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Highlights

A model was developed to classify identifications as reliable and unreliable

Machine learning provided insight for the weights of the most informative parameters
Identification confidence was influenced mostly by fragmentation and isotopic fit

An identification point (IP) system scaled from 0 to 1 was proposed and applied

LAl A S

The IP system was connected with the widely used identification confidence levels
Abstract

Non-target screening (NTS) methods are rapidly gaining in popularity, empowering researchers to
search for an ever-increasing number of chemicals. Given this possibility, communicating the
confidence of identification in an automated, concise and unambiguous manner is becoming
increasingly important. In this study, we compiled several pieces of evidence necessary for
communicating NTS identification confidence and developed a machine learning approach for
classification of the identifications as reliable and unreliable. The machine learning approach was
trained using data generated by four laboratories equipped with different instrumentation. The model
discarded substances with insufficient identification evidence efficiently, while revealing the relevance
of different parameters for identification. Based on these results, a harmonized IP-based system is
proposed. This new NTS-oriented system is compatible with the currently widely used five level
system. It increases the precision in reporting and the reproducibility of current approaches via the
inclusion of evidence scores, while being suitable for automation.

Keywords: Identification point (IP) system, suspect screening, non-target screening, communication
of identification confidence, retrospective screening, high-resolution mass spectrometry
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1. Introduction

The global universe of chemicals is very complex and includes hundreds of thousands of substances in
commercial use [1-3]. In recent years, advances in high resolution mass spectrometry (HRMS) have
revolutionized our ability to measure organic chemicals in a wide variety of matrices, expanding the
analytical window and rapidly increasing the popularity of suspect and non-target analysis (NTS) [4,
5]. These approaches are currently widely used for the tentative identification of a large and still
increasing number of potential contaminants, especially polar and semi-polar ones, as well as many
endogenous compounds in different organisms [6, 7]. Chemical studies often result in large lists of
tentatively identified substances [8, 9]. This has created the need to communicate the confidence in
the identification in a way that reflects all the evidence available [10]. This is essential for a consistent
advancement in the fields that rely on the analysis of organic substances at trace level, including
environmental chemistry [11].

Currently, in the last step of a target or suspect HRMS screening, the analyst is obliged to spend a
significant amount of time evaluating all proposed identifications case by case [1, 12]. The analyst
relies on orthogonal analytical evidence (chromatographic retention behavior, isotopic profile, MS
fragments, among others) and other additional metadata (e.g.,, number of patents, literature
references) [13, 14]. Nevertheless, in the end, expert judgement is required to assign the given
identifications a certain level of confidence. This manual evaluation is time-consuming and lacks
reproducibility, while the time required is increasingly moving beyond the realms of manual efforts
due to the sheer numbers of screened compounds and samples [12, 15]. So far, most environmental
studies report the confidence based on hierarchical degrees of confidence [10], ranging from Level 5
(exact mass), Level 4 (unequivocal molecular formula), Level 3 (tentative structure), Level 2a and 2b
(probable structure) through to Level 1 (confirmed identification). In many cases, while the
aforementioned levels are certainly useful (as is evident from their widespread and increasing
adoption), it is still difficult to communicate the evidence associated with the assigned identification
confidence level in a concise and unambiguous manner. Early attempts to include identification
evidence via identification points (IPs) described in the Commission Decision 2002/657/EC were
already implemented in the first NORMAN Collaborative Trial on non-target screening in 2013/14 [16].
Recently, this approach was also applied to communicate the confidence in the identification of
analytes for target analysis [17]. This IP system considers retention time, mass accuracy, isotopic fit
and fragmentation, taking advantage of the capacities of the HRMS instruments, but it is not yet
explicitly implemented as a standard for non-target screening (NTS) [16, 18]. Other recent efforts
include the integration of automated level system functionality in patRoon — where users can adjust
the requirements [19] and specific guidance released by the per- and polyfluoroalkyl substance (PFAS)
community [11]. A complementary system that allows the community to understand the identification
evidence associated with a reported compound identification in a rapid, concise and reproducible
manner is necessary. A system based upon identification points (IPs) and thus compatible between
target and non-targeted approaches would be a valuable addition to the field.

There is an urgent need to automate the evaluation process and create a more reproducible and
harmonized approach [20], due to the number of chemicals (or features; hereafter "chemicals" for the
purpose of this manuscript) involved in NTS. Machine learning models are well suited to these tasks.
Ideally, such a model should produce a score to assist in the reporting, limiting the amount of manual
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work required by the analyst, but present sufficient information to enable quick and efficient manual
quality control. This allows a focus of efforts on the most challenging cases of greatest importance to
the study outcomes. One of the drawbacks of this approach is that machine learning models must be
trained individually for each instrument and analytical strategy used by the laboratories for optimal
performance. The large variety of instruments and data acquisition methods further complicates the
situation and highlights the need for harmonization of data treatment [21]. To create such informative
machine learning models, it is critical to identify the most informative parameters using domain
knowledge. Once such models are built, these provide deeper insights into the importance of the
parameters involved and can eventually be used to propose an easy-to-follow generic IP system,
automatable and applicable under any instrumental and data acquisition conditions.

