, we select complexity parameters using Grid search with �ve-

fold cross-validation is applied to identify the optimal hyperparameters in each model

that control over-�tting and performed in three steps:

i) We randomly partition the training set into �ve subsamples

ii) For every possible combination of hyperparameters, we train the models on the

four subsamples and generate predictions for the �fth, and

iii) Repeat this process �ve times so that each subsample is used only once to generate

the prediction. The optimal hyperparameters are updated based on the average

of these ten prediction results. The tuning step ends when we �nd an optimal
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hyperparameter that produces minimum average prediction errors (or high R-

squared).

Inspecting the results of empirical tuning

The hyperparameter spaces we search over are a crucial input to the empirical

tuning exercise, and the tuning process will be poor if the optimal hyperparameter is

outside these spaces. To understand whether this could be the case, we inspect the

cross-validated performance by hyperparameter values and check whether the chosen

hyperparameter value is inside the range provided.

The �gures below show the hyperparameter tunning of speci�cation 6 (a) and 6

(b) on the three panels. For the sake of parsimony, we discuss in text the chosen

hyperparameters of models that are trained on the 2017 sample.

In the regularised linear models, the selection of the complexity parameter is crucial,

and the optimal level is often determined via grid search with cross-validation (see

Hastie et al., 2017; Varian, 2014, for a detailed explanation). From Figure 1.7 (c) and

Figure 1.8 (c), it is noted that the regularisation degree of 0.084 in LASSO and 0.001 in

the Ridge regression produce better performance with an average test R-squared of 0.44

in both models. However, when a feature measuring the past year's household income

decile is included, the model performance vastly increases to 0.665 in LASSO and 0.664

in RIDGE with a regularisation parameter of 0.263, 0.009, respectively seen in Figure 1.7

(f) and Figure 1.8 (f).
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Figure. 1.7 LASSO

(a) (b) (c)

(d) (e) (f)

Figure. 1.8 Ridge regression

(a) (b) (c)

(d) (e) (f)
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In this study, we �nd that tuning hyperparameters, such as the maximum depths of

trees ('max_depth') and the number of features used in each split (' max_feature'), are con-

sequential to the predictive accuracy. The max_depth controls the model's complexity�

i.e., the shallower the trees, the more observations end up in each terminal node resulting

in poor performance on the training set. At the same time, the max_feature dictates

the size of random subsets of features from which the best split is chosen as we split

nodes while growing the trees. Setting max features very low could lower the model's

variance but worsen the model's performance on the training set. Therefore, selecting

a proper value of max_depth and max_feature is paramount (Probst et al., 2019). From

Figure 1.9 (c) and (f), it can be concluded that when the max_depth equals 13 and the

max_feature equals 10, the RF performance is the greatest, with the average R-squared

of 0.457. Once we include the past year's income information, the optimal max_depth

is 9 and max_feature is 23 that result in the best performance of the model with an

R-squared of 0.745.

Figure. 1.9 Random forests

(a) (b) (c)

(d) (e) (f)

Although the RF performs better than the regularised linear models in both spec-

i�cations, we check if we can further improve the prediction accuracy with GBT. The

Gradient boosted trees are usually more sensitive to hyperparameters settings than

RF but can provide better accuracy if the hyperparameters are set correctly (Müller &
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Guido, 2016). In this study, the learning process is controlled by optimising selected

hyperparameters: such as the number of boosting stages ('n_estimator'), the maximum

depth of the tree (' max_depth') and learning rate (0 < 'learning_rate' � 1). The reasons

for choosing these hyperparameters are increasing n_estimator improves the accuracy

of the training set but setting it too high may lead to over�tting. Analogous to RF, the

role of max_depth here too is to control the model's complexity. The learning_rate regu-

lates the contribution of each boosting iteration: setting the learning rate lower requires

more boosting iterations. From the obtained result seen in Figure 1.10 (c) and (f), when

n_estimators is 275, the learning rate equals 0.057, and max_depth equals 3, the model

performance is the greatest with 0.478 mean R-squared on the test set. The R_squared

of the GBT model increased to 0.74 when we ran the grid search by incorporating the

past year's household income. The selected values of n_estimators, learning rate, and

max_depth equal 175, 0.036, and 3, respectively.

Figure. 1.10 Gradient boosted trees

(a) (b) (c)

(d) (e) (f)
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Figure. 1.11 Neural networks

(a) (b) (c)

(d) (e) (f)
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1.C Shapley Values of all Features for all Years (equation

6b)

Figure. 1.12 SHAP summary plot of all features

(a) 2017
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(a) 2007
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(a) 2007
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1.D Key Predictors without the Past Income Decile in the

Model
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Figure. 1.13 Top 25 predictors when historical income is not accounted for

(a) 2017

(b) 2007

(c) 1997
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1.E Pro�les Analysis of Vulnerable Households Under

Speci�cation 6 (a)

Table. 1.3 Sociodemographic pro�les of vulnerable households 6 (a)

Sociodemographic variables 1997 2007 2017

Female HH head 62.55 61.64 66.13
Marital status
Divorced 27.64 34.18 28.64
Married 22.91 8.55 15.82
Separated 9.45 7.64 7.35
Single 20.36 45.82 45.08
Widowed 18.18 3.09 2.99
Occupation class:
Blue-collar 44 44 38.98
Self-employed 2.55 2.36 1.87
White-collar 21.09 25.09 25.65
Region: West Germany 4.94 4.73 6.44
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Chapter 2

Predicting Material and Social

Deprivations with ML �

� The data used in this study come from the European Union Statistics on Income and Living Condi-
tions (EU-SILC).
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2.1 Introduction

The debate on who to consider as poor was largely in�uenced by cultural, political and

country-speci�c factors (Rowntree, 1901; Minter, 1992; Saunders, 2004; Townsend, 1970;

Sen, 1982). Two competing approaches are prevalent. Poverty as well-being losses that

is `indirectly' measured in monetary terms; and poverty as `directly' assessed by looking

at the outcome or the �nal conditions of individuals, which are generally perceived as

well-being or standards of living (Townsend, 1979; Sen, 1985, 1992, 2009). There is a

consensus in the literature that these two approaches are complementary instead of

substitutes as they do not perfectly overlap�an income poor individual may not be

deprived, while a non-poor individual might su�er from deprivations (Perry, 2002;

Nolan et al., 1996). Several countries and multi-national organisations have already

employed material deprivation as one of crucial measures for policy analysis. 1 At the

same time, there is a �urry of empirical studies predominantly examining the role of key

policy variables in a�ecting material deprivations (for instance, Nelson, 2012; Saltkjel

and Malmberg-Heimonen, 2017; Julkunen, 2002). However, despite the widespread use

of this measure, the question of how accurately one can identify individuals based on

their risk of deprivation remains unexplored. Being able to identify those individuals

with accuracy and in a cost-e�ective manner is imperative for policy design to direct

social programs to the deprived and facilitate the optimal allocation of limited resources.

