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Highlights 29 

1. A model was developed to classify identifications as reliable and unreliable 30 
2. Machine learning provided insight for the weights of the most informative parameters 31 
3. Identification confidence was influenced mostly by fragmentation and isotopic fit 32 
4. An identification point (IP) system scaled from 0 to 1 was proposed and applied 33 
5. The IP system was connected with the widely used identification confidence levels 34 

Abstract 35 

Non-target screening (NTS) methods are rapidly gaining in popularity, empowering researchers to 36 
search for an ever-increasing number of chemicals. Given this possibility, communicating the 37 
confidence of identification in an automated, concise and unambiguous manner is becoming 38 
increasingly important. In this study, we compiled several pieces of evidence necessary for 39 
communicating NTS identification confidence and developed a machine learning approach for 40 
classification of the identifications as reliable and unreliable. The machine learning approach was 41 
trained using data generated by four laboratories equipped with different instrumentation. The model 42 
discarded substances with insufficient identification evidence efficiently, while revealing the relevance 43 
of different parameters for identification. Based on these results, a harmonized IP-based system is 44 
proposed. This new NTS-oriented system is compatible with the currently widely used five level 45 
system. It increases the precision in reporting and the reproducibility of current approaches via the 46 
inclusion of evidence scores, while being suitable for automation. 47 

Keywords: Identification point (IP) system, suspect screening, non-target screening, communication 48 
of identification confidence, retrospective screening, high-resolution mass spectrometry 49 
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1. Introduction 54 

The global universe of chemicals is very complex and includes hundreds of thousands of substances in 55 
commercial use [1-3]. In recent years, advances in high resolution mass spectrometry (HRMS) have 56 
revolutionized our ability to measure organic chemicals in a wide variety of matrices, expanding the 57 
analytical window and rapidly increasing the popularity of suspect and non-target analysis (NTS) [4, 58 
5]. These approaches are currently widely used for the tentative identification of a large and still 59 
increasing number of potential contaminants, especially polar and semi-polar ones, as well as many 60 
endogenous compounds in different organisms [6, 7]. Chemical studies often result in large lists of 61 
tentatively identified substances [8, 9]. This has created the need to communicate the confidence in 62 
the identification in a way that reflects all the evidence available [10]. This is essential for a consistent 63 
advancement in the fields that rely on the analysis of organic substances at trace level, including 64 
environmental chemistry [11]. 65 

Currently, in the last step of a target or suspect HRMS screening, the analyst is obliged to spend a 66 
significant amount of time evaluating all proposed identifications case by case [1, 12]. The analyst 67 
relies on orthogonal analytical evidence (chromatographic retention behavior, isotopic profile, MS 68 
fragments, among others) and other additional metadata (e.g., number of patents, literature 69 
references) [13, 14]. Nevertheless, in the end, expert judgement is required to assign the given 70 
identifications a certain level of confidence. This manual evaluation is time-consuming and lacks 71 
reproducibility, while the time required is increasingly moving beyond the realms of manual efforts 72 
due to the sheer numbers of screened compounds and samples [12, 15]. So far, most environmental 73 
studies report the confidence based on hierarchical degrees of confidence [10], ranging from Level 5 74 
(exact mass), Level 4 (unequivocal molecular formula), Level 3 (tentative structure), Level 2a and 2b 75 
(probable structure) through to Level 1 (confirmed identification). In many cases, while the 76 
aforementioned levels are certainly useful (as is evident from their widespread and increasing 77 
adoption), it is still difficult to communicate the evidence associated with the assigned identification 78 
confidence level in a concise and unambiguous manner. Early attempts to include identification 79 
evidence via identification points (IPs) described in the Commission Decision 2002/657/EC were 80 
already implemented in the first NORMAN Collaborative Trial on non-target screening in 2013/14 [16]. 81 
Recently, this approach was also applied to communicate the confidence in the identification of 82 
analytes for target analysis [17]. This IP system considers retention time, mass accuracy, isotopic fit 83 
and fragmentation, taking advantage of the capacities of the HRMS instruments, but it is not yet 84 
explicitly implemented as a standard for non-target screening (NTS) [16, 18]. Other recent efforts 85 
include the integration of automated level system functionality in patRoon – where users can adjust 86 
the requirements [19] and specific guidance released by the per- and polyfluoroalkyl substance (PFAS) 87 
community [11]. A complementary system that allows the community to understand the identification 88 
evidence associated with a reported compound identification in a rapid, concise and reproducible 89 
manner is necessary. A system based upon identification points (IPs) and thus compatible between 90 
target and non-targeted approaches would be a valuable addition to the field.  91 

There is an urgent need to automate the evaluation process and create a more reproducible and 92 
harmonized approach [20], due to the number of chemicals (or features; hereafter "chemicals" for the 93 
purpose of this manuscript) involved in NTS. Machine learning models are well suited to these tasks. 94 
Ideally, such a model should produce a score to assist in the reporting, limiting the amount of manual 95 



work required by the analyst, but present sufficient information to enable quick and efficient manual 96 
quality control. This allows a focus of efforts on the most challenging cases of greatest importance to 97 
the study outcomes. One of the drawbacks of this approach is that machine learning models must be 98 
trained individually for each instrument and analytical strategy used by the laboratories for optimal 99 
performance. The large variety of instruments and data acquisition methods further complicates the 100 
situation and highlights the need for harmonization of data treatment [21]. To create such informative 101 
machine learning models, it is critical to identify the most informative parameters using domain 102 
knowledge. Once such models are built, these provide deeper insights into the importance of the 103 
parameters involved and can eventually be used to propose an easy-to-follow generic IP system, 104 
automatable and applicable under any instrumental and data acquisition conditions. 105 