This article takes a close look at the challenges in harmonizing the NTS identifications, focusing on
liquid chromatography mass spectrometry (HRMS/MS). An interpretable machine learning approach
for classification of NTS identification confidence was developed, capable of automatically discarding
substances with insufficient evidence for reliable identification. The described approach can be
implemented by any laboratory performing NTS analysis. It provides clear benefits in terms of
accurately describing the evidence associated with identified substances. Moreover, it progresses
towards the development of automatic prioritization schemes for the management of chemicals. An
IP-based system is proposed for the communication of evidence accompanying identification
confidence based on the results obtained here, the insights gained by this exercise and the
participation in NORMAN NTS collaborative trials e.g. [16, 22] and other ongoing trials. While
developed on LC-ESI-MS/MS, it is applicable to any soft ionization technique (e.g., GC-APCI-HRMS/MS
and GC-CI-HRMS/MS), given that they produce the molecular ion and considerably less fragment ions.
This new NTS-oriented system is compatible and comparable with target analysis and adds more
precision and reproducibility to current approaches, while being suitable for automation — a key
necessity required for high throughput NTS screening.

2. Parameters/Evidence used for NTS identification

NTS identification of polar and semi-polar organic chemicals is based on the available information,
commonly generated by LC-HRMS/MS systems. Several pieces of evidence provide information about
the identity of a compound. However, not all are equally relevant or even available in all cases. While
some information is critical and always available (e.g., mass accuracy), other information increases the
degree of confidence to a lesser extent and are not as essential. Likewise, not all pieces of evidence
lead to a concise measurable parameter that can be directly transformed into IPs.

This section describes the parameters that should be considered in an objective, concise and
potentially automatized IP-based system and discusses their possible role in the harmonization of NTS
identifications as well as their automation potential. The parameters are divided into those that should
be considered by any consistent IP-based system and others that would add additional confidence but
where the implementation is more challenging.

2.1 Essential Parameters/Evidence for NTS Identification Confidence:
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Mass accuracy: The accurate mass of an ion is the mass experimentally determined (and
recalibrated with a reference mass standard if applicable) in the mass spectrometer.

This is the parameter upon which HRMS identifications rely and is the starting point in any
identification, either to match a target, check the potential presence of a suspect, to perform
exact mass searches, or to assign molecular formulas in non-target studies. The parameter
mass deviation between the measured (accurate) and theoretical (exact) masses should be
below the acceptable threshold according to the instrument manufacturer (for most of the
instruments <5 ppm at m/z 200 and/or <2 mDa; modern instruments or internal calibration
can achieve < 2 ppm) and should be verified with regular calibration. The confidence increases
with lower mass deviation.

Retention Time (RT) information: Retention time plausibility is a requirement to reach a
certain identification confidence. Many RT prediction models have been developed in the
literature and have proven to improve suspect and non-target screening [23-25]. There is an
increasing need for comparable and harmonized RT in LC-HRMS/MS among different
laboratories. In this regard, flexible and system independent unified retention time indices
(RTI) can help improve the automation of NTS approaches by reducing the number of false
positives in a first screening step. For GC-(HR)MS, the n-alkanes mixture is most commonly
used for retention indexing and calculation of the Kovat’s index [26], which is the established
protocol in the NIST mass spectral library. For LC-MS, one such RTlI method is based on
carefully selected calibrants that can be easily used and applied under any liquid
chromatographic conditions [27].

Isotopic fit: The isotopic pattern that forms in the mass spectrum by the separation of the
various isotopes of the atoms present in a molecule is used to increase the confidence in the
element and molecular formula assignment. Although it is certainly a useful parameter
(especially for halogenated molecules and other molecules with distinct isotopic patterns), in
many cases when working at trace levels the intensity of the isotopic peaks is so low that it
cannot be observed or can deviate substantially from the theoretical pattern. Therefore, a less
accurate isotopic fit for low intensity masses should not be used as a strong argument to
discard candidates during identification. It is quite frequent phenomenon that the lack of
isotopic fit results in false non-detections, impacting drastically automated evaluations.
Isotopic patterns can also be used to recognize the presence of certain elements, such that
this information can be used without necessarily strictly restricting the identification efforts
to a specific molecular formula.

In the evaluation of isotopic fit, it is important to consider the importance of the isolation
window in data dependent data: If it is above 1 Da, isotopic peaks can appear in the MS/MS,
which can be helpful to identify heteroatoms, but may result in unwanted interferences in the
spectrum. Wide isolation windows can be beneficial for matrix-free samples such as drinking
water. However, a conservative choice of isolation window below 1 Da is preferable for more
complex samples such as biological or wastewater samples, which suffer from matrix
interferences.

