

1

2 **Towards a harmonized identification scoring system in LC-**

3 **HRMS/MS based non-target screening (NTS) of emerging**

4 **contaminants**

5

6

7 **Nikiforos Alygizakis** ^{1,2} ^{§*}, **Francois Lestremau** ^{3,4} [§], **Pablo Gago-Ferrero** ⁵ [§], **Rubén Gil-**
8 **Solsona**⁵, **Katarzyna Arturi** ⁶, **Juliane Hollender** ^{6,7}, **Emma L. Schymanski**⁸, **Valeria Dulio**⁴,
9 **Jaroslav Slobodník** ², **Nikolaos S. Thomaidis** ^{1*}

10

11

12 ¹ Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of
13 Athens, Greece

14 ² Environmental Institute, Okružná 784/42, Koš, 97241, Slovakia

15 ³ Hydrosciences Montpellier, Univ. Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France

16 ⁴ Institut National de l'Environnement Industriel et des Risques (INERIS), Parc ALATA BP2, 60550, Verneuil en
17 Halatte, France

18 ⁵ Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish
19 Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain

20 ⁶ Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland

21 ⁷ Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, 8092 Zurich, Switzerland

22 ⁸ Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, L-4367
23 Belvaux, Luxembourg

25 *Corresponding authors

Nikiforos Alygizakis
Environmental Institute, Okružná 784/42,
972 41, Koš, Slovak Republic
E-mail: alygizakis@ei.sk
Phone: +421 919183401

Nikolaos S. Thomaidis
Laboratory of Analytical Chemistry, Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis
Zografou, 15771 Athens, Greece
E-mail: ntho@chem.uoa.gr
Phone: +30 210 727 4317

27 [§] These authors contributed equally to this work

28 For submission to: **TrAC Trends in Analytical Chemistry**

29 **Highlights**

30 1. A model was developed to classify identifications as reliable and unreliable
31 2. Machine learning provided insight for the weights of the most informative parameters
32 3. Identification confidence was influenced mostly by fragmentation and isotopic fit
33 4. An identification point (IP) system scaled from 0 to 1 was proposed and applied
34 5. The IP system was connected with the widely used identification confidence levels

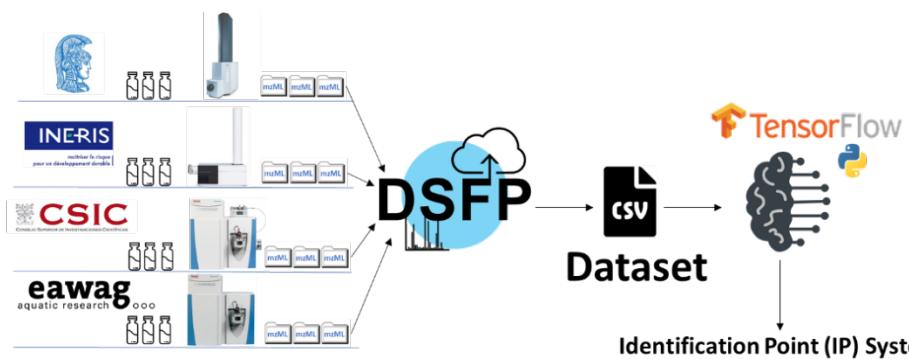
35 **Abstract**

36 Non-target screening (NTS) methods are rapidly gaining in popularity, empowering researchers to
37 search for an ever-increasing number of chemicals. Given this possibility, communicating the
38 confidence of identification in an automated, concise and unambiguous manner is becoming
39 increasingly important. In this study, we compiled several pieces of evidence necessary for
40 communicating NTS identification confidence and developed a machine learning approach for
41 classification of the identifications as reliable and unreliable. The machine learning approach was
42 trained using data generated by four laboratories equipped with different instrumentation. The model
43 discarded substances with insufficient identification evidence efficiently, while revealing the relevance
44 of different parameters for identification. Based on these results, a harmonized IP-based system is
45 proposed. This new NTS-oriented system is compatible with the currently widely used five level
46 system. It increases the precision in reporting and the reproducibility of current approaches via the
47 inclusion of evidence scores, while being suitable for automation.