This article takes a close look at the challenges in harmonizing the NTS identifications, focusing on 106 
liquid chromatography mass spectrometry (HRMS/MS). An interpretable machine learning approach 107 
for classification of NTS identification confidence was developed, capable of automatically discarding 108 
substances with insufficient evidence for reliable identification. The described approach can be 109 
implemented by any laboratory performing NTS analysis. It provides clear benefits in terms of 110 
accurately describing the evidence associated with identified substances. Moreover, it progresses 111 
towards the development of automatic prioritization schemes for the management of chemicals. An 112 
IP-based system is proposed for the communication of evidence accompanying identification 113 
confidence based on the results obtained here, the insights gained by this exercise and the 114 
participation in NORMAN NTS collaborative trials e.g. [16, 22] and other ongoing trials. While 115 
developed on LC-ESI-MS/MS, it is applicable to any soft ionization technique (e.g., GC-APCI-HRMS/MS 116 
and GC-CI-HRMS/MS), given that they produce the molecular ion and considerably less fragment ions. 117 
This new NTS-oriented system is compatible and comparable with target analysis and adds more 118 
precision and reproducibility to current approaches, while being suitable for automation – a key 119 
necessity required for high throughput NTS screening.  120 

2. Parameters/Evidence used for NTS identification  121 
 122 

NTS identification of polar and semi-polar organic chemicals is based on the available information, 123 
commonly generated by LC-HRMS/MS systems. Several pieces of evidence provide information about 124 
the identity of a compound. However, not all are equally relevant or even available in all cases. While 125 
some information is critical and always available (e.g., mass accuracy), other information increases the 126 
degree of confidence to a lesser extent and are not as essential. Likewise, not all pieces of evidence 127 
lead to a concise measurable parameter that can be directly transformed into IPs. 128 
 129 
This section describes the parameters that should be considered in an objective, concise and 130 
potentially automatized IP-based system and discusses their possible role in the harmonization of NTS 131 
identifications as well as their automation potential. The parameters are divided into those that should 132 
be considered by any consistent IP-based system and others that would add additional confidence but 133 
where the implementation is more challenging. 134 
 135 

2.1 Essential Parameters/Evidence for NTS Identification Confidence: 136 

 137 



1. Mass accuracy: The accurate mass of an ion is the mass experimentally determined (and 138 
recalibrated with a reference mass standard if applicable) in the mass spectrometer.  139 
This is the parameter upon which HRMS identifications rely and is the starting point in any 140 
identification, either to match a target, check the potential presence of a suspect, to perform 141 
exact mass searches, or to assign molecular formulas in non-target studies. The parameter 142 
mass deviation between the measured (accurate) and theoretical (exact) masses should be 143 
below the acceptable threshold according to the instrument manufacturer (for most of the 144 
instruments <5 ppm at m/z 200 and/or <2 mDa; modern instruments or internal calibration 145 
can achieve < 2 ppm) and should be verified with regular calibration. The confidence increases 146 
with lower mass deviation. 147 

 148 
2. Retention Time (RT) information: Retention time plausibility is a requirement to reach a 149 

certain identification confidence. Many RT prediction models have been developed in the 150 
literature and have proven to improve suspect and non-target screening [23-25]. There is an 151 
increasing need for comparable and harmonized RT in LC-HRMS/MS among different 152 
laboratories. In this regard, flexible and system independent unified retention time indices 153 
(RTI) can help improve the automation of NTS approaches by reducing the number of false 154 
positives in a first screening step. For GC-(HR)MS, the n-alkanes mixture is most commonly 155 
used for retention indexing and calculation of the Kovat’s index [26], which is the established 156 
protocol in the NIST mass spectral library. For LC-MS, one such RTI method is based on 157 
carefully selected calibrants that can be easily used and applied under any liquid 158 
chromatographic conditions [27]. 159 

 160 
3. Isotopic fit: The isotopic pattern that forms in the mass spectrum by the separation of the 161 

various isotopes of the atoms present in a molecule is used to increase the confidence in the 162 
element and molecular formula assignment. Although it is certainly a useful parameter 163 
(especially for halogenated molecules and other molecules with distinct isotopic patterns), in 164 
many cases when working at trace levels the intensity of the isotopic peaks is so low that it 165 
cannot be observed or can deviate substantially from the theoretical pattern. Therefore, a less 166 
accurate isotopic fit for low intensity masses should not be used as a strong argument to 167 
discard candidates during identification. It is quite frequent phenomenon that the lack of 168 
isotopic fit results in false non-detections, impacting drastically automated evaluations. 169 
Isotopic patterns can also be used to recognize the presence of certain elements, such that 170 
this information can be used without necessarily strictly restricting the identification efforts 171 
to a specific molecular formula. 172 
In the evaluation of isotopic fit, it is important to consider the importance of the isolation 173 
window in data dependent data: If it is above 1 Da, isotopic peaks can appear in the MS/MS, 174 
which can be helpful to identify heteroatoms, but may result in unwanted interferences in the 175 
spectrum. Wide isolation windows can be beneficial for matrix-free samples such as drinking 176 
water. However, a conservative choice of isolation window below 1 Da is preferable for more 177 
complex samples such as biological or wastewater samples, which suffer from matrix 178 
interferences.  179 
 180 