Number of fragments ions / Presence of qualifier fragment ions: Compound identification
requires the measurement of MS/MS spectra for individually selected precursors [data
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dependent acquisition (DDA)] or simultaneously for all precursor ions (data independent
acquisition (DIA)). The number of fragments constitutes critical information for the reliability
of a given identification. However, not all fragments provide the same level of diagnostic
information, as some fragments are very common to many chemicals, while others are very
specific to only a certain chemical or class of chemicals. The absence of a qualifier fragment
ion for a given chemical (e.g 68.9958 corresponding to -CF; for perfluorinated compounds)
can be an exclusion criterion. Other more common fragments (such as 77.95736, for [SOs],
95.960697 for [HPO4]* or a low mass CHON fragment) are less informative and should have
less influence on the degree of confidence of the identification. An important aspect is that
low mass fragments can have high variations in mass accuracy due to being at the lower end
of instrument detection ranges. Establishing a cut off for a minimum number of matching
fragments can help automation. For example, cases where less than two experimental
fragments are detected can be automatically flagged. In this manner a binary variable (TRUE,
FALSE) can be obtained. Then, the analyst should be cautious with the identification and
manual inspection may be required. Three main aspects must be evaluated: the
fragmentation potential (total number of fragments), number of relevant fragments, and
presence/absence of those. It is worth considering detected fragments between different
chromatographic runs within the same batch. Chemicals detected with high intensity in a
chromatogram will often exhibit a clearer fragmentation pattern (including a higher number
of fragments and consistent ratios between them) than the same substances detected in
lower intensity in other chromatograms within a batch. Fragments that match those present
in spectral libraries obtained in an experimental manner (e.g. MassBank [28], MoNA [29],
mzCloud [30]) provide more confidence than those predicted in silico. It is worth noting that
there are many different in silico prediction tools such as CSl:FingerID [31], CFM-ID [32],
MetFrag [33], MAGMa [34] and other approaches, the performance of which has not been
thoroughly analyzed within DSFP.

Presence of MS/MS spectra from DDA: Different acquisition modes provide different degrees
of confidence in fragment ion assignment. DDA data increases the confidence of the assigned
fragments since the chances that they are generated from the parent compound are higher.
Therefore, those fragments should provide more IPs than those obtained with DIA.

Presence of heteroatoms in fragments (if available) and plausibility of their molecular
formulas: It is important to assess the molecular formula assignment of the fragments, which
should agree with the formula of the compound. The presence of heteroatoms in each
structure facilitates its identification. The presence of these heteroatoms in the associated
fragment ions (many times even with a distinctive isotopic pattern if the isolation window is
>1 Da) provides important evidence. Despite the ongoing efforts, HRMS libraries with
appropriate molecular formula annotations for fragments have not been widely implemented.
While the situation is improving, improving the automatic extractability of such information
would greatly facilitate automated interpretation.
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2.2 Additional Parameters/Evidence for NTS Identification Confidence:

10.

Presence of adduct ions: The presence of related adduct ions, although not always available,
can help increase the certainty of the neutral exact mass calculated from the precursor ion.
Therefore, the detection of adducts can help to avoid focusing on neutral masses calculated
from the incorrect adduct (e.g., incorrect assumption of [M+H]* for a [M+NH,]* signal) or in
source fragments, both of which are common for example in electrospray ionization. There
are many clustering approaches such as nontarget [35] and RAMClustR [36] among others,
that can help with automation.

Fragment ratio at least between quantifier and qualifier ions:

The ratios between the detected MS/MS fragments for a given chemical in LC-HRMS/MS
analysis should remain constant (within a given tolerance) for the same/ equivalent collision
energy, in an analogous manner the ratio of intensities between transitions used in
quantification via selected reaction monitoring mode (SRM). The evaluation of these ratios
can significantly increase the degree of confidence of the identifications in ambiguous
situations. The variation of the fragmentation ratio under different collision energies can also
be informative. Unlike GC-MS libraries, the lack of standardization of the collision energy of
the LC-HRMS libraries prevents the automatization of the fragment ratio at this stage.

Mass of fragments: Fragment ions with higher mass can provide more specific structural
information than lower mass fragments. Fragments with lower masses suffer from more
interference, particularly when high collision energies are used. This weighting approach has
been applied successfully by the software of NIST. Low mass fragments also tend to represent
common substructures present in many structures. While this provides some structural
evidence, this can apply to many possible candidates.

Additional dimensions to the data: The dimension of the available data can be increased by
the addition of separation methods. In this category, one of the most promising developments
is ion mobility separation (IMS). IMS separates ionized compounds based on their charge,
shape and size, facilitating the removal of co-eluting isomeric/isobaric species [37]. Therefore,
it helps to obtain cleaner mass spectra (facilitating data interpretation), while also providing
information about the collision cross section of the molecule, thus providing additional
evidence. The drift times provided by IMS are expressed as collision cross-section (CCS) values
and may further contribute to delineating database hits and confirming structure
identification. CCS is a robust measurement suitable for use as an additional parameter in NTS
identification, where available. Its importance will increase as the number of instruments with
IMS on the market increase and becomes available to the laboratories, along with efforts to
include CCS values in open resources [37, 38]. Other efforts to increase the information
available for identification include the use of different chromatographies, ionizations and even
sample preparation methods but their detailed explanation goes beyond the objective of this
study.
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3. Automated allocation of identification evidence using machine learning