Using state-of-the-art supervised machine learning (ML) algorithms, such as Ex-

treme gradient boosted trees (Chen and Guestrin, 2016) and Random forests (Breiman,

2001) grounded in economic theory and data, this study answers the questions: 1) How

accurately can one classify unseen/out-of-sample individuals' deprivation status given

their observable personal, household, and country-speci�c factors? 2) What is the per-

formance of targeting subsets of indicators, such as sociodemographic, socioeconomic,

health, and location, to identify the deprived? 3) What are the key predictors and their

partial e�ects? I use the EU-SILC (the European Union Statistics on Income and Living

Conditions) microdata. The empirical analysis is based on the 2014 and 2018 cross-

sectional EU-SILC User Data Base (EUSILC UDB), a nationally representative sample

of 457,475 and 416,973 individuals aged 16 or above in European countries covering a

range of material and social deprivation indicators, sociodemographic, socioeconomic,

and health variables.

1For instance, the European Union (EU) utilise at-risk of poverty or social exclusion (AROPE) to
assess poverty in the member countries. The AROPE indicator is based on three sub-dimensions: income
poverty or material and social deprivation or low work intensity (Eurostat, 2022b; Guio et al., 2016).
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The results indicate that the ML models, speci�cally the Extreme gradient boosted

trees (Xgboost) algorithm excels at accurately classifying unseen individuals: Xgboost

and Random forests achieved an accuracy of 88% and 86% based on classi�cation

accuracy evaluated by the area under the ROC curve (Wodon, 1997; Hanley and McNeil,

1982). Put di�erently, the relative accuracy gained by using the more sophisticated

algorithm is positive and signi�cant as compared to that of logistic regression (7.3%

relative gain with Xgboost and 5.9% with the random forest). The socioeconomic and

location features have the best classi�cation power compared to sociodemographic

and health characteristics. The relative feature importance identi�ed with Shapley's

values shows that the individual's relative economic position to others, general health

status, level of education, age, and housing wealth is the most prominent predictor of

deprivation. These results are robust to using di�erent cross-sectional years.

This study makes several contributions to the related literature. First, as far as

the author is concerned, this study is the �rst to evaluate the usefulness of the non-

parametric extreme gradient boosted trees classi�er algorithm augmented with Shapley

values to model the complex nature of deprivations. By comparing the ML algorithms

with that of the Generalised linear model (i.e., logistic regression) and documenting

their heterogeneity by country. Second, using the newly revised 13-item deprivation

indicators proposed by Guio et al. (2016), this study analyses deprivations in material

and social aspects instead of those based on the old 9-item indicators, which mainly

capture household-level hardship in durable goods. Finally, while remaining highly

relevant to the previous studies, this study reveals non-linear relationships between key

variables and the likelihood of poor living conditions.

The remainder of the chapter is structured as follows. I describe the dataset, de�ne

the outcome variable and provide summary statistics in Section 2.2. Section 2.3 presents

the method of the analysis. In Section 2.4 are contained the results and discussion, and

Section 2.5 presents concluding remarks and future direction.

2.2 Data and Summary Statistics

2.2.1 Data

This study relies on the European Union Statistics on Income and Living Conditions

(EU-SILC) as a data source. The EU-SILC provides the reference source of statistics

on income, poverty, social exclusion, and living conditions in the EU member coun-

tries (Eurostat, 2022a). The survey also covers other domains of living conditions and
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their determinants, which enables the analysis of the multidimensional phenomena of

poverty and social exclusion and the joint analysis of its di�erent dimensions. The main

analysis are based on the 2018 cross-sectional EU-SILC User Data Base (EUSILC UDB

2018), which contains a nationally representative sample of 457,475 individuals aged 16

or above in 28 European countries. The 2014 cross-sectional EU-SILC User Data Base

(EUSILC UDB 2014), which contains a nationally representative sample of 416,973 indi-

viduals is used to check the robustness of the prediction to di�erent survey year. In the

dataset individuals provide rich micro-level information on material and social depri-

vation indicators, demographic information, socioeconomic characteristics, education

status, labour market information, and health status. In the subsequent paragraphs,

I explain how I de�ne the outcome variable and measurement of features used in the

prediction exercises.

2.2.2 Outcome Measurement

To measure multidimensional aspects of individual living standards, I employ the

Guio et al.'s (2016) newly proposed thirteen-item scale material and social deprivation

(henceforth MSD) indicators. The MSD items are based on responses to questions that

inquire if respondents experience forced inability in the past twelve months to: 1) "face

unexpected �nancial expenses," 2) "a�ord a one-week annual holiday away from home,"

3) "avoid arrears on mortgage or rent, utility bills or hire purchase instalments in the

last 12 months," 4) "a�ord a meal with meat, chicken, �sh (or vegetarian equivalent)

every second day," 5) "a�ord to keep their home adequately warm," 6) "replace worn-

out furniture," 7) "have access to a car/van for personal use," 8) "replace worn-out

clothes with some new ones," 9) "have two pairs of properly �tting shoes", 10) "spend a

small amount of money each week on him/herself (pocket money)," 11) "have regular

leisure activities," 12) "get together with friends/family for a drink/meal at least once

a month," 13) "have an internet connection". The MDS indicators re�ects deprivations

at both household-level (item 1-7) and at the individual level (item 8-13). Under the

assumption of resource sharing within the same household, individuals in the same

families are assigned identical deprivation status in items collected at the household

level. Unlike the old 9-item material deprivation indicators, the revised items account

for economic strain or �nancial stress (item 1-6), enforced lack of durable (item 7 &

13), basic needs (item 8 & 9), social inclusion or activity (item 10-12). To correctly

label individuals based on their deprivations status, I �rst re-coded the items in the
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same direction as binary variables, i.e., deprivation indicator takes 1, if the person does

not have the item because she cannot a�ord it; otherwise it takes value 0. Regarding

household's arrears (embedded in item 3), the household is said to be non-deprived

in this dimension if it has never been in any type of arrears or if the questions does

not apply to the household, that is the case when the respondent either owns a house

or is living rent free, pay no utility bills or no loan payment. Last, respondents with

missing information in any of the deprivation items are excluded from the analysis.