4. Number of fragments ions / Presence of qualifier fragment ions: Compound identification 181 
requires the measurement of MS/MS spectra for individually selected precursors [data 182 



dependent acquisition (DDA)] or simultaneously for all precursor ions (data independent 183 
acquisition (DIA)). The number of fragments constitutes critical information for the reliability 184 
of a given identification. However, not all fragments provide the same level of diagnostic 185 
information, as some fragments are very common to many chemicals, while others are very 186 
specific to only a certain chemical or class of chemicals.  The absence of a qualifier fragment 187 
ion for a given chemical (e.g 68.9958 corresponding to -CF3 for perfluorinated compounds) 188 
can be an exclusion criterion. Other more common fragments (such as 77.95736, for [SO3]-, 189 
95.960697 for [HPO4]+ or a low mass CHON fragment) are less informative and should have 190 
less influence on the degree of confidence of the identification. An important aspect is that 191 
low mass fragments can have high variations in mass accuracy due to being at the lower end 192 
of instrument detection ranges. Establishing a cut off for a minimum number of matching 193 
fragments can help automation. For example, cases where less than two experimental 194 
fragments are detected can be automatically flagged. In this manner a binary variable (TRUE, 195 
FALSE) can be obtained. Then, the analyst should be cautious with the identification and 196 
manual inspection may be required. Three main aspects must be evaluated: the 197 
fragmentation potential (total number of fragments), number of relevant fragments, and 198 
presence/absence of those. It is worth considering detected fragments between different 199 
chromatographic runs within the same batch. Chemicals detected with high intensity in a 200 
chromatogram will often exhibit a clearer fragmentation pattern (including a higher number 201 
of fragments and consistent ratios between them) than the same substances detected in 202 
lower intensity in other chromatograms within a batch. Fragments that match those present 203 
in spectral libraries obtained in an experimental manner (e.g. MassBank [28], MoNA [29], 204 
mzCloud [30]) provide more confidence than those predicted in silico. It is worth noting that 205 
there are many different in silico prediction tools such as CSI:FingerID [31], CFM-ID [32], 206 
MetFrag [33], MAGMa [34] and other approaches, the performance of which has not been 207 
thoroughly analyzed within DSFP. 208 
 209 

5. Presence of MS/MS spectra from DDA: Different acquisition modes provide different degrees 210 
of confidence in fragment ion assignment. DDA data increases the confidence of the assigned 211 
fragments since the chances that they are generated from the parent compound are higher. 212 
Therefore, those fragments should provide more IPs than those obtained with DIA. 213 

 214 
6. Presence of heteroatoms in fragments (if available) and plausibility of their molecular 215 

formulas: It is important to assess the molecular formula assignment of the fragments, which 216 
should agree with the formula of the compound. The presence of heteroatoms in each 217 
structure facilitates its identification. The presence of these heteroatoms in the associated 218 
fragment ions (many times even with a distinctive isotopic pattern if the isolation window is 219 
>1 Da) provides important evidence. Despite the ongoing efforts, HRMS libraries with 220 
appropriate molecular formula annotations for fragments have not been widely implemented. 221 
While the situation is improving, improving the automatic extractability of such information 222 
would greatly facilitate automated interpretation.  223 

 224 
 225 
 226 



2.2 Additional Parameters/Evidence for NTS Identification Confidence: 227 

 228 
7. Presence of adduct ions: The presence of related adduct ions, although not always available, 229 

can help increase the certainty of the neutral exact mass calculated from the precursor ion. 230 
Therefore, the detection of adducts can help to avoid focusing on neutral masses calculated 231 
from the incorrect adduct (e.g., incorrect assumption of [M+H]+ for a [M+NH4]+ signal) or in 232 
source fragments, both of which are common for example in electrospray ionization. There 233 
are many clustering approaches such as nontarget [35] and RAMClustR [36] among others, 234 
that can help with automation. 235 

 236 
8. Fragment ratio at least between quantifier and qualifier ions:  237 

The ratios between the detected MS/MS fragments for a given chemical in LC-HRMS/MS 238 
analysis should remain constant (within a given tolerance) for the same/ equivalent collision 239 
energy, in an analogous manner the ratio of intensities between transitions used in 240 
quantification via selected reaction monitoring mode (SRM). The evaluation of these ratios 241 
can significantly increase the degree of confidence of the identifications in ambiguous 242 
situations. The variation of the fragmentation ratio under different collision energies can also 243 
be informative. Unlike GC-MS libraries, the lack of standardization of the collision energy of 244 
the LC-HRMS libraries prevents the automatization of the fragment ratio at this stage. 245 
 246 

9. Mass of fragments: Fragment ions with higher mass can provide more specific structural 247 
information than lower mass fragments. Fragments with lower masses suffer from more 248 
interference, particularly when high collision energies are used. This weighting approach has 249 
been applied successfully by the software of NIST. Low mass fragments also tend to represent 250 
common substructures present in many structures. While this provides some structural 251 
evidence, this can apply to many possible candidates. 252 
 253 