3.1 Implementation of Parameters

The essential parameters for NTS identification confidence (Section 2.1) were used to build classifiers
able to differentiate between the availability of sufficient or insufficient evidence for confident
identification. To achieve this, the batch screening functionality of NORMAN Digital Sample Freezing
Platform (DSFP) [20] was upgraded to output the following scores:

1) mass accuracy (Mzscore),

2) RT index information (RTlscore),

3) isotopic fit (IsoFitscore),

4) number of fragments ions considering both DIA and DDA (Fragmentscore),
5) presence of MS/MS spectra from DDA as a TRUE/FALSE variable (DDAcore),
6) fit of molecular formula of fragments (FitMolFormscore) and

7) spectral similarity (SpecSimilscore).

MZscore, RTlscore and Fragmentseore compare experimentally measured values (exp) with theoretically
calculated (theor) or predicted (pred) values and are given from the equations presented in Table 1.

Table 1. Equations for the calculation of Mzscore, RTlscore and Fragmentcore. The subscript abbreviation
exp indicates experimental value, theor indicates theoretical value, pred indicates predicted value.

. Equation
Equation q
number
abs(mzexp - mztheor) 106
MZgeore = 1 —— - eq. 1
mm(mzexp, MZpeor) tolerated accuracy in ppm
abs(RTlexp — RTIpreq) . 2
RTlscore =1 — 1000 qg.
. X _ number_of_uniques(matched fragment ions in DIA U matched fragments in DDA) 3
ragmeitscore = total number of fragments in the library €q.

The IsoFitscore and FitMolFormscore Were defined based on MOLGEN-MS/MS [39, 40]. DDAscoreis a binary
variable indicating whether data-dependent HRMS/MS scan is available. SpecSimilscore was calculated
based on OrgMassSpecR package [41]. Where experimental HRMS/MS is not available, SpecSimilscore
=0. If an experimental mass spectrum is not available (e.g., because there is no record in MassBank),
the match with the CFM-ID (v. 4.0) in-silico predicted mass spectrum is considered [32]. All scores
range from O to 1.

3.2 Experimental / Measurement data

Measurements from four organizations (the National and Kapodistrian University of Athens (UoA), the
French National Institute for Industrial Environment and Risks (INERIS), the Institute of Environmental
Assessment and Water Research (IDAEA-CSIC)) and the Swiss Federal Institute of Aquatic Science
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Technology (Eawag) were used to generate the dataset used here. The organization performed
analysis using the following HRMS instruments: the quadrupole time of flight (Q-TOF) mass analyser
maXis Impact by Bruker, the 6550 iFunnel Q-TOF by Agilent Technologies, the Q-Exactive™ Orbitrap
and Q-Exactive™ Plus Orbitrap by Thermo Fischer Scientific, respectively.

The dataset of UoA included 18 mixtures of substances, containing in total 383 individual reference
standards at final concentration 50 ng mL™. The mixtures were organized based on the chemical class
of the substances (e.g., separate mixtures of pesticides, pharmaceuticals, industrial chemicals etc.).
These mixtures were injected on an Acclaim™ RSLC C18 column (2.1x100 mm, 2.2 um; Thermo Fischer
Scientific) coupled to a LC-ESI-QTOF from Bruker using DIA and DDA (5-most abundant precursors per
scan) according to instrumental settings presented in detail elsewhere [17].

The dataset of INERIS included in total 91 pesticides, which were prepared at concentrations of 1, 10
and 50 ng mL. The reference standards were organized in four different mixtures. The mixtures were
separated by a ZORBAX® SB-Aq (1.8 um, 2.1x150 mm; Agilent Technologies) column and were
detected by an Agilent 6550 iFunnel QTOF. The samples were analysed using DIA acquisition according
to instrumental settings presented in detail elsewhere [42].

The dataset of IDAEA-CSIC contained 21 pesticides in one mix, 83 compounds of various classes in
another mix and 129 compounds of various classes in another mix (all at concentration 50 ng mL™).
The samples were separated using a Cortecs C18 column (2.1x100 mm, 2.7um; Waters), preceded by
a guard column of the same packaging material and were detected using a Q-Exactive™ Orbitrap mass
analyser (Thermo Fisher Scientific). Instrumental details can be found in the respective publications
[43, 44].

The dataset of Eawag was created using groundwater samples spiked with in total 519 compounds at
two concentration levels (10 and 100 ng L?). Separation was achieved on an Atlantis® T3 column (3
pum, 3.0 x 150 mm; Waters) and the detection on a Q-Exactive™ Plus Orbitrap mass analyser (Thermo
Fisher Scientific) with electrospray ionization. The samples were analysed using DDA acquisition
according to instrumental setup described elsewhere [45].

Detailed information on the instrumental setups and acquisitions can be found in Table S1.