Then individuals are identi�ed as materially and social deprived if they lack at least 5

items of the above 13 (Guio et al., 2016).

2.2.3 Feature Set and Summary Statistics

I consider a host of micro-level features related to demographic, health status, socioe-

conomic, and household characteristics. These variables include age, gender, marital

status, education, employment status, occupation class, household income, home own-

ership status, and health status. The comprehensive list of features and how each

predictor was constructed is discussed in Appendix 2.A.

Table 2.1 presents the summary statistics of key characteristics of individuals in the

pooled and country-level samples. In the pooled sample, 457475 respondents were

included, mainly consisting of working-age individuals (mean age of 52); with upper

secondary level of education; with the self-assessed general health status of "good"; and

53% of the sample is composed of female respondents. The average household com-

prises nearly three members and has approximately 17111 Euros equivalent disposable

income. The equivalent disposable income is computed using purchasing power par-

ities (PPPs) adjusted household annual disposable income divided by the square root

of family size. Most of the per-country samples have a comparable composition of

individuals with respect to age, gender, household size, education and general health.

However, unsurprisingly, there is considerable heterogeneity among countries with

respect to the percentage of individuals who are at risk of income poverty (AROP).
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Table. 2.1 Description of selected set of features in 2018

Country N Gender Age HH size AROP Education Gen. health

Austria 10546 0.53 50.9 (17.9) 2.5 (1.3) 0.15 4.45 (1.1) 2.05 (1.0)
Belgium 10566 0.51 49.4 (18.3) 2.8 (1.4) 0.15 4.30 (1.5) 2.06 (0.9)
Bulgaria 14929 0.53 54.5 (18.0) 3.0 (1.7) 0.20 4.04 (1.2) 2.41 (1.0
Croatia 18186 0.52 52.9 (18.5) 3.1 (1.6) 0.21 3.94 (1.1) 2.47 (1.2)
Cyprus 9317 0.53 49.9 (18.9) 3.1 (1.4) 0.16 4.03 (1.6) 1.93 (1.0)
Czechia 16054 0.53 53.0 (18.3) 2.6 (1.2) 0.08 4.23 (0.9) 2.41 (0.9)
Denmark 5466 0.53 55.9 (17.5) 2.1 (1.1) 0.09 4.43 (1.3) 2.20 (0.9)
Estonia 12036 0.54 50.4 (19.0) 3.0 (1.5) 0.19 4.44 (1.2) 2.60 (0.9)
Finland 9390 0.48 51.0 (17.7) 2.4 (1.3) 0.14 4.62 (1.2) 2.15 (0.8)
France 19127 0.53 51.3 (18.3) 2.7 (1.3) 0.13 4.13 (1.4) 2.23 (0.9)
Germany 21202 0.52 53.5 (16.7) 2.3 (1.1) 0.14 4.67 (1.1) 2.30 (0.9)
Greece 48903 0.52 54.4 (18.5) 2.8 (1.3) 0.17 3.65 (1.6) 2.01 (1.1)
Hungary 14357 0.56 53.9 (18.2) 2.8 (1.5) 0.12 4.08 (1.1) 2.55 (1.0)
Italy 39969 0.53 53.6 (18.5) 2.7 (1.3) 0.19 3.64 (1.3) 2.22 (0.8
Latvia 10383 0.58 53.6 (18.5) 2.7 (1.5) 0.23 4.41 (1.1) 2.77 (0.9)
Lithuania 9521 0.56 53.5 (18.1) 2.7 (1.4) 0.21 4.60 (1.2) 2.78 (0.9)
Luxembourg 8169 0.51 45.9 (17.4) 3.2 (1.4) 0.17 4.15 (1.4) 2.16 (0.9)
Malta 8487 0.51 49.1 (18.5) 3.0 (1.3) 0.15 3.55 (1.3) 2.16 (0.8)
Netherlands 11468 0.54 54.5 (17.2) 2.2 (1.3) 0.11 4.41 (1.3) 2.12 (0.8)
Norway 5699 0.48 49.5 (17.8) 2.4 (1.3) 0.13 4.68 (1.2) 2.00 (0.9)
Poland 28205 0.56 51.9 (18.1) 3.1 (1.6) 0.15 4.42 (1.8) 2.49 (1.0)
Portugal 29292 0.53 51.9 (18.3) 2.9 (1.3) 0.18 3.12 (1.5) 2.66 (0.9)
Romania 15537 0.52 52.5 (18.1) 3.0 (1.5) 0.22 3.87 (1.1) 2.21 (0.9)
Serbia 13777 0.51 50.4 (18.4) 4.0 (2.1) 0.24 3.89 (1.2) 2.46 (1.1)
Slovenia 21924 0.51 48.7 (18.3) 3.5 (1.5) 0.11 4.26 (1.1) 2.34 (1.0)
Spain 28153 0.52 51.5 (18.1) 3.0 (1.3) 0.21 3.75 (1.6) 2.17 (0.9)
Sweden 5429 0.50 51.9 (18.4) 2.5 (1.3) 0.15 4.54 (1.3) 1.99 (0.9)
Switzerland 10204 0.53 51.3 (17.5) 2.6 (1.3) 0.15 4.70 (1.1) 1.87 (0.8)
Pooled 457475 0.53 52.1 (18.3) 2.8 (1.4) 0.17 4.04 (1.4) 2.28 (0.96)

Notes: This table presents summary statistics of selected features in the 2018 sample. The AROP is de�ned as those below 60% of
the national median household equivalent disposable income. The �gures in parentheses are standard deviations.