10. Additional dimensions to the data: The dimension of the available data can be increased by 254 
the addition of separation methods. In this category, one of the most promising developments 255 
is ion mobility separation (IMS). IMS separates ionized compounds based on their charge, 256 
shape and size, facilitating the removal of co-eluting isomeric/isobaric species [37]. Therefore, 257 
it helps to obtain cleaner mass spectra (facilitating data interpretation), while also providing 258 
information about the collision cross section of the molecule, thus providing additional 259 
evidence. The drift times provided by IMS are expressed as collision cross-section (CCS) values 260 
and may further contribute to delineating database hits and confirming structure 261 
identification. CCS is a robust measurement suitable for use as an additional parameter in NTS 262 
identification, where available. Its importance will increase as the number of instruments with 263 
IMS on the market increase and becomes available to the laboratories, along with efforts to 264 
include CCS values in open resources [37, 38]. Other efforts to increase the information 265 
available for identification include the use of different chromatographies, ionizations and even 266 
sample preparation methods but their detailed explanation goes beyond the objective of this 267 
study.  268 



3. Automated allocation of identification evidence using machine learning 269 

3.1 Implementation of Parameters 270 

The essential parameters for NTS identification confidence (Section 2.1) were used to build classifiers 271 
able to differentiate between the availability of sufficient or insufficient evidence for confident 272 
identification. To achieve this, the batch screening functionality of NORMAN Digital Sample Freezing 273 
Platform (DSFP) [20] was upgraded to output the following scores:  274 
 275 

1) mass accuracy (mzscore),  276 
2) RT index information (RTIscore),  277 
3) isotopic fit (IsoFitscore),  278 
4) number of fragments ions considering both DIA and DDA (Fragmentscore),  279 
5) presence of MS/MS spectra from DDA as a TRUE/FALSE variable (DDAscore),  280 
6) fit of molecular formula of fragments (FitMolFormscore) and  281 
7) spectral similarity (SpecSimilscore).  282 

 283 
mzscore, RTIscore and Fragmentscore compare experimentally measured values (exp) with theoretically 284 
calculated (theor) or predicted (pred) values and are given from the equations presented in Table 1. 285 

 286 
Table 1. Equations for the calculation of mzscore, RTIscore and Fragmentscore. The subscript abbreviation 287 
exp indicates experimental value, theor indicates theoretical value, pred indicates predicted value. 288 

Equation Equation 
number 

mzscore = 1 −
abs�mzexp − mztheor�
min�mz𝑒𝑒𝑒𝑒𝑒𝑒, mz𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒�

∗
106

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 eq. 1 

RTIscore = 1 −
abs�RTIexp − RTIpred�

1000  eq. 2 

Fragmentscore =
number_of_uniques(matched fragment ions in DIA ∪ matched fragments in DDA)

total number of fragments in the library  eq. 3 

 289 

The IsoFitscore and FitMolFormscore were defined based on MOLGEN-MS/MS [39, 40]. DDAscore is a binary 290 
variable indicating whether data-dependent HRMS/MS scan is available. SpecSimilscore was calculated 291 
based on OrgMassSpecR package [41]. Where experimental HRMS/MS is not available, SpecSimilscore 292 
=0. If an experimental mass spectrum is not available (e.g., because there is no record in MassBank), 293 
the match with the CFM-ID (v. 4.0) in-silico predicted mass spectrum is considered [32]. All scores 294 
range from 0 to 1.  295 

3.2 Experimental / Measurement data 296 

Measurements from four organizations (the National and Kapodistrian University of Athens (UoA), the 297 
French National Institute for Industrial Environment and Risks (INERIS), the Institute of Environmental 298 
Assessment and Water Research (IDAEA-CSIC)) and the Swiss Federal Institute of Aquatic Science 299 



Technology (Eawag) were used to generate the dataset used here. The organization performed 300 
analysis using the following HRMS instruments: the quadrupole time of flight (Q-TOF) mass analyser 301 
maXis Impact by Bruker, the 6550 iFunnel Q-TOF by Agilent Technologies, the Q-Exactive™ Orbitrap 302 
and Q-Exactive™ Plus Orbitrap by Thermo Fischer Scientific, respectively. 303 

The dataset of UoA included 18 mixtures of substances, containing in total 383 individual reference 304 
standards at final concentration 50 ng mL-1. The mixtures were organized based on the chemical class 305 
of the substances (e.g., separate mixtures of pesticides, pharmaceuticals, industrial chemicals etc.). 306 
These mixtures were injected on an AcclaimTM RSLC C18 column (2.1x100 mm, 2.2 μm; Thermo Fischer 307 
Scientific) coupled to a LC-ESI-QTOF from Bruker using DIA and DDA (5-most abundant precursors per 308 
scan) according to instrumental settings presented in detail elsewhere [17].  309 

The dataset of INERIS included in total 91 pesticides, which were prepared at concentrations of 1, 10 310 
and 50 ng mL-1. The reference standards were organized in four different mixtures. The mixtures were 311 
separated by a ZORBAX® SB-Aq (1.8 um, 2.1x150 mm; Agilent Technologies) column and were 312 
detected by an Agilent 6550 iFunnel QTOF. The samples were analysed using DIA acquisition according 313 
to instrumental settings presented in detail elsewhere [42].  314 

The dataset of IDAEA-CSIC contained 21 pesticides in one mix, 83 compounds of various classes in 315 
another mix and 129 compounds of various classes in another mix (all at concentration 50 ng mL-1). 316 
The samples were separated using a Cortecs C18 column (2.1x100 mm, 2.7µm; Waters), preceded by 317 
a guard column of the same packaging material and were detected using a Q-Exactive™ Orbitrap mass 318 
analyser (Thermo Fisher Scientific). Instrumental details can be found in the respective publications 319 
[43, 44]. 320 