48 **Keywords:** Identification point (IP) system, suspect screening, non-target screening, communication
49 of identification confidence, retrospective screening, high-resolution mass spectrometry

50

51 Graphical abstract



Identification Levels	IP Score
Level 1	>0.75-1.00
Level 2	>0.60-0.75
Level 3	0.50-0.60
Level 4	0.20-0.50
Level 5	0.00-0.20

52

53

54 **1. Introduction**

55 The global universe of chemicals is very complex and includes hundreds of thousands of substances in
56 commercial use [1-3]. In recent years, advances in high resolution mass spectrometry (HRMS) have
57 revolutionized our ability to measure organic chemicals in a wide variety of matrices, expanding the
58 analytical window and rapidly increasing the popularity of suspect and non-target analysis (NTS) [4,
59 5]. These approaches are currently widely used for the tentative identification of a large and still
60 increasing number of potential contaminants, especially polar and semi-polar ones, as well as many
61 endogenous compounds in different organisms [6, 7]. Chemical studies often result in large lists of
62 tentatively identified substances [8, 9]. This has created the need to communicate the confidence in
63 the identification in a way that reflects all the evidence available [10]. This is essential for a consistent
64 advancement in the fields that rely on the analysis of organic substances at trace level, including
65 environmental chemistry [11].

66 Currently, in the last step of a target or suspect HRMS screening, the analyst is obliged to spend a
67 significant amount of time evaluating all proposed identifications case by case [1, 12]. The analyst
68 relies on orthogonal analytical evidence (chromatographic retention behavior, isotopic profile, MS
69 fragments, among others) and other additional metadata (e.g., number of patents, literature
70 references) [13, 14]. Nevertheless, in the end, expert judgement is required to assign the given
71 identifications a certain level of confidence. This manual evaluation is time-consuming and lacks
72 reproducibility, while the time required is increasingly moving beyond the realms of manual efforts
73 due to the sheer numbers of screened compounds and samples [12, 15]. So far, most environmental
74 studies report the confidence based on hierarchical degrees of confidence [10], ranging from Level 5
75 (exact mass), Level 4 (unequivocal molecular formula), Level 3 (tentative structure), Level 2a and 2b
76 (probable structure) through to Level 1 (confirmed identification). In many cases, while the
77 aforementioned levels are certainly useful (as is evident from their widespread and increasing
78 adoption), it is still difficult to communicate the evidence associated with the assigned identification
79 confidence level in a concise and unambiguous manner. Early attempts to include identification
80 evidence via identification points (IPs) described in the Commission Decision 2002/657/EC were
81 already implemented in the first NORMAN Collaborative Trial on non-target screening in 2013/14 [16].
82 Recently, this approach was also applied to communicate the confidence in the identification of
83 analytes for target analysis [17]. This IP system considers retention time, mass accuracy, isotopic fit
84 and fragmentation, taking advantage of the capacities of the HRMS instruments, but it is not yet
85 explicitly implemented as a standard for non-target screening (NTS) [16, 18]. Other recent efforts
86 include the integration of automated level system functionality in patRoon – where users can adjust
87 the requirements [19] and specific guidance released by the per- and polyfluoroalkyl substance (PFAS)
88 community [11]. A complementary system that allows the community to understand the identification
89 evidence associated with a reported compound identification in a rapid, concise and reproducible
90 manner is necessary. A system based upon identification points (IPs) and thus compatible between
91 target and non-targeted approaches would be a valuable addition to the field.

92 There is an urgent need to automate the evaluation process and create a more reproducible and
93 harmonized approach [20], due to the number of chemicals (or features; hereafter "chemicals" for the
94 purpose of this manuscript) involved in NTS. Machine learning models are well suited to these tasks.
95 Ideally, such a model should produce a score to assist in the reporting, limiting the amount of manual

96 work required by the analyst, but present sufficient information to enable quick and efficient manual
97 quality control. This allows a focus of efforts on the most challenging cases of greatest importance to
98 the study outcomes. One of the drawbacks of this approach is that machine learning models must be
99 trained individually for each instrument and analytical strategy used by the laboratories for optimal
100 performance. The large variety of instruments and data acquisition methods further complicates the
101 situation and highlights the need for harmonization of data treatment [21]. To create such informative
102 machine learning models, it is critical to identify the most informative parameters using domain
103 knowledge. Once such models are built, these provide deeper insights into the importance of the
104 parameters involved and can eventually be used to propose an easy-to-follow generic IP system,
105 automatable and applicable under any instrumental and data acquisition conditions.