3.3 Establishment of the Machine Learning Model

3.3.1 Dataset generation

The data of all participants was uploaded to the NORMAN DSFP using the established contribution
procedure and was screened using the batch-mode utility [20]. The NTS workflow has been validated
and explained in detail elsewhere [20]. Briefly, the workflow uses the centWave algorithm for peak
picking [46] with previously optimized ppm and peakwidth parameters through the IPO R-package
[47]. Optimized peak-picking parameters can be found in Table S2. The peak picking workflow
searches for consecutive masses within a mass error threshold forming peak shape in
chromatographic dimension. The next step is componentization, which is a procedure for grouping
peaks coming from the same compound (e.g., adducts, isotopic peaks). Componentization is
accomplished with the nontarget R package [35].
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The aim of the screening was to generate a dataset with examples of successful and unsuccessful
identifications. Here, unsuccessful identifications originate from the pick-up of signals in samples with
acceptable mass accuracy and plausible retention time index. The generated dataset included in total
1424 instances (rows) after the exclusion of substances (< 1%) that were not detected in the
chromatographic data due to analytical reasons (either low concentration or insufficient sensitivity).
The detected substances were accompanied with the individual scores from categories 1 to 7
(described previously in section 3.1). The generated dataset is provided in the supplementary excel
file. The column “Spiked” is the label (response variable) and indicates whether a compound was
spiked in the samples or not.

3.3.2 Machine learning

This dataset was used to create the following classifiers: decision tree (DT), support vector machine
(SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF), k-nearest neighbors
(kNN). More complex ensemble methods (e.g., XGBoost) were not used for modeling. Modeling was
performed using the scikit-learn python package [48]. The script and calculations are available at
https://github.com/nalygizakis/IPscore.

The performance of the classifiers was tested using 10-fold cross validation and default parameters
[48]. RF outperformed the other classification models for this specific modeling task (Figure 1a). Given
that the training and evaluation sets were unbalanced (not equal instances per class), the overall
macro-averaged F1 score was used as the evaluation metric of the accuracy. The macro-averaged F1
score is calculated by taking the arithmetic mean of all the per-class F1 scores. The F1-score combines
the precision and recall of a classifier into a single metric by taking their harmonic mean. Satisfactory
accuracy was achieved for kNN and SVM, whereas similar but lower F1 score was observed for DT, LR
and NB.

a) Performance of classifiers b) Confusion report
0.85
-120
0.80 - 100
0. 121
- 80
@ 0.75
S
3 £
b 3
b = e
0
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- 40
0.65
o : [ 20
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Classification algorithm Predicted

Figure 1a. Performance of various classification models using 10-fold cross-validation. Abbreviations:
support vector machine (SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF),
k-nearest neighbors (kNN), and decision tree classifier (DT), 1b. Confusion report for the optimized
random forest model in the training set. The model yielded accuracy 79.2%. In total, 235 instances
were classified correctly (121+114) and 50 instances were classified incorrectly.
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RF was selected for further optimization of the hyperparameters, as it showed the best performance.
The following parameter grid was investigated:

e Number of estimators: 40 values from linear space 10 to 1000
e  Maximum depth: 40 values from linear space 2 to 50

e Minimum samples split: 20 values from linear space 1 to 50

e Minimum samples leaf: 20 values from linear space 1 to 50

e Bootstrap: parameters: 'True' and 'False'

e Maximum features: parameters: 'auto’, 'log2’, 'sqrt'

After a 1-hour, six-core experiment on an Intel® Core i9-10885H CPU, the optimized parameters were:
873 for number of estimators, 50 for maximum depth, 3 for minimum samples split, 3 for minimum
samples leaf, 'True' for bootstrap and 'log2' for maximum features. The optimized RF model after
hyperparameter tuning provided accuracy of 79.2% in the test set (Figure 1b). In total, 235
instances/compounds were classified correctly (121+114) and 50 instances/compounds were
classified incorrectly.

3.3.3 Importance of parameters

The parameter importance ranking of the optimized RF model is presented in Table 2. As shown in
Table 2, Fragments.re proved to be the most decisive parameter for the discrimination of the
identifications. It is important to note that Fragmentscore considers the number of unique fragments
detected in both DDA and DIA (where both are available). One reason mass accuracy was not ranked
high was that it is also used indirectly in the parameter Fragment.re. Moreover, the way that negative
hits were defined diminishes the possible importance of mz,.re and to a lesser extent RTlscore. MZscore
proved less important because exact masses are not unique parameters and the negative hits used in
the study are per definition within the defined mass tolerance. Since the fragments capture additional
complementary information, they ended up with higher relevance and this made mzsor alone less
relevant. Finally, DDAsore proved to be highly correlated with FitMolFormscore (r=0.75) thus it was
excluded from the evaluation.

Results from the machine learning approach showed that the number and the quality of the fragments
are the important parameters for a reliable identification. Isotopic fit also proved to play an important
role. RTI, mass accuracy and spectral similarity scores were ranked lower, but provided additional
meaningful information for the classifier. Based on the outcomes of the implemented approach and
the insights gained by the exercise, the next section details a simplified IP-based system for the
communication of identification confidence.
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Table 2. Parameter importance of the optimized RF model. The scores Fragmentscore, FitMolFormscore
and SpecSimilsore transfer the spectral information (purple background). 1soFitscore, RTlscore, aNd MZscore
were colored with green, yellow and orange background, respectively. These colors were applied to
all graphical elements.