2.2.4 Distribution of Material and Social Deprivations

Figure 2.1 plots the proportion of deprived individuals in the EU countries in 2014 and

2018; and some notable patterns are evident in the plot. The cross-country range in

terms of percentage of deprived individual is non-negligible: from 2.37% in Sweden,

� 2.6% in Norway and 3% Switzerland upto � 55% in Bulgaria and 54% in Romania

for the year 2014. The percentage of deprivation in the pooled sample for the same

year was 21.2%. By and large, the pattern repeats for the year 2018 but the percentage

diminishes in the highly deprived countries, for instance to 42% and 38% in Bulgaria

58



and Romania, respectively. The percentage of deprivation in the pooled sample for

the same year declined to 15.6%. This clearly indicate that there is wide divergence in

average living standards across the countries. This di�erence is much wider than that

in at-risk of poverty rates (as can be seen in the sixth column of Table 2.1).

Figure. 2.1 Percentage of Material and Social Deprivations in the EU countries in 2014 and
2018

(a) 2014 (b) 2018

Source: author's computation using EU-SILC cross-sectional data.
Notes: The �gures show the percentage of materially and socially deprived individuals in the 28 European countries and refer to
2014 and 2018 values. Slovakia, Ireland, and Iceland are excluded from the analysis due to missing information for 2018.

The distribution of the intensity of material and social deprivations shows a right-

skewed distribution. For instance, in the pooled sample: The proportion of individuals

who are non-deprived in all 13 dimension of MSD items represent the largest percentage,

39.2% and 45% in 2014 and 2018, respectively. In contrast, the percentage of individuals

who are deprived in all dimensions represent the smallest group 0.23% and 0.12% (see

Appendix 2.A). This pattern repeats in the per-country samples. However, there is

extreme heterogeneity between the countries in terms of the percentage of population

who possess all 13 items: 81% in Sweden and 78% in Switzerland, while 23% in Bulgaria

17.6% in Romania (in 2018).

If we now look more speci�cally at deprivations per each single item, we observe

the largest percentage of deprivation: to "a�ord one-week annual holiday away from

home" (Romania � 60%followed by Croatia � 56%) and to "face unexpected �nancial

expense" (Latvia � 60% followed by Croatia � 54%). In contrast, deprivations in the

internet connectivity and get together with friends/family are experienced with small

fraction of the population, e.g., (Romania � 21% followed by Serbia � 11.3%) and

(Hungary � 22.6%followed by Romania � 22.5%), respectively (�gures are reported in
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Appendix 2.A).

2.3 Method

Many features contribute to the individuals' risk of material and social deprivations.

The primary goal of this study is to predict micro-level material and social deprivation

status with better accuracy, to identify the key determinants and examine their patterns

of association with the likelihood of deprivation. The second objective is to analyse

the predictive performances of targeting subsets of features, such as sociodemographic,

socioeconomic, health, and location, in identifying the deprived.

When it comes to classifying models, there is a myriad of supervised machine

learning algorithms. I favour tree-based algorithms, such as Extreme gradient boosted

trees (Xgboost) and Random forests (RF). Because, these algorithms are well-established

in the ML literature and are shown to be highly e�ective in tabular datasets. I prefer

Xgboost over the other boosting trees, such as Gradient boosted trees (GBT), because the

Xgboost algorithm has several desirable properties. These include: 1) The algorithm's

core is parallelisable and does parallelisation within a single tree resulting in high

computation speed. 2) Xgboost is highly scalable. Unlike bagging techniques, where

trees are grown to their maximum level, boosting grows trees with fewer splits. 3)

Xgboost is a more regularised (L1 and L2) form of GBT, which can result in better

generalisability of the model. 4) Extreme gradient boosted trees algorithm supports

sparsity-aware split �nding by default, which helps to handle sparse data (See, Chen

and Guestrin, 2016, for a detailed analysis).2

Xgboost is an extension of Gradient boosted trees (GBT), an ensemble of trees like

the RF, but trees are grown neither randomly nor independently (Chen and Guestrin,

2016). Instead, the weak learners (weak classi�ers) are �t �rst, and then each tree is �t

sequentially on a full dataset by correcting the prediction error of their predecessor. In

order to correct the past mistakes, observations are weighted by the error rates of the

previous trees�i.e., more weights on the wrongly predicted samples Friedman (2001,

2002). Although GBT performs better in various classi�cation and regression tasks, they

are susceptible to over�tting and have many tuning parameters. Hence, Xgboost o�ers

subtle modelling details to GBT: it introduces more regularisation to control over�tting;

performs parallelisation within a single tree that result in high computation speed

2Sparsity in the input feature can happen due to either missing values or frequent zero entries in the
data, which is common in socio-economic data.
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compared to the standard GBT. Moreover, model-agnostic interpretation tools, e.g.,

Shapley values, are fast to compute because trees are grown with few splits, compared

to RF, which grows trees to maximum depth.

Random forests are an ensemble of many de-correlated trees. These trees are grown

from random subsamples of the training set and random subsets of features (Breiman,

2001). Each tree is a sequence of rules that splits the sample into subsets called leaves.

The prediction for each leaf is the average outcome of observations on that leaf, and trees

are �t to minimise the mean squared error. In a regression task, the �nal prediction is

then rendered as the mean prediction across all trees, and in a classi�cation task forest's

best prediction is chosen on a majority vote. As a result, RF can overcome the over�tting

problem that is often a�icting the decision tree regressor by averaging many noisy but

unbiased trees.3 This ensemble of trees increases model stability by inducing smoother

estimation of the function underlying the data-generation process, which results in a

robust and accurate prediction. Random forests are able to model complex interactions

between features. Appendix 2.B reports in more details about hyper-parameter choices

and the mechanics of these algorithms.