106 This article takes a close look at the challenges in harmonizing the NTS identifications, focusing on
107 liquid chromatography mass spectrometry (HRMS/MS). An interpretable machine learning approach
108 for classification of NTS identification confidence was developed, capable of automatically discarding
109 substances with insufficient evidence for reliable identification. The described approach can be
110 implemented by any laboratory performing NTS analysis. It provides clear benefits in terms of
111 accurately describing the evidence associated with identified substances. Moreover, it progresses
112 towards the development of automatic prioritization schemes for the management of chemicals. An
113 IP-based system is proposed for the communication of evidence accompanying identification
114 confidence based on the results obtained here, the insights gained by this exercise and the
115 participation in NORMAN NTS collaborative trials e.g. [16, 22] and other ongoing trials. While
116 developed on LC-ESI-MS/MS, it is applicable to any soft ionization technique (e.g., GC-APCI-HRMS/MS
117 and GC-CI-HRMS/MS), given that they produce the molecular ion and considerably less fragment ions.
118 This new NTS-oriented system is compatible and comparable with target analysis and adds more
119 precision and reproducibility to current approaches, while being suitable for automation – a key
120 necessity required for high throughput NTS screening.

121 **2. Parameters/Evidence used for NTS identification**

122
123 NTS identification of polar and semi-polar organic chemicals is based on the available information,
124 commonly generated by LC-HRMS/MS systems. Several pieces of evidence provide information about
125 the identity of a compound. However, not all are equally relevant or even available in all cases. While
126 some information is critical and always available (e.g., mass accuracy), other information increases the
127 degree of confidence to a lesser extent and are not as essential. Likewise, not all pieces of evidence
128 lead to a concise measurable parameter that can be directly transformed into IPs.

129
130 This section describes the parameters that should be considered in an objective, concise and
131 potentially automatized IP-based system and discusses their possible role in the harmonization of NTS
132 identifications as well as their automation potential. The parameters are divided into those that should
133 be considered by any consistent IP-based system and others that would add additional confidence but
134 where the implementation is more challenging.

135

136 **2.1 Essential Parameters/Evidence for NTS Identification Confidence:**

137

138 **1. Mass accuracy:** The accurate mass of an ion is the mass experimentally determined (and
139 recalibrated with a reference mass standard if applicable) in the mass spectrometer.

140 This is the parameter upon which HRMS identifications rely and is the starting point in any
141 identification, either to match a target, check the potential presence of a suspect, to perform
142 exact mass searches, or to assign molecular formulas in non-target studies. The parameter
143 mass deviation between the measured (accurate) and theoretical (exact) masses should be
144 below the acceptable threshold according to the instrument manufacturer (for most of the
145 instruments <5 ppm at m/z 200 and/or <2 mDa; modern instruments or internal calibration
146 can achieve < 2 ppm) and should be verified with regular calibration. The confidence increases
147 with lower mass deviation.

148
149 **2. Retention Time (RT) information:** Retention time plausibility is a requirement to reach a
150 certain identification confidence. Many RT prediction models have been developed in the
151 literature and have proven to improve suspect and non-target screening [23-25]. There is an
152 increasing need for comparable and harmonized RT in LC-HRMS/MS among different
153 laboratories. In this regard, flexible and system independent unified retention time indices
154 (RTI) can help improve the automation of NTS approaches by reducing the number of false
155 positives in a first screening step. For GC-(HR)MS, the n-alkanes mixture is most commonly
156 used for retention indexing and calculation of the Kovat's index [26], which is the established
157 protocol in the NIST mass spectral library. For LC-MS, one such RTI method is based on
158 carefully selected calibrants that can be easily used and applied under any liquid
159 chromatographic conditions [27].

160
161 **3. Isotopic fit:** The isotopic pattern that forms in the mass spectrum by the separation of the
162 various isotopes of the atoms present in a molecule is used to increase the confidence in the
163 element and molecular formula assignment. Although it is certainly a useful parameter
164 (especially for halogenated molecules and other molecules with distinct isotopic patterns), in
165 many cases when working at trace levels the intensity of the isotopic peaks is so low that it
166 cannot be observed or can deviate substantially from the theoretical pattern. Therefore, a less
167 accurate isotopic fit for low intensity masses should not be used as a strong argument to
168 discard candidates during identification. It is quite frequent phenomenon that the lack of
169 isotopic fit results in false non-detections, impacting drastically automated evaluations.
170 Isotopic patterns can also be used to recognize the presence of certain elements, such that
171 this information can be used without necessarily strictly restricting the identification efforts
172 to a specific molecular formula.