Score Importance of parameters
Fragmentscore 0.225
IsoFitscore 0.209
FitMolFormscore 0.173
RTlscore 0.162
MZscore 0.141
SpecSimilscore 0.090

The IP Score system proved helpful. However, it is difficult to be implemented for every laboratory,
since it is unreasonable to expect all laboratories to establish their own machine learning-based
system. Furthermore, In order to bring non-target screening at regulatory level, there is a clear need
for the generation of a harmonized identification scoring. This identification scoring system must allow
communication of the identification confidence in an automated, concise and unambiguous manner
that reflects all the available evidence. Reproducibility and transparency in confidence communication
will open up possibilities to develop novel prioritization schemes for the management of chemicals.
Therefore, the machine learning approach was used as the basis for the proposal of the IP system
described in section 4. The IP system is based on a combination of the results gained within this
exercise, intuition and common knowledge, which may be difficult to implement with machine
learning.

4. Proposed Identification Points (IP) system in target & non-target HRMS analysis

In this section, an IP system is proposed to help in the harmonization of HRMS-based identifications
for target and non-target screening. This system aims at being simple and easy to use, with only
objective criteria as outlined above. The maximum score of an identification can reach 1.00 for target
screening and 0.75 for suspect and non-target screening. The purchase of reference standard for the
confirmation of the identification (i.e. target analysis) is mandatory to achieve the highest IP score of
1.00. The fact that the system scales from 0 to 1 is important to communicate the identification
confidence to non-experts. It can transfer the information immediately to non-experts and can help
implement and embed non-target screening into future regulatory frameworks in an easily
interpretable manner.

Accuracy below 2 mDa / 5 ppm for the precursor ion was regarded as mandatory. Only for target
screening, a retention time match with a reference standard (+ 0.2 min in target screening) the IP is
increased by 0.40 points. The + 0.2 min decision was based on the decision of European Commission
2002/657/EC [49] and the fact that robustness of the LC systems has greatly improved during the last
decades. For non-target screening where retention time match is not available, retention time index
(RTI) is used. In case of RTI match (typically £ 20% in suspect/non-target screening) the IP is increased
by 0.15 points (decision based on Table 2). The tolerance on RTI depends on the structure of the
suspected molecule, the QSRR model and the RTI system that is used. The number of IPs can increase
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by 0.20, in case of excellent isotopic pattern fits match (decision based on Table 2). Fragmentation
information can increase the IP by a tital of 0.40 (experimental spectra available) and by a total of 0.20
(in-silico spectra available). This decision was based on Fragmentscore, SpecSimilscre and partially on
FitMolFormscore (Table 2), because FitMolFormscre does not explicitly correspond to fragmentation.
In-silico fragmentation score is not considered in cases where meaningful experimental fragmentation
is available. The 0.40 points due to fragmentation match with experimental spectra are split: 0.20
points in case of match of the most abundant fragment and 0.20 with the remaining fragments. A
penalty of -0.10 points is applied in case of a compound with poor fragmentation (<2 fragments).
Finally, a penalty of -0.10 points is applied in case there is no recorded data-dependent scan with clear
isolation and fragmentation of the precursor ion. This penalty relates to the fact that DIA suffers from
matrix interferences. Introduction of additional separation dimensions (e.g. ion mobility) or other
advanced acquisition types (e.g. SWATH MS) can make DIA acquisition more efficient and this penalty
could thus be eliminated. However, this aspect has not been thoroughly investigated yet.

Table 3. Proposed Identification Point (IP) system in target and non-target HRMS analysis

. Identification Points (IP)
Requirements
earned
Precursor ion (Accuracy < 2 mDa / 5 ppm, R>15000) mandatory
Retention time £ 0.2 min (only applicable in target) 0.40
Predicted Retention time index (only applicable in suspect where
retention time match is not available, validated approach with 0.15
provided uncertainty)
Isotopic fit 96
(at least one isotope: abundance and accuracy of M+1, M+2,...)
Most intense experimental fragment ion 0.20
All other experimental fragment ions
Number of experimental fragments normalized to the total number 0.20
of fragments in the library

The “All other experimental fragment ions” score is penalized if the

number of other experimental fragments present in the database is -0.10
2 orless
In silico predicted fragment ions in case experimental fragments are
not available
Number of experimental fragments normalized to the total number 0.20
of fragments in the library
max number of fragments in library=10 most intense