To assess the performance of the models, I use a metrics that is based on the Receiver

Operating Curve (ROC), which shows the trade-o� between true and false positives

for a given model (Hanley and McNeil, 1982). Mainly, I focus on the area under the

ROC, often referred to as the area under the curve (AUC). The AUC measures the

likelihood that a randomly selected pair of observation is correctly ordered in terms

of predicted outcomes. A model that is no better than chance would have an AUC

of 0.5, an AUC of 0.7 - 0.8 indicates an acceptable classi�cation power, and a perfect

model would have an AUC of 1. As the output of di�erent classifying models that use

binary response variables produces continuous probability showing the degree to which

each individual is a member of the two labels, a probability threshold is required to

predict membership to each class. The advantage of the AUC is that it does not require

a probability threshold above which an individual will be declared to be materially

and socially deprived. Choosing a speci�c threshold involves a trade-o� between true

positive rate (sensitivity) and true negative rate (speci�city). The choice of this threshold

depends on one's relative patience for false positives vs. false negatives, which could

often be speci�c to domain of application. For instance, a lenient policymaker would

favour a smaller probability threshold that leads to higher sensitivity at the cost of

speci�city. On the other hand, a strict policymaker (with scarce resources) might favour

3For a rigorous mathematical characterisation of over�tting reduction while retaining its predictive
accuracy, see (Hastie et al., 2017; Breiman, 2001).

61



a higher probability threshold, boosting speci�city at the cost of sensitivity. This study is

after overall performance at any given probability threshold, which regards the concern

of both types of policymakers; hence, this study rely on AUC. Alternative evaluation

metrics, such as Accuracy, Precision, and F1-score are reported in Appendix 2.C.3.

Finally, I use the visualisation tool SHapley Additive exPlanations (SHAP) proposed

by Lundberg and Lee (2017a) to explain the contribution of each feature to the prediction

of material and social deprivation using Shapley values. SHAP is based on a solution

concept in a cooperative game setup that aims to `fairly' allocate the gains among

players as suggested in the seminal work of Shapley (1953). SHAP has the advantage

of consistency and provides both local and global interpretability (see Guidotti et al.,

2018; Molnar, 2020, for a comprehensive review of black-box ML model interpretation

techniques).

2.4 Results and Discussion

2.4.1 Is MSD Status Predictable?

I train the models using a random sample constituting 80% of individuals (in the

pooled as well as the per-country datasets). The model's generalisability to the unseen

individuals is tested using the remaining 20% as a test set. Figure 2.2 plots the in-

sample and out-of-sample performance of the models using 2014 and 2018 pooled

datasets. Some notable patterns are evident in the plot. First, the two tree-based

algorithms yield a more substantial classi�cation power. In general, a model with an

AUC of 0.8 and above is regarded as very good, and one with an AUC of 0.9 and above

is considered an excellent classi�er. The Xgboost, RF, and logit achieved an AUC of

0.88, 0.86, and 0.82 on the test set. Put di�erently, the relative classi�cation accuracy

gained by using the more sophisticated algorithm is 7.3% with Xgoost and 5.9% with

the random forest. Exhibiting that the extreme gradient boosted trees algorithm excels

at accurately classifying material and social deprivation status on unseen individuals.

The obtained classi�cation accuracy gains with the �exible non-parametric tree-

based algorithms can be explained by the potential interaction e�ects between features,

which logistic regression can not capture inherently.

Second, approximately, equal classi�cation accuracy is obtained on in-sample and

out-of-sample individuals with the logit. This classi�er does not tend to over-�t as

opposed to the ML algorithms. Speci�cally, the RF with a default hyperparameter con-

�guration notoriously over�ts the data. To this end, I applied ten-fold cross-validation
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for model selection. That is, the results are obtained after carefully tuning the Random

forests using the depth of the trees and the number of features sampled when growing

the trees. Similarly, the reported �gures of the Xgboost algorithm are attained after

tuning the model hyperparameters, such as "the maximum depth of a tree", "the mini-

mum loss reduction required to make a further split" (gamma), "the learning rate", "the

number of trees" (number of estimators).

Finally, the results above are signi�cantly stable during the two cross-sectional years.

Moreover, the superior performance of the tree-based ML algorithm has also been repli-

cated in the per-country predictions exercises (results are reported in Appendix 2.E.1).

Figure. 2.2 In-sample and Out-of-sample performance of prediction models, area under the
ROC curve

Notes: Each model is trained on 80% of pooled and per-country datasets and tested on the remaining 20% of the datasets. The
AUC compute the trade-o� between the True Positive rate and the False Positive rate at di�erent probability thresholds.

However, it is essential to keep in mind some caveats when interpreting the �ndings,

which are based on a single "hold-out" technique, i.e., the simple random data splitting

into two mutually exclusive subsets referred to as training and test sets. The concern

with this approach is that the obtained predictive accuracy can be biased when the hold-

out group is either over-represented or under-represented by the deprived individuals.
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In the applied machine learning literature, the common panacea to overcome this issue

is accuracy estimation based on cross-validation (Kohavi et al., 1995). I use k-fold

strati�ed cross-validation so that the same proportion of class labels are re�ected in

each fold as the entire dataset. I repeated the sampling procedure 100 times in order to

reduce the variance of the estimates.

Table 2.2 reports the mean test scores (in terms of the AUC) with 95% con�dence

intervals in parentheses. In the last row of the table, it is noted that the mean test AUC

is 0.88 for Xgboost, � 0.87 for RF, and 0.81 for the logit. The �gures are comparable to

the ones obtained with the single hold-out approach, which can be due to a su�ciently

large number of individuals represented in both the training and test sets.

Table. 2.2 AUC of pooled model with sequentially inserted sets of features, year 2018

Subset of predictors
Xgboost

(1)
Random Forests

(2)
Logit

(3)

Sociodemographic 0.690 [0.689, 0.692] 0.691 [0.690, 0.693] 0.674 [0.673, 0.676]
Socioeconomic 0.840 [0.839, 0.841] 0.837 [0.836, 0.838] 0.808 [0.807, 0.808]
Health 0.642 [0.641, 0.642] 0.641 [0.640, 0.642] 0.638 [0.637, 0.639]
Country dummies 0.715 [0.714, 0.718] 0.715 [0.714, 0.717] 0.715 [0.714, 0.718]
All predictors 0.880 [0.878, 0.881] 0.867 [0.876, 0.879] 0.812 [0.810, 0.813]

Notes: The AUC compute the trade-o� between the True Positive rate and the False Positive rate at di�erent probability thresholds.
The �gures in square parentheses are 95% con�dence interval of AUC computed via ten-fold strati�ed sampling repeated 100 times.