The dataset of Eawag was created using groundwater samples spiked with in total 519 compounds at 321 
two concentration levels (10 and 100 ng L-1). Separation was achieved on an Atlantis® T3 column (3 322 
μm, 3.0 x 150 mm; Waters) and the detection on a Q-Exactive™ Plus Orbitrap mass analyser (Thermo 323 
Fisher Scientific) with electrospray ionization. The samples were analysed using DDA acquisition 324 
according to instrumental setup described elsewhere [45]. 325 

Detailed information on the instrumental setups and acquisitions can be found in Table S1. 326 

3.3 Establishment of the Machine Learning Model 327 

3.3.1 Dataset generation 328 

The data of all participants was uploaded to the NORMAN DSFP using the established contribution 329 
procedure and was screened using the batch-mode utility [20]. The NTS workflow has been validated 330 
and explained in detail elsewhere [20]. Briefly, the workflow uses the centWave algorithm for peak 331 
picking [46] with previously optimized ppm and peakwidth parameters through the IPO R-package 332 
[47]. Optimized peak-picking parameters can be found in Table S2. The peak picking workflow 333 
searches for consecutive masses within a mass error threshold forming peak shape in 334 
chromatographic dimension. The next step is componentization, which is a procedure for grouping 335 
peaks coming from the same compound (e.g., adducts, isotopic peaks). Componentization is 336 
accomplished with the nontarget R package [35].  337 



The aim of the screening was to generate a dataset with examples of successful and unsuccessful 338 
identifications. Here, unsuccessful identifications originate from the pick-up of signals in samples with 339 
acceptable mass accuracy and plausible retention time index. The generated dataset included in total 340 
1424 instances (rows) after the exclusion of substances (< 1%) that were not detected in the 341 
chromatographic data due to analytical reasons (either low concentration or insufficient sensitivity). 342 
The detected substances were accompanied with the individual scores from categories 1 to 7 343 
(described previously in section 3.1). The generated dataset is provided in the supplementary excel 344 
file. The column “Spiked” is the label (response variable) and indicates whether a compound was 345 
spiked in the samples or not. 346 

3.3.2 Machine learning 347 

This dataset was used to create the following classifiers: decision tree (DT), support vector machine 348 
(SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF), k-nearest neighbors 349 
(kNN). More complex ensemble methods (e.g., XGBoost) were not used for modeling. Modeling was 350 
performed using the scikit-learn python package [48]. The script and calculations are available at 351 
https://github.com/nalygizakis/IPscore. 352 

The performance of the classifiers was tested using 10-fold cross validation and default parameters 353 
[48]. RF outperformed the other classification models for this specific modeling task (Figure 1a). Given 354 
that the training and evaluation sets were unbalanced (not equal instances per class), the overall 355 
macro-averaged F1 score was used as the evaluation metric of the accuracy. The macro-averaged F1 356 
score is calculated by taking the arithmetic mean of all the per-class F1 scores. The F1-score combines 357 
the precision and recall of a classifier into a single metric by taking their harmonic mean. Satisfactory 358 
accuracy was achieved for kNN and SVM, whereas similar but lower F1 score was observed for DT, LR 359 
and NB. 360 

 361 
Figure 1a. Performance of various classification models using 10-fold cross-validation. Abbreviations: 362 
support vector machine (SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF), 363 
k-nearest neighbors (kNN), and decision tree classifier (DT), 1b. Confusion report for the optimized 364 
random forest model in the training set. The model yielded accuracy 79.2%. In total, 235 instances 365 
were classified correctly (121+114) and 50 instances were classified incorrectly. 366 

https://github.com/nalygizakis/IPscore


RF was selected for further optimization of the hyperparameters, as it showed the best performance.  367 
The following parameter grid was investigated: 368 

• Number of estimators: 40 values from linear space 10 to 1000 369 
• Maximum depth: 40 values from linear space 2 to 50 370 
• Minimum samples split: 20 values from linear space 1 to 50 371 
• Minimum samples leaf: 20 values from linear space 1 to 50 372 
• Bootstrap: parameters: 'True' and 'False' 373 
• Maximum features: parameters: 'auto', 'log2', 'sqrt' 374 

After a 1-hour, six-core experiment on an Intel® Core i9-10885H CPU, the optimized parameters were: 375 
873 for number of estimators, 50 for maximum depth, 3 for minimum samples split, 3 for minimum 376 
samples leaf, 'True' for bootstrap and 'log2' for maximum features. The optimized RF model after 377 
hyperparameter tuning provided accuracy of 79.2% in the test set (Figure 1b). In total, 235 378 
instances/compounds were classified correctly (121+114) and 50 instances/compounds were 379 
classified incorrectly. 380 

3.3.3 Importance of parameters 381 

The parameter importance ranking of the optimized RF model is presented in Table 2. As shown in 382 
Table 2, Fragmentscore proved to be the most decisive parameter for the discrimination of the 383 
identifications. It is important to note that Fragmentscore considers the number of unique fragments 384 
detected in both DDA and DIA (where both are available). One reason mass accuracy was not ranked 385 
high was that it is also used indirectly in the parameter Fragmentscore. Moreover, the way that negative 386 
hits were defined diminishes the possible importance of mzscore and to a lesser extent RTIscore. mzscore 387 
proved less important because exact masses are not unique parameters and the negative hits used in 388 
the study are per definition within the defined mass tolerance. Since the fragments capture additional 389 
complementary information, they ended up with higher relevance and this made mzscore alone less 390 
relevant. Finally, DDAscore proved to be highly correlated with FitMolFormscore (r=0.75) thus it was 391 
excluded from the evaluation. 392 
 393 
Results from the machine learning approach showed that the number and the quality of the fragments 394 
are the important parameters for a reliable identification. Isotopic fit also proved to play an important 395 
role. RTI, mass accuracy and spectral similarity scores were ranked lower, but provided additional 396 
meaningful information for the classifier. Based on the outcomes of the implemented approach and 397 
the insights gained by the exercise, the next section details a simplified IP-based system for the 398 
communication of identification confidence. 399 
  400 