Only DIA -0.10

Overall, to avoid subjective evaluations, the use of software to calculate the isotopic fit is advised. The
use of a single software (either vendor or open source) for a given case-study is highly encouraged.
The reason for this recommendation is that there are various methodologies to calculate isotopic fit
(e.g., dot product and overlap percentage). In this way, unbiased identification evaluations can be
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achieved in a flexible manner. The IP value can be increased by the determination of previously known
fragment ions with accurate mass at the same RT (i.e., target screening). For in house method
comparison, the same system and instrumental conditions applying proper quality controls to ensure
RT accuracy and MS/MS spectra consistency should be used. An attempt to associate the IP system
(Table 3) with the widely used identification levels [10] is presented in Table 4. Level 1 (confirmed
identification) requires IP score higher than 0.75. Identifications of level 2 (probable structure) require
IP score from 0.60 to 0.75, whereas level 3 (tentative identification) requires score higher than or
equal to 0.50 and less or equal to 0.60. To claim a Level 4 (unequivocal molecular formula)
identification, the score should be below 0.5 and higher or equal to 0.2. All identifications that receive
below 0.20 IP can be presented as level 5 (exact mass) identifications.

Table 4. Connection of the identification levels [10] with the IP score proposed in this study.

Identification level IP Score
1 >0.75-1.00
2 >0.60-0.75
3 0.50-0.60
4 >0.20-<0.50
5 0.00-0.20

4.1 Application of IP score in target screening

The first example (Figure 2a) shows an ideal target identification: the analysis of oxazepam in surface
water. In this case, a good peak for the precursor ion (m/z: 287.0582) was determined at the exact RT,
along with a good isotopic profile (very clear with the presence of one Cl atom) and qualifier fragments
at the same RT, reaching 1.0 IP, which translates to level 1 (Table 4).

Since target analysis does not always lead to such clear IP identification, the second example (Figure
2b) shows the target identification of tramadol in the wastewater from the national French campaign
[50]. In this case, the precursor ion (m/z: 264.1958) was determined with an acceptable RT (£ 0.2 min)
and isotopic fit, reaching 0.60 IP. Only one qualifier ion (the most intense) could be determined, adding
0.20 IP to finally reach a score of 0.80 IP. The score is penalized by 0.10 because the acquisition has
been performed in DIA, reaching to 0.70 IP, corresponding to a level 2 ranking. It would have qualified
as level 1 (score >0.75) if DDA acquisition had been performed.

A third example given in Figure 2c shows the determination of perfluorohexanesulfonic acid (PFHxS),
which received just 0.60 IP, due to the lack of fragmentation of PFHxS. The lowest IP for target
compounds was set to 0.60 IP (Table 4). The lower IP shows clearly that the identification has a lower
confidence despite the matching reference standard. This information is often not provided for target
analysis. This example does not qualify for level 1, but instead is given a Level 3.

Several other examples of the application of the IP system are provided for both target and
suspect/non-target screening in the following sections and in the SI (Table S3 for target screening and
Table S4 for non-target screening). Table S3 provides 11 additional target screening examples. More
specifically, it provides 1) an example with maximum possible score, 2) an ideal target screening
example, 3) an acceptable target example, 4) a target example with isotopic fit but without fragments,
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5) an ideal target example in DIA, 6) another target example in DIA, 7) a poor target example in DIA,
8) a target example without isotopic fit and fragments, 9) a target example with no isotopic fit, 10) a
target example with no isotopic fit and no other experimental fragments, and 11) a target example
without retention time but isotopic fit and fragments. The examples of Table $3 match the IP to the
well-established identification levels [10].
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© +0.03 min
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2| F 400k =
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_g £ 00k Retentiontime (only applicable in target) 0.40
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b) Acceptable target example - Tramadol
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Target example no fragments - PFHxS

80k 1 RTjprary and RT,y, Target example with isotopicfit but without fragments
g ook 0.05 min
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E|§ 40k Precursor ion (accurate mass) Mandatory
o| £ . . . .
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0 . ]
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Figure 2.

Target examples for IP identification: a) Oxazepam (DDA acquisition of surface water
sample); b) tramadol (DIA acquisition of effluent wastewater - the compound is frequently confused
with O-desmethyl-venlafaxine, which is the first peak shown in the chromatogram), c) PFHxS example

with 0.60 IP evidence.
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4.2 Application of IP score in suspect screening

In suspect screening, identifications are more challenging given the lack of reference standards. Thus,
the maximum score in a suspect identification is 0.55 IP for in silico predicted fragments and 0.75 for
experimental fragments. The identification of the accurate mass of the parent ion with a plausible RT
via a predicted RTI provides 0.15 IP. Isotopic fit can provide an additional 0.20 IP. While the presence
of heteroatoms may provide additional meaning to isotopic fit, this is not reflected in the IPs to avoid
additional complexity in the scheme. The presence of all fragments included in a good quality library
can lead to a maximum of 0.40 IP. However, penalties in the score are applied if (i) only DIA data is
available (-0.10), and (ii) the database for other experimental fragments (apart the most intense ion)
includes two or less fragments (-0.10 IP).

Figure 3a shows an example of the suspect identification of irbesartan. In this case, an intense and
well-shaped peak was detected for the precursor ion (m/z: 429.2397) at a plausible RT according to
the RT prediction model and excellent isotopic fit, obtaining 0.35 IP. The seven fragments included in
the library were detected in the experimental spectra, providing additional 0.40 IP up to a total score
of 0.75 IP, leading to a level 2 identification.