Rows (1-4) compare models composed entirely of one or the other feature subset to

disentangle the predictive power of subsets of features. I estimate the prediction metrics

by training the models by taking one set of predictors at a time. The performance of

models described in the previous paragraphs can be used as a benchmark to assess the

predictive power of subsets of indicators. First, let us examine the predictive power of

demographic characteristics alone. This subset includes variables such as age, gender,

marital status (with four categories), level of education, household size, and house-

hold typology indicators (i.e., couple with child(ren), couple with no child, one-person

household, and single parent household). The results show that demographic factors

alone fall short of producing an acceptable predictive power, although by just a little.

Row 2 indicates that individuals' socioeconomic factors are the best predictor. This

set of features includes equivalent income deciles, home ownership, employment status,

occupation types (ISCO code 08, ten categories classi�cation), and contract type. The

predictive accuracy is almost as good as when all variable is used, especially in the logit

model. By contrast, the area under the ROC curve is the lowest for the health indicators
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(general health status, chronic illness, and limited activity), suggesting that predicting

the deprivation status of individuals using only health features is narrowly better than

random guesses (an AUC of 0.5 - 0.7 is regarded as poor classi�cation power). Last, I

assess the predictive performance of models trained using country dummies to separate

the role of unobserved country-speci�c factors in the pooled dataset. The result shows

that unobserved country-speci�c factors alone predict material and social deprivation

status with a good classi�cation power.

In sum, the socioeconomic factors and country-speci�c elements contain more sig-

nals in correctly classifying people based on their risk of material and social deprivation

in the pooled prediction. These observations remained unaltered when the 2014 data

was used (results are in Appendix 2.C.2). Of course, the above feature grouping in-

cludes a di�erent number of multiple predictors; hence, one variable could contribute

much more than others. In the subsequent Section, I examine in a more detailed manner

the relative importance of the most prominent features and their pattern of association

with the likelihood of deprivation.

2.4.2 What Predicts it? Explainability with Shapley Values (SHAP)

After training the highly performing Xgboost classi�er (including all features along

with country-speci�c e�ects in the pooled dataset and with regional �xed e�ects in

the per-country datasets), I proceed with an explainability analysis of the model using

SHAP. Figure 2.3 summarise the key variables predictive of individual-level material

and social deprivation status in the 2018 dataset. See Appendix 2.D for detailed results

showing all features used in the classi�cation exercise. In order to check the stability of

the results in Figure 2.4, I plot the feature importance using the 2014 dataset

In the �gures below, panel a) visualise the key features that contribute signi�cantly

to classifying material and social deprivation status. On the y-axis, the top 25 predictors

are placed in descending order of importance by global contribution to the classi�cation

(measured in mean absolute SHAP value). Numbers in the x-axis are the SHAP values

of each observation. Each dot represents an individual respondent; hence, the number

of dots against each feature re�ects the sample size of the training set. The dot's

position along the x-axis is the feature's impact on the probability of deprivation for

that respondent. When multiple dots arrive at the same coordinate in the plot, they pile

up to show the density of e�ect sizes. The colours correspond to the feature values: red

for larger values and blue for smaller ones. A negative SHAP value (extending to the

left) shows a reduced likelihood of deprivation, while a positive (extending to the right)
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shows an increased probability of deprivation. Asymmetric distribution with respect to

the zero SHAP line in the summary plot suggests that the feature's impact is non-linear.

The long-right tails in the summary plot indicate that the variables are highly predictive

for some respondents but not others, i.e., predictors with minor global importance can

still be very important for speci�c respondents. In panel b) I summarise the three-fold

information with a bar plot to aid quick reading. The direction of association between a

feature and the likelihood of deprivation is colour-coded (red for positive and blue for

negative). The darkness of each colour gradient shows the strength of the direction of

the association. The horizontal length of the bars shows the magnitude of the feature's

global impact measured as the average of absolute SHAP values.

The results show that features related to the relative position in the income distribu-

tion and home ownership status are negatively associated with the likelihood of being

materially and socially deprived. These variables are measured at the household level.

Under the assumption of resource sharing within the same household, every individual

in the same family is assigned identical equivalent incomes and assumed to equally

bene�t from the housing wealth. Similarly, individual-speci�c features such as good

health conditions, higher level of education, being married (including couples with chil-

dren), and not having a condition that limits activity (for at least the past six months)

are associated with a lower likelihood of deprivations. Variables related to individuals'

ties to the labour market, such as being employed with a permanent contract, being re-

tired, and engaging in occupations like professionals, technical, managers, service, and

clerical jobs, show a negative correlation with the probability of being deprived. While

living in a densely populated locality, living in a rent-free/reduced-rent home, being

from a household characterised as a single-person household or a single-parent family,

and being divorced are positively associated with the likelihood of being materially and

socially deprived. As can be seen in the �gures below the relative importance of these

features and their corresponding sings are stable and consistent across the survey years.
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Figure. 2.3 Key predictors of material and social deprivations, year 2018

(a) Summary plot (b) Global impacts (magnitude and direction) of top features

Notes: This �gure shows the SHAP feature importance from the Xgboost algorithm trained on the pooled data set of 28 European
countries to classify individual-level material and social deprivations. In this classi�cation task country-level �xed e�ects are
accounted for. General health status takes value one if respondents assess their health status as "very good"..., and value �ve if the
health status is "very bad."

Figure. 2.4 Key predictors of material and social deprivations, year 2014

(a) Summary plot (b) Global impacts (magnitude and direction) of top features

Notes: This �gure shows the SHAP feature importance from the Xgboost algorithm trained on the pooled data set of 28 European
countries to classify individual-level material and social deprivations. In this classi�cation task country-level �xed e�ects are
accounted for. General health status takes value one if respondents assess their health status as "very good"..., and value �ve if the
health status is "very bad."
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2.4.3 Partial E�ects of Selected Variables: SHAP from the Xgboost

Model

I now turn to a detailed analysis of crucial predictors' SHAP values to disentangle the

di�erent factors' separate e�ects and their patterns of association with the probability

of being deprived materially and socially. SHAP by Lundberg and Lee (2017b) provides

partial dependence plot to shows the marginal e�ect of one or two features on the

predicted outcome of a machine learning algorithm. Since most of the features in

socioeconomic studies are measured as a categorical variable, I create box plots to

show the di�erence in the average marginal contribution of each category in a more

robust way. It displays whether the relationship between the target outcome and a

feature is linear, monotonic, or more complex. The y-axis of the box plots indicates

the SHAP value of the variable in terms of probability (SHAP = 0 is the baseline �i.e.,

the average predicted probability), and on the x-axis are the variable's values. The

dotted horizontal line in the box-plots shows the distribution's mean value in each

group. Since individuals' living standards are likely to be determined by household

characteristics, individual-level demographics, and socioeconomic variables, I structure

the results according to factors related to income and housing wealth, ties to the labour

market, household characteristics, and sociodemographic features.