173 In the evaluation of isotopic fit, it is important to consider the importance of the isolation
174 window in data dependent data: If it is above 1 Da, isotopic peaks can appear in the MS/MS,
175 which can be helpful to identify heteroatoms, but may result in unwanted interferences in the
176 spectrum. Wide isolation windows can be beneficial for matrix-free samples such as drinking
177 water. However, a conservative choice of isolation window below 1 Da is preferable for more
178 complex samples such as biological or wastewater samples, which suffer from matrix
179 interferences.

180
181 **4. Number of fragments ions / Presence of qualifier fragment ions:** Compound identification
182 requires the measurement of MS/MS spectra for individually selected precursors [data

dependent acquisition (DDA)] or simultaneously for all precursor ions (data independent acquisition (DIA)). The number of fragments constitutes critical information for the reliability of a given identification. However, not all fragments provide the same level of diagnostic information, as some fragments are very common to many chemicals, while others are very specific to only a certain chemical or class of chemicals. The absence of a qualifier fragment ion for a given chemical (e.g 68.9958 corresponding to $-\text{CF}_3$ for perfluorinated compounds) can be an exclusion criterion. Other more common fragments (such as 77.95736, for $[\text{SO}_3]^-$, 95.960697 for $[\text{HPO}_4]^{+}$ or a low mass CHON fragment) are less informative and should have less influence on the degree of confidence of the identification. An important aspect is that low mass fragments can have high variations in mass accuracy due to being at the lower end of instrument detection ranges. Establishing a cut off for a minimum number of matching fragments can help automation. For example, cases where less than two experimental fragments are detected can be automatically flagged. In this manner a binary variable (TRUE, FALSE) can be obtained. Then, the analyst should be cautious with the identification and manual inspection may be required. Three main aspects must be evaluated: the fragmentation potential (total number of fragments), number of relevant fragments, and presence/absence of those. It is worth considering detected fragments between different chromatographic runs within the same batch. Chemicals detected with high intensity in a chromatogram will often exhibit a clearer fragmentation pattern (including a higher number of fragments and consistent ratios between them) than the same substances detected in lower intensity in other chromatograms within a batch. Fragments that match those present in spectral libraries obtained in an experimental manner (e.g. MassBank [28], MoNA [29], mzCloud [30]) provide more confidence than those predicted *in silico*. It is worth noting that there are many different *in silico* prediction tools such as CSI:FingerID [31], CFM-ID [32], MetFrag [33], MAGMa [34] and other approaches, the performance of which has not been thoroughly analyzed within DSFP.

5. **Presence of MS/MS spectra from DDA:** Different acquisition modes provide different degrees of confidence in fragment ion assignment. DDA data increases the confidence of the assigned fragments since the chances that they are generated from the parent compound are higher. Therefore, those fragments should provide more IPs than those obtained with DIA.
6. **Presence of heteroatoms in fragments (if available) and plausibility of their molecular formulas:** It is important to assess the molecular formula assignment of the fragments, which should agree with the formula of the compound. The presence of heteroatoms in each structure facilitates its identification. The presence of these heteroatoms in the associated fragment ions (many times even with a distinctive isotopic pattern if the isolation window is >1 Da) provides important evidence. Despite the ongoing efforts, HRMS libraries with appropriate molecular formula annotations for fragments have not been widely implemented. While the situation is improving, improving the automatic extractability of such information would greatly facilitate automated interpretation.

227 **2.2 Additional Parameters/Evidence for NTS Identification Confidence:**

228
229 **7. Presence of adduct ions:** The presence of related adduct ions, although not always available,
230 can help increase the certainty of the neutral exact mass calculated from the precursor ion.
231 Therefore, the detection of adducts can help to avoid focusing on neutral masses calculated
232 from the incorrect adduct (e.g., incorrect assumption of $[M+H]^+$ for a $[M+NH_4]^+$ signal) or *in*
233 *source* fragments, both of which are common for example in electrospray ionization. There
234 are many clustering approaches such as nontarget [35] and RAMClustR [36] among others,
235 that can help with automation.