 401 
Table 2. Parameter importance of the optimized RF model. The scores Fragmentscore, FitMolFormscore 402 
and SpecSimilscore transfer the spectral information (purple background). IsoFitscore, RTIscore, and mzscore 403 
were colored with green, yellow and orange background, respectively. These colors were applied to 404 
all graphical elements.  405 

Score Importance of parameters 
Fragmentscore 0.225 

IsoFitscore 0.209 
FitMolFormscore 0.173 

RTIscore 0.162 
mzscore 0.141 

SpecSimilscore 0.090 
 406 
The IP Score system proved helpful. However, it is difficult to be implemented for every laboratory, 407 
since it is unreasonable to expect all laboratories to establish their own machine learning-based 408 
system. Furthermore, In order to bring non-target screening at regulatory level, there is a clear need 409 
for the generation of a harmonized identification scoring. This identification scoring system must allow 410 
communication of the identification confidence in an automated, concise and unambiguous manner 411 
that reflects all the available evidence. Reproducibility and transparency in confidence communication 412 
will open up possibilities to develop novel prioritization schemes for the management of chemicals. 413 
Therefore, the machine learning approach was used as the basis for the proposal of the IP system 414 
described in section 4. The IP system is based on a combination of the results gained within this 415 
exercise, intuition and common knowledge, which may be difficult to implement with machine 416 
learning. 417 
 418 

4. Proposed Identification Points (IP) system in target & non-target HRMS analysis 419 
In this section, an IP system is proposed to help in the harmonization of HRMS-based identifications 420 
for target and non-target screening. This system aims at being simple and easy to use, with only 421 
objective criteria as outlined above. The maximum score of an identification can reach 1.00 for target 422 
screening and 0.75 for suspect and non-target screening. The purchase of reference standard for the 423 
confirmation of the identification (i.e. target analysis) is mandatory to achieve the highest IP score of 424 
1.00. The fact that the system scales from 0 to 1 is important to communicate the identification 425 
confidence to non-experts. It can transfer the information immediately to non-experts and can help 426 
implement and embed non-target screening into future regulatory frameworks in an easily 427 
interpretable manner.  428 
 429 
Accuracy below 2 mDa / 5 ppm for the precursor ion was regarded as mandatory. Only for target 430 
screening, a retention time match with a reference standard (± 0.2 min in target screening) the IP is 431 
increased by 0.40 points. The ± 0.2 min decision was based on the decision of European Commission 432 
2002/657/EC [49] and the fact that robustness of the LC systems has greatly improved during the last 433 
decades. For non-target screening where retention time match is not available,  retention time index 434 
(RTI) is used. In case of RTI match (typically ± 20% in suspect/non-target screening) the IP is increased 435 
by 0.15 points (decision based on Table 2). The tolerance on RTI depends on the structure of the 436 
suspected molecule, the QSRR model and the RTI system that is used. The number of IPs can increase 437 



by 0.20, in case of excellent isotopic pattern fits match (decision based on Table 2). Fragmentation 438 
information can increase the IP by a tital of 0.40 (experimental spectra available) and by a total of 0.20 439 
(in-silico spectra available). This decision was based on Fragmentscore, SpecSimilscore and partially on 440 
FitMolFormscore (Table 2), because FitMolFormscore  does not explicitly correspond to fragmentation. 441 
In-silico fragmentation score is not considered in cases where meaningful experimental fragmentation 442 
is available. The 0.40 points due to fragmentation match with experimental spectra are split: 0.20 443 
points in case of match of the most abundant fragment and 0.20 with the remaining fragments. A 444 
penalty of -0.10 points is applied in case of a compound with poor fragmentation (≤2 fragments). 445 
Finally, a penalty of -0.10 points is applied in case there is no recorded data-dependent scan with clear 446 
isolation and fragmentation of the precursor ion. This penalty relates to the fact that DIA suffers from 447 
matrix interferences. Introduction of additional separation dimensions (e.g. ion mobility) or other 448 
advanced acquisition types (e.g. SWATH MS) can make DIA acquisition more efficient and this penalty 449 
could thus be eliminated. However, this aspect has not been thoroughly investigated yet. 450 
 451 
Table 3. Proposed Identification Point (IP) system in target and non-target HRMS analysis 452 

Requirements 
Identification Points (IP) 

earned 

 Precursor ion (Accuracy < 2 mDa / 5 ppm, R>15000) mandatory 

Retention time ± 0.2 min (only applicable in target)  0.40 

Predicted Retention time index (only applicable in suspect where 
retention time match is not available, validated approach with 

provided uncertainty) 
0.15 

Isotopic fit  
(at least one isotope: abundance and accuracy of M+1, M+2,…) 

0.20 

Most intense experimental fragment ion  0.20 

All other experimental fragment ions 
Number of experimental fragments normalized to the total number 

of fragments in the library 
0.20 

The “All other experimental fragment ions” score is penalized if the 
number of other experimental fragments present in the database is 

2 or less 
-0.10 

In silico predicted fragment ions in case experimental fragments are 
not available 