Figure. 2.5 Partial e�ects of income and housing wealth

(a) Income distribution (decile) (b) Home ownership

Notes: This �gure shows the partial e�ect of income distribution (in decile) and home ownership status (1 = tenant or subtenant, 0
= otherwise) in terms of Shapley values. The dotted line in the box-plot shows the mean value of the distribution in each group.

Figure 2.5 plots the partial e�ects of the equivalent disposable income and housing

wealth on the probability of material and social deprivation. Under the assumption

of resource sharing within the same household, individuals in the same families are

assigned identical equivalent incomes. In a similar vein, the impact of home-ownership
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status is assumed to be the same for individuals in a given household. The results show

that these factors are highly predictive of multidimensional deprivation and ranked at

�rst and fourth position consistently during the two periods studied. As seen in panel

(a), the impact of income is steeper on the left-hand side of the income distribution

than on the right-hand side. That is, individuals in the lowest equivalent income decile

have approximately a 21% chance of being materially and socially deprived compared

to those with the median income. However, the wealthiest individuals (in the highest

income decile) are 10% less likely to be deprived. Similarly, in panel (b), it is evident

that those without housing wealth are 5.5% more likely to be deprived than the tenant

occupants. The nexus of income poverty and living standards is then consistent with

those discussed in previous work, i.e., although highly correlated, income poverty and

individual's living standard do not perfectly overlap (Fusco et al., 2011; Nolan et al., 1996;

Gordon et al., 2000; Perry, 2002). 1) available resources and disposable income are not

identical. Thus, the current consumption can be a�ected by accumulated savings, debt

repayment, past investments, in-kind transfers, and access to free/subsidised goods

and services. 2) Household heterogeneity, personal costs, such as expenses related to

health, housing, mobility, and education, are di�erent from household to household as

these are dependent on individual member circumstances. What is shown in panel (b)

also re�ects that home-ownership status can reinforce the individual's command over

the available resources. Thus, re-distributive housing policies and housing allowances

can attenuate the risk of living conditions-deprivation (Dewilde, 2022).
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Figure. 2.6 Partial e�ects of individuals' features related to health, education and employment

(a) General health (b) Level of education

(c) Unemployed (d) Permanent contract

Notes: This �gure shows the partial e�ect of individuals health status (1 = very good ,..., and 5 = very bad), employment status
(unemployed =1), contract type (1 = permanent contract), and education status (1 = Less than primary; 2 = primary; 3 = lower
secondary education; 4 = upper secondary education; 5 = Post-secondary non-tertiary; 6 = Short cycle tertiary; 7 = Bachelor or
equivalent; 8= Master or equivalent; and 9 = Doctorate or equivalent). The dotted line in the box-plot shows the mean value of the
distribution in each group.

Figure 2.6 displays the partial e�ects of disadvantages, such as health problems, low

level of education, unemployment and contract type. Notable pattern is evident in the

�gure; panel (a) shows that individuals with a "very bad" health condition are 17.3%

more likely to be deprived compared to healthy individuals with a "very good" health

condition. This strong positive association between poor health conditions and material

and social deprivation can re�ect what (Sen, 1999) coined as the "coupling" between

disadvantages. Poor health conditions could result in reduced earnings. Poor health

might also inhibit the ability to convert the reduced income into adequate material and

social necessities due to extra costs related to medical treatment for inadequate health

conditions. Panel (b) shows that individuals with a higher achieved level of education

are less likely to be materially and socially deprived. For instance, an individual with

less than primary education is 7.5% more likely to be materially and socially constrained
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than an individual with upper secondary education. This can re�ect the well-known

evidence that human capital positively a�ects one's quality of living through returns

to education in the labour market. However, the result of this study reveals a non-

linear association between schooling and deprivation. That is, there is no statistically

signi�cant di�erence in the likelihood of deprivation among individuals with high

levels of education (i.e., between short-cycle tertiary education and above) compared to

lower and middle education levels. As seen in panel (c), unemployed individuals are

approximately 10% more likely to be materially and socially deprived than employed.

The last panel in the �gure above plots the e�ect of employment contracts: individuals

with a permanent contract are 2.6% less likely to be deprived than those with temporary

contracts. This evidence is consistent with those found in past research (Fusco et al.,

2011; Halleröd and Larsson, 2008; Saltkjel and Malmberg-Heimonen, 2017; Testi and

Ivaldi, 2009), where material deprivation was shown to be strongly associated with

individual disadvantages.
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Figure. 2.7 Partial e�ects of individuals' age, gender and their family structure

(a) Age (b) Gender

(c) Household size (d) Single parent household

Notes: The dark hump-shaped line in panel (a) is a Locally Weighted Scatter plot Smoothing (LOESS). Single parent household
(1 = if the person's family is described as single parent household). The dotted line in the box-plot shows the mean value of the
distribution in each group. In panel (c), note that a large majority of the sample has a family size of seven or less.

Figure 2.7 (a-d) examine the role of key sociodemographic factors. The impact of

age is non-monotonic; instead, it shows a hump-shaped association with the risk of

deprivation. Middle-aged (40-60 years of age) people were more prone to su�er from a

higher risk of material and social deprivation. Younger and older people are associated

with a lower likelihood of deprivation, with a relatively steeper slope for the older

age group. Regarding gender, women are more likely than men to su�er the risk of

deprivation. However, the magnitude of the di�erence is relatively slim. Concerning

the di�erence with respect to family structure, one average, one-person household and

single parents households were more likely to su�er from a higher risk of deprivation.