236
237 **8. Fragment ratio at least between quantifier and qualifier ions:**

238 The ratios between the detected MS/MS fragments for a given chemical in LC-HRMS/MS
239 analysis should remain constant (within a given tolerance) for the same/ equivalent collision
240 energy, in an analogous manner the ratio of intensities between transitions used in
241 quantification via selected reaction monitoring mode (SRM). The evaluation of these ratios
242 can significantly increase the degree of confidence of the identifications in ambiguous
243 situations. The variation of the fragmentation ratio under different collision energies can also
244 be informative. Unlike GC-MS libraries, the lack of standardization of the collision energy of
245 the LC-HRMS libraries prevents the automatization of the fragment ratio at this stage.

246
247 **9. Mass of fragments:** Fragment ions with higher mass can provide more specific structural
248 information than lower mass fragments. Fragments with lower masses suffer from more
249 interference, particularly when high collision energies are used. This weighting approach has
250 been applied successfully by the software of NIST. Low mass fragments also tend to represent
251 common substructures present in many structures. While this provides some structural
252 evidence, this can apply to many possible candidates.

253
254 **10. Additional dimensions to the data:** The dimension of the available data can be increased by
255 the addition of separation methods. In this category, one of the most promising developments
256 is ion mobility separation (IMS). IMS separates ionized compounds based on their charge,
257 shape and size, facilitating the removal of co-eluting isomeric/isobaric species [37]. Therefore,
258 it helps to obtain cleaner mass spectra (facilitating data interpretation), while also providing
259 information about the collision cross section of the molecule, thus providing additional
260 evidence. The drift times provided by IMS are expressed as collision cross-section (CCS) values
261 and may further contribute to delineating database hits and confirming structure
262 identification. CCS is a robust measurement suitable for use as an additional parameter in NTS
263 identification, where available. Its importance will increase as the number of instruments with
264 IMS on the market increase and becomes available to the laboratories, along with efforts to
265 include CCS values in open resources [37, 38]. Other efforts to increase the information
266 available for identification include the use of different chromatographies, ionizations and even
267 sample preparation methods but their detailed explanation goes beyond the objective of this
268 study.

269 **3. Automated allocation of identification evidence using machine learning**270 **3.1 Implementation of Parameters**

271 The essential parameters for NTS identification confidence (Section 2.1) were used to build classifiers
 272 able to differentiate between the availability of sufficient or insufficient evidence for confident
 273 identification. To achieve this, the batch screening functionality of NORMAN Digital Sample Freezing
 274 Platform (DSFP) [20] was upgraded to output the following scores:

275

276 1) mass accuracy (mz_{score}),
 277 2) RT index information (RTI_{score}),
 278 3) isotopic fit ($IsoFit_{score}$),
 279 4) number of fragments ions considering both DIA and DDA ($Fragment_{score}$),
 280 5) presence of MS/MS spectra from DDA as a TRUE/FALSE variable (DDA_{score}),
 281 6) fit of molecular formula of fragments ($FitMolForm_{score}$) and
 282 7) spectral similarity ($SpecSimil_{score}$).

283

284 mz_{score} , RTI_{score} and $Fragment_{score}$ compare experimentally measured values (*exp*) with theoretically
 285 calculated (*theor*) or predicted (*pred*) values and are given from the equations presented in **Table 1**.

286

287 **Table 1.** Equations for the calculation of mz_{score} , RTI_{score} and $Fragment_{score}$. The subscript abbreviation
 288 *exp* indicates experimental value, *theor* indicates theoretical value, *pred* indicates predicted value.

Equation	Equation number
$mz_{score} = 1 - \frac{\text{abs}(mz_{exp} - mz_{theor})}{\text{min}(mz_{exp}, mz_{theor})} * \frac{10^6}{\text{tolerated accuracy in ppm}}$	eq. 1
$RTI_{score} = 1 - \frac{\text{abs}(RTI_{exp} - RTI_{pred})}{1000}$	eq. 2
$Fragment_{score} = \frac{\text{number_of_uniques}(\text{matched fragment ions in DIA} \cup \text{matched fragments in DDA})}{\text{total number of fragments in the library}}$	eq. 3

289

290 The $IsoFit_{score}$ and $FitMolForm_{score}$ were defined based on MOLGEN-MS/MS [39, 40]. DDA_{score} is a binary
 291 variable indicating whether data-dependent HRMS/MS scan is available. $SpecSimil_{score}$ was calculated
 292 based on OrgMassSpecR package [41]. Where experimental HRMS/MS is not available, $SpecSimil_{score}$
 293 =0. If an experimental mass spectrum is not available (e.g., because there is no record in MassBank),
 294 the match with the CFM-ID (v. 4.0) *in-silico* predicted mass spectrum is considered [32]. All scores
 295 range from 0 to 1.