Number of experimental fragments normalized to the total number 
of fragments in the library 

max number of fragments in library=10 most intense 

0.20 

Only DIA -0.10 
 453 
Overall, to avoid subjective evaluations, the use of software to calculate the isotopic fit is advised. The 454 
use of a single software (either vendor or open source) for a given case-study is highly encouraged. 455 
The reason for this recommendation is that there are various methodologies to calculate isotopic fit 456 
(e.g., dot product and overlap percentage). In this way, unbiased identification evaluations can be 457 



achieved in a flexible manner. The IP value can be increased by the determination of previously known 458 
fragment ions with accurate mass at the same RT (i.e., target screening). For in house method 459 
comparison, the same system and instrumental conditions applying proper quality controls to ensure 460 
RT accuracy and MS/MS spectra consistency should be used. An attempt to associate the IP system 461 
(Table 3) with the widely used identification levels [10] is presented in Table 4. Level 1 (confirmed 462 
identification) requires IP score higher than 0.75. Identifications of level 2 (probable structure) require 463 
IP score from 0.60 to 0.75, whereas level 3 (tentative identification) requires score higher than or 464 
equal to 0.50 and less or equal to 0.60. To claim a Level 4 (unequivocal molecular formula) 465 
identification, the score should be below 0.5 and higher or equal to 0.2. All identifications that receive 466 
below 0.20 IP can be presented as level 5 (exact mass) identifications. 467 
 468 
 469 
Table 4. Connection of the identification levels [10] with the IP score proposed in this study. 470 

Identification level IP Score 
1 >0.75-1.00 
2 >0.60-0.75 
3 0.50-0.60 
4 >0.20-<0.50 
5 0.00-0.20 

4.1 Application of IP score in target screening 471 

The first example (Figure 2a) shows an ideal target identification: the analysis of oxazepam in surface 472 
water. In this case, a good peak for the precursor ion (m/z: 287.0582) was determined at the exact RT, 473 
along with a good isotopic profile (very clear with the presence of one Cl atom) and qualifier fragments 474 
at the same RT, reaching 1.0 IP, which translates to level 1 (Table 4).  475 

Since target analysis does not always lead to such clear IP identification, the second example (Figure 476 
2b) shows the target identification of tramadol in the wastewater from the national French campaign 477 
[50]. In this case, the precursor ion (m/z: 264.1958) was determined with an acceptable RT (± 0.2 min) 478 
and isotopic fit, reaching 0.60 IP. Only one qualifier ion (the most intense) could be determined, adding 479 
0.20 IP to finally reach a score of 0.80 IP. The score is penalized by 0.10 because the acquisition has 480 
been performed in DIA, reaching to 0.70 IP, corresponding to a level 2 ranking. It would have qualified 481 
as level 1 (score >0.75) if DDA acquisition had been performed.  482 

A third example given in Figure 2c shows the determination of perfluorohexanesulfonic acid (PFHxS), 483 
which received just 0.60 IP, due to the lack of fragmentation of PFHxS. The lowest IP for target 484 
compounds was set to 0.60 IP (Table 4). The lower IP shows clearly that the identification has a lower 485 
confidence despite the matching reference standard. This information is often not provided for target 486 
analysis. This example does not qualify for level 1, but instead is given a Level 3. 487 

Several other examples of the application of the IP system are provided for both target and 488 
suspect/non-target screening in the following sections and in the SI (Table S3 for target screening and 489 
Table S4 for non-target screening). Table S3 provides 11 additional target screening examples. More 490 
specifically, it provides 1) an example with maximum possible score, 2) an ideal target screening 491 
example, 3) an acceptable target example, 4) a target example with isotopic fit but without fragments, 492 



5) an ideal target example in DIA, 6) another target example in DIA, 7) a poor target example in DIA, 493 
8) a target example without isotopic fit and fragments, 9) a target example with no isotopic fit, 10) a 494 
target example with no isotopic fit and no other experimental fragments, and 11) a target example 495 
without retention time but isotopic fit and fragments. The examples of Table S3 match the IP to the 496 
well-established identification levels [10]. 497 

 498 

 499 



 500 
Figure 2. Target examples for IP identification: a) Oxazepam (DDA acquisition of surface water 501 
sample); b) tramadol (DIA acquisition of effluent wastewater - the compound is frequently confused 502 
with O-desmethyl-venlafaxine, which is the first peak shown in the chromatogram), c) PFHxS example 503 
with 0.60 IP evidence. 504 



4.2 Application of IP score in suspect screening 505 

In suspect screening, identifications are more challenging given the lack of reference standards. Thus, 506 
the maximum score in a suspect identification is 0.55 IP for in silico predicted fragments and 0.75 for 507 
experimental fragments. The identification of the accurate mass of the parent ion with a plausible RT 508 
via a predicted RTI provides 0.15 IP. Isotopic fit can provide an additional 0.20 IP. While the presence 509 
of heteroatoms may provide additional meaning to isotopic fit, this is not reflected in the IPs to avoid 510 
additional complexity in the scheme. The presence of all fragments included in a good quality library 511 
can lead to a maximum of 0.40 IP. However, penalties in the score are applied if (i) only DIA data is 512 
available (-0.10), and (ii) the database for other experimental fragments (apart the most intense ion) 513 
includes two or less fragments (-0.10 IP). 514 

Figure 3a shows an example of the suspect identification of irbesartan. In this case, an intense and 515 
well-shaped peak was detected for the precursor ion (m/z: 429.2397) at a plausible RT according to 516 
the RT prediction model and excellent isotopic fit, obtaining 0.35 IP. The seven fragments included in 517 
the library were detected in the experimental spectra, providing additional 0.40 IP up to a total score 518 
of 0.75 IP, leading to a level 2 identification. 519 