However, I observe no meaningful pattern between family size and risk of deprivation.
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2.4.4 Heterogeneity Analysis by Country

Detailed results of feature importance and direction of association in each of the 28

countries separately are presented in Appendix 2.E. The family's relative position in

the income distribution and home ownership status are critical factors in accurately

classifying individuals based on their risk of material and social deprivation. Consis-

tent with the results from the pooled model, income is at the top in terms of relative

importance in the per-country predictions, while the latter appears in the top �ve in

a great majority of the nations. Individual-speci�c features, e.g., good general health

conditions (also in terms of a long-term illness that limits activity), higher level of ed-

ucation, and family status (being married), are associated with a lower likelihood of

deprivations. And these features consistently appear among the top 25 in all countries.

Consistent with the results from the pooled sample, variables related to individual em-

ployment status, contract type, occupation class, gender, and family characteristics also

appear among the top 25 predictors in all countries.

2.5 Conclusion

Previous studies examine material deprivation and the role of speci�c policy variables.

Still, the question of how accurately one can classify unseen/out-of-sample individuals'

deprivation status given their observable personal, household, and country-speci�c

factors remain unexplored. Using the EU-SILC microdata, this study shows a reliable

and computation-e�cient approach to predicting material and social deprivation (MSD)

status with better accuracy. Key results of these analyses demonstrated that the non-

parametric extreme gradient boosted trees (Xgboost) algorithm followed by the Random

forests provides a better classi�cation accuracy than the Generalised linear model on

the pooled analysis, and the same holds in the per-country prediction exercises. The

socioeconomic features alone yield a classi�cation accuracy as close as when the whole

set of features is used in the pooled analysis, followed by the unobserved country-

speci�c factors.

Although these complex tree-based algorithms are highly predictive, they lack

model-speci�c interpretability. Hence, augmenting the highly predictive Xgboost al-

gorithm with Shapley's values helps to e�ectively explain the complex relationship

between MSD and sets of predictors. In addition, over�tting poses a challenge in the cur-

rent study. However, a transparent model selection process via k-fold cross-validation

reduces the potential impact of over�tting. Hence, the relative feature importance and
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partial e�ects identi�ed with Shapley's values reveal insightful relationships between

key policy variables and the likelihood of poor living conditions. The individual's

relative economic position to others, general health status, level of education, age, and

housing wealth is the most prominent predictor of material and social deprivation class.

This study reveals a slightly nonlinear association between income and deprivation sta-

tus, i.e., a substantial e�ect of income re�ected on the left side of the income distribution.

At the same time, it identi�es a hump-shaped association between age and deprivation

status. These results are generalisable to di�erent cross-sectional years.

Future analyses can complement this study and multidimensional poverty analysis,

in general, by exploiting more advanced machine learning algorithms. For instance,

this study follows the EU's de�nition of deprivation: an enforced lack of �ve items

(out of the thirteen) deemed necessary and desirable to lead an adequate life. In this

setup, an individual's risk of deprivation is shown to be e�ectively modelled using a

binary classi�er ML algorithm. In contrast, in a more strict sense, deprivations can

also be seen as the failure to access one or more dimensions of material and social

items (known as the "union" identi�cation criterion). In this setting, the classi�cation

task can be approached with multilabel classi�cation technique � not to be confused

with multi-level classi�cation. Multilabel classi�cation algorithms can model multiple

binary vectors of deprivation items on input features. The current development in ML,

algorithm adaptation method, for instance, Random Forests - Predictive Clustering Trees

(RF-PCT) are shown to e�ectively model multidimensional outcomes directly without

reducing rich dimensions of outcomes to a one-dimensional problem. Although RF-

PCT is a powerful tool in this setting, it still lacks model interpretability.
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Appendices

2.A Data and Some Descriptive Analysis

Feature Set

Sociodemographic features: I consider age, gender (female = 1), marital status, house-

hold size, household typology, and the highest level of education attained by the indi-

vidual. Marital status is recoded as four binary variables: Married, separated, widowed,

and divorced (reference category: never married). The household typology indicator is

recoded into four: dichotomous features: one-person household, couple with no depen-

dent child, couple with dependent child(ren), and single-parent household (reference

category: other households. The highest level of educational attainment was measured

in nine ordinal categories (Less than primary, primary, lower secondary education, up-

per secondary education, post-secondary non-tertiary, short cycle tertiary, bachelor or

equivalent, master or equivalent, and doctorate or equivalent).

Socioeconomic features: This subset of measures includes the distribution of in-

come (decile). The income decile is computed using purchasing power parities (PPPs)

adjusted household annual disposable income equivalised by the square root of family

size. The housing wealth of individuals is measured with two dummy variables: 1) ten-

ant and 2) free/reduced rate accommodation, considering homeowners as a reference

group. Industry of occupation variables is based on the ten ISCO code 08 classi�cation

categories (reference group: Elementary occupations). I also consider indicators of the

individual's economic status, nine binary variables: employed (full-time or part-time),

self-employed, unemployed, disabled, inactive, retired, student or in the military, and

domestic task or care responsibility. In addition, I use a dummy variable measuring the

type of individual's employment contract (1 = permanent, 0 = temporary).

Health features: These include an indicator for chronic illness of individuals�this

feature takes value one if the individual was chronically ill during the past six months

or more. The "general health" condition of individuals is measured in the EU-SILC
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data with a �ve-level Likert scale (1 = very good,..., and 5 = very bad). Last but not

least, I also examine the health feature of individuals relating to "limited activity": This

dummy variable captures the limitation in the activities of individuals for at least the

past six months because of their health problems (1 = if there is a limitation in activity,

0 = otherwise).

Location features: These include dummy variables of country of residence (or

regional dummies in the country-level analysis). Moreover, I also capture the degree of

urbanisation with three-level ordinal categories; which takes value 1 if thinly-populated

(outside urban cluster); 2 if intermediately-populated (at least 300 inhabitants per square

km and minimum of 5000 population); 3 if densely-populated (at least 1500 inhabitants

per square km and minimum of 50000 population).

Distribution of Material and Social Deprivation

Figure. 2.9 Proportion of individuals by the reported number of items deprived 2018

(a) 2014 (b) 2018
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Figure. 2.10 Percentage of material and social deprivation rate in the 28 EU countries by
gender in 2018
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