296 **3.2 Experimental / Measurement data**

297 Measurements from four organizations (the National and Kapodistrian University of Athens (UoA), the
 298 French National Institute for Industrial Environment and Risks (INERIS), the Institute of Environmental
 299 Assessment and Water Research (IDAEA-CSIC)) and the Swiss Federal Institute of Aquatic Science

300 Technology (Eawag) were used to generate the dataset used here. The organization performed
301 analysis using the following HRMS instruments: the quadrupole time of flight (Q-TOF) mass analyser
302 maXis Impact by Bruker, the 6550 iFunnel Q-TOF by Agilent Technologies, the Q-Exactive™ Orbitrap
303 and Q-Exactive™ Plus Orbitrap by Thermo Fischer Scientific, respectively.

304 The dataset of UoA included 18 mixtures of substances, containing in total 383 individual reference
305 standards at final concentration 50 ng mL⁻¹. The mixtures were organized based on the chemical class
306 of the substances (e.g., separate mixtures of pesticides, pharmaceuticals, industrial chemicals etc.).
307 These mixtures were injected on an Acclaim™ RSLC C18 column (2.1x100 mm, 2.2 µm; Thermo Fischer
308 Scientific) coupled to a LC-ESI-QTOF from Bruker using DIA and DDA (5-most abundant precursors per
309 scan) according to instrumental settings presented in detail elsewhere [17].

310 The dataset of INERIS included in total 91 pesticides, which were prepared at concentrations of 1, 10
311 and 50 ng mL⁻¹. The reference standards were organized in four different mixtures. The mixtures were
312 separated by a ZORBAX® SB-Aq (1.8 µm, 2.1x150 mm; Agilent Technologies) column and were
313 detected by an Agilent 6550 iFunnel QTOF. The samples were analysed using DIA acquisition according
314 to instrumental settings presented in detail elsewhere [42].

315 The dataset of IDAEA-CSIC contained 21 pesticides in one mix, 83 compounds of various classes in
316 another mix and 129 compounds of various classes in another mix (all at concentration 50 ng mL⁻¹).
317 The samples were separated using a Cortecs C18 column (2.1x100 mm, 2.7 µm; Waters), preceded by
318 a guard column of the same packaging material and were detected using a Q-Exactive™ Orbitrap mass
319 analyser (Thermo Fisher Scientific). Instrumental details can be found in the respective publications
320 [43, 44].

321 The dataset of Eawag was created using groundwater samples spiked with in total 519 compounds at
322 two concentration levels (10 and 100 ng L⁻¹). Separation was achieved on an Atlantis® T3 column (3
323 µm, 3.0 x 150 mm; Waters) and the detection on a Q-Exactive™ Plus Orbitrap mass analyser (Thermo
324 Fisher Scientific) with electrospray ionization. The samples were analysed using DDA acquisition
325 according to instrumental setup described elsewhere [45].