A second example of suspect screening with a slightly lower score is given in Figure 3b, showing the 520 
identification of triethyl phosphate (TEP). A score of 0.18 IP (out of 0.20 IP) was assigned for the 521 
isotopic fit, while the RTI within acceptable range (0.15 IP). To avoid subjective evaluations, the vendor 522 
software (Agilent MassHunter® Workstation Software) was used to calculate the isotopic fit, which 523 
was found to be 0.18 IP. In this case the three fragments present in the library were also detected 524 
(0.40 IP). However, given that a penalty is applied since only 2 other experimental fragments (apart 525 
the most intense one) were present, the identification ended up with a score of 0.63 IP, corresponding 526 
to level 2.  527 

In the final example, less confidence was achieved in the case of nordiazepam (Figure 3c). The 528 
precursor ion was found at a plausible RT and good isotopic fit, indicating the presence of 529 
heteroatoms. The most intense fragment was detected (+0.20). Moreover, 5 of the 10 other fragments 530 
present in the library were detected, providing +0.10 IP, but since only DIA data was available (-0.10 531 
IP), this led to a total score of 0.55 IP and a level 3 identification.  532 

Table S4 provides 13 additional suspect/non-target examples. More specifically, it provides 1) an 533 
example with the maximum possible score, 2) an ideal non-target example, 3) an acceptable non-534 
target example in DIA, 4) an example with partial fragment match in DIA, 5) an example with partial 535 
fragment match in DDA, 6) an example with partial isotopic fit, 7) an example with partial isotopic fit 536 
and partial fragment match, 8) an example without fragments, 9) an example without isotopic fit, 10) 537 
an example with only predicted RTI match, 11) an example without predicted retention index but ideal 538 
match for other scores, 12) an ideal example with match for the most intense fragment only, and 13) 539 
an ideal example with match for predicted fragments. The examples of Table S4 match the IP to the 540 
well-established identification levels [10]. 541 



 542 
Figure 3. Suspect examples for IP identification: a) Irbesartan (DIA acquisition of wastewater sample); 543 
b) Nordiazepam (DIA acquisition of wastewater sample); triethyl phosphate (TEP) (DIA acquisition) in 544 
effluent wastewater sample 545 



4.3 Consideration of analysis of samples batch  546 

In the case where several samples are analyzed by batch, the same substances can be determined in 547 
different samples at various levels/scores, depending notably on the intensities obtained. For 548 
instance, a substance analyzed via target screening and present at a high intensity in a sample of this 549 
batch would provide a maximum score of 1.0, corresponding to a level 1 identification. The same 550 
substance with a lower intensity in a different sample could potentially end up with a reduced score 551 
for isotopic fit and fragmentation score (score down to 0.60 for example leading to a level 3 rank). If 552 
there is sufficient evidence to indicate that it is indeed the same substance (notably by similar 553 
experimental retention times), then the latter case can be elevated to the level of the best scoring 554 
within the batch, here at level 1 instead of level 3. Overall, contemporary LC systems have robust 555 
retention time that should not shift more than 2.5% [49]. This means that for a chromatographic run 556 
of 1200 seconds (20 minutes), the maximum acceptable RT shift is 30 seconds. This consideration can 557 
be implemented with the requirement that the samples have been analyzed within the same batch 558 
and that LC system operates as expected. Given these restrictions, this operation can be automated.  559 

 560 

5. Perspective: Towards a harmonized identification scoring system for NTS 561 

Machine learning approaches can help in creating reproducible decisions on the evidence surrounding 562 
the confidence of identification.  A higher degree of automation and the reduction of manual decisions 563 
will improve the reproducibility of NTS identification efforts and empower high throughput screening 564 
efforts. In this regard, the use of advanced models aimed to mimic/reproduce expert decisions will 565 
reduce the time need for a human to validate identification results, as the evidence can be presented 566 
clearly for quick confirmation. To ensure trust in machine driven data treatment, robust validation 567 
processes coupled with specific QA/QC procedures should be developed on large sample datasets to 568 
ensure the validity of the results. Based on the experience gained in this study, conducted with the 569 
results obtained by four laboratories with wide expertise in NTA, a scoring system is proposed that 570 
provides a simplified and harmonized approach for presenting the evidence associated with an 571 
identification. It aims at improving reproducibility and facilitating the communication of the evidence 572 
associated with identification based on objective criteria.  573 

The design of the scoring system is based on current data extraction capabilities, both in terms of 574 
algorithmic and instrumentation limits. The proposal described in the present paper can serve as a 575 
basis that can and should be further improved and adapted to new technological and conceptual 576 
opportunities. A representative example can be found in the use of CCS values (both experimental and 577 
predicted), which have proven effective in confirming structure identification [37]. The use of CCS 578 
could be introduced into the scheme presented here once its use becomes more widespread in the 579 
majority of NTS laboratories, and thus when sufficient data is available for implementing the approach 580 
as described here.  581 

A wide use of the scoring system by different users following their specific approaches with large data 582 
sets will help define the important pieces of evidence more precisely and improve the prediction 583 
accuracy. The system described and assessed here on a wide range of selected cases will be 584 
implemented in the NORMAN DSFP. This will enable a large-scale community validation and will help 585 



determine whether the proposed system is ready to become a basis to support identification 586 
confidence communication in a reproducible and transparent manner. 587 
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