A second example of suspect screening with a slightly lower score is given in Figure 3b, showing the
identification of triethyl phosphate (TEP). A score of 0.18 IP (out of 0.20 IP) was assigned for the
isotopic fit, while the RTI within acceptable range (0.15 IP). To avoid subjective evaluations, the vendor
software (Agilent MassHunter® Workstation Software) was used to calculate the isotopic fit, which
was found to be 0.18 IP. In this case the three fragments present in the library were also detected
(0.40 IP). However, given that a penalty is applied since only 2 other experimental fragments (apart
the most intense one) were present, the identification ended up with a score of 0.63 IP, corresponding
to level 2.

In the final example, less confidence was achieved in the case of nordiazepam (Figure 3c). The
precursor ion was found at a plausible RT and good isotopic fit, indicating the presence of
heteroatoms. The mostintense fragment was detected (+0.20). Moreover, 5 of the 10 other fragments
present in the library were detected, providing +0.10 IP, but since only DIA data was available (-0.10
IP), this led to a total score of 0.55 IP and a level 3 identification.

Table S4 provides 13 additional suspect/non-target examples. More specifically, it provides 1) an
example with the maximum possible score, 2) an ideal non-target example, 3) an acceptable non-
target example in DIA, 4) an example with partial fragment match in DIA, 5) an example with partial
fragment match in DDA, 6) an example with partial isotopic fit, 7) an example with partial isotopic fit
and partial fragment match, 8) an example without fragments, 9) an example without isotopic fit, 10)
an example with only predicted RTI match, 11) an example without predicted retention index but ideal
match for other scores, 12) an ideal example with match for the most intense fragment only, and 13)
an ideal example with match for predicted fragments. The examples of Table S4 match the IP to the
well-established identification levels [10].
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542
543  Figure 3. Suspect examples for IP identification: a) Irbesartan (DIA acquisition of wastewater sample);

544  b) Nordiazepam (DIA acquisition of wastewater sample); triethyl phosphate (TEP) (DIA acquisition) in
545  effluent wastewater sample
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4.3 Consideration of analysis of samples batch

In the case where several samples are analyzed by batch, the same substances can be determined in
different samples at various levels/scores, depending notably on the intensities obtained. For
instance, a substance analyzed via target screening and present at a high intensity in a sample of this
batch would provide a maximum score of 1.0, corresponding to a level 1 identification. The same
substance with a lower intensity in a different sample could potentially end up with a reduced score
for isotopic fit and fragmentation score (score down to 0.60 for example leading to a level 3 rank). If
there is sufficient evidence to indicate that it is indeed the same substance (notably by similar
experimental retention times), then the latter case can be elevated to the level of the best scoring
within the batch, here at level 1 instead of level 3. Overall, contemporary LC systems have robust
retention time that should not shift more than 2.5% [49]. This means that for a chromatographic run
of 1200 seconds (20 minutes), the maximum acceptable RT shift is 30 seconds. This consideration can
be implemented with the requirement that the samples have been analyzed within the same batch
and that LC system operates as expected. Given these restrictions, this operation can be automated.

5. Perspective: Towards a harmonized identification scoring system for NTS

Machine learning approaches can help in creating reproducible decisions on the evidence surrounding
the confidence of identification. A higher degree of automation and the reduction of manual decisions
will improve the reproducibility of NTS identification efforts and empower high throughput screening
efforts. In this regard, the use of advanced models aimed to mimic/reproduce expert decisions will
reduce the time need for a human to validate identification results, as the evidence can be presented
clearly for quick confirmation. To ensure trust in machine driven data treatment, robust validation
processes coupled with specific QA/QC procedures should be developed on large sample datasets to
ensure the validity of the results. Based on the experience gained in this study, conducted with the
results obtained by four laboratories with wide expertise in NTA, a scoring system is proposed that
provides a simplified and harmonized approach for presenting the evidence associated with an
identification. It aims at improving reproducibility and facilitating the communication of the evidence
associated with identification based on objective criteria.

The design of the scoring system is based on current data extraction capabilities, both in terms of
algorithmic and instrumentation limits. The proposal described in the present paper can serve as a
basis that can and should be further improved and adapted to new technological and conceptual
opportunities. A representative example can be found in the use of CCS values (both experimental and
predicted), which have proven effective in confirming structure identification [37]. The use of CCS
could be introduced into the scheme presented here once its use becomes more widespread in the
majority of NTS laboratories, and thus when sufficient data is available for implementing the approach
as described here.

A wide use of the scoring system by different users following their specific approaches with large data
sets will help define the important pieces of evidence more precisely and improve the prediction
accuracy. The system described and assessed here on a wide range of selected cases will be
implemented in the NORMAN DSFP. This will enable a large-scale community validation and will help
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determine whether the proposed system is ready to become a basis to support identification
confidence communication in a reproducible and transparent manner.
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