326 Detailed information on the instrumental setups and acquisitions can be found in **Table S1**.

327 **3.3 Establishment of the Machine Learning Model**

328 **3.3.1 Dataset generation**

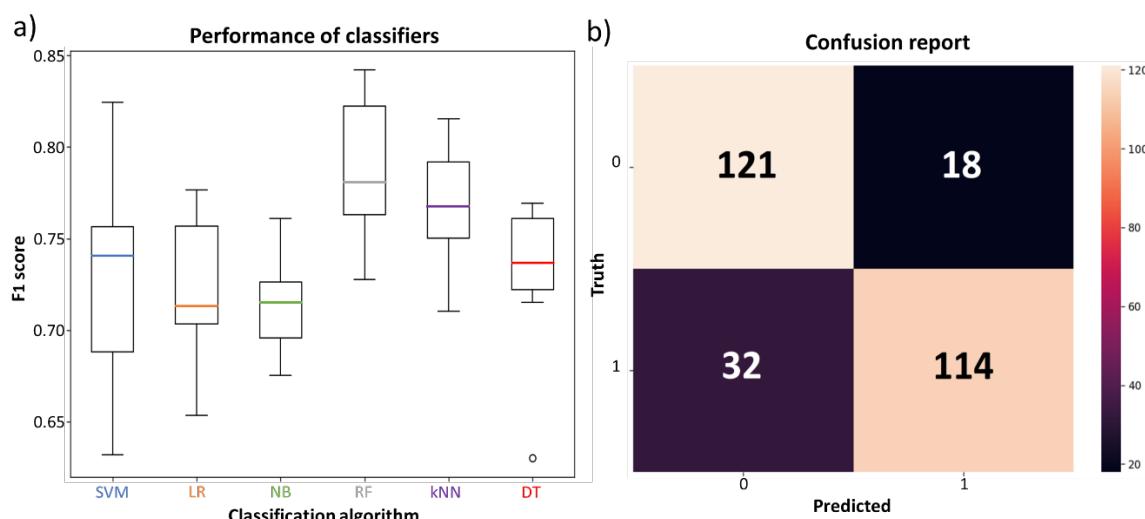
329 The data of all participants was uploaded to the NORMAN DSFP using the established contribution
330 procedure and was screened using the batch-mode utility [20]. The NTS workflow has been validated
331 and explained in detail elsewhere [20]. Briefly, the workflow uses the centWave algorithm for peak
332 picking [46] with previously optimized ppm and peakwidth parameters through the IPO R-package
333 [47]. Optimized peak-picking parameters can be found in **Table S2**. The peak picking workflow
334 searches for consecutive masses within a mass error threshold forming peak shape in
335 chromatographic dimension. The next step is componentization, which is a procedure for grouping
336 peaks coming from the same compound (e.g., adducts, isotopic peaks). Componentization is
337 accomplished with the nontarget R package [35].

338 The aim of the screening was to generate a dataset with examples of successful and unsuccessful
339 identifications. Here, unsuccessful identifications originate from the pick-up of signals in samples with
340 acceptable mass accuracy and plausible retention time index. The generated dataset included in total
341 1424 instances (rows) after the exclusion of substances (< 1%) that were not detected in the
342 chromatographic data due to analytical reasons (either low concentration or insufficient sensitivity).
343 The detected substances were accompanied with the individual scores from categories 1 to 7
344 (described previously in section 3.1). The generated dataset is provided in the **supplementary excel**
345 **file**. The column “Spiked” is the label (response variable) and indicates whether a compound was
346 spiked in the samples or not.

347 **3.3.2 Machine learning**

348 This dataset was used to create the following classifiers: decision tree (DT), support vector machine
349 (SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF), k-nearest neighbors
350 (kNN). More complex ensemble methods (e.g., XGBoost) were not used for modeling. Modeling was
351 performed using the scikit-learn python package [48]. The script and calculations are available at
352 <https://github.com/nalygizakis/IPscore>.

353 The performance of the classifiers was tested using 10-fold cross validation and default parameters
354 [48]. RF outperformed the other classification models for this specific modeling task (**Figure 1a**). Given
355 that the training and evaluation sets were unbalanced (not equal instances per class), the overall
356 macro-averaged F1 score was used as the evaluation metric of the accuracy. The macro-averaged F1
357 score is calculated by taking the arithmetic mean of all the per-class F1 scores. The F1-score combines
358 the precision and recall of a classifier into a single metric by taking their harmonic mean. Satisfactory
359 accuracy was achieved for kNN and SVM, whereas similar but lower F1 score was observed for DT, LR
360 and NB.



361
362 **Figure 1a.** Performance of various classification models using 10-fold cross-validation. Abbreviations:
363 support vector machine (SVM), logistic regression (LR), gaussian Naive Bayes (NB), random forest (RF),
364 k-nearest neighbors (kNN), and decision tree classifier (DT). **1b.** Confusion report for the optimized
365 random forest model in the training set. The model yielded accuracy 79.2%. In total, 235 instances
366 were classified correctly (121+114) and 50 instances were classified incorrectly.

367 RF was selected for further optimization of the hyperparameters, as it showed the best performance.
368 The following parameter grid was investigated:

369 • Number of estimators: 40 values from linear space 10 to 1000
370 • Maximum depth: 40 values from linear space 2 to 50
371 • Minimum samples split: 20 values from linear space 1 to 50
372 • Minimum samples leaf: 20 values from linear space 1 to 50
373 • Bootstrap: parameters: 'True' and 'False'
374 • Maximum features: parameters: 'auto', 'log2', 'sqrt'

375 After a 1-hour, six-core experiment on an Intel® Core i9-10885H CPU, the optimized parameters were:
376 873 for number of estimators, 50 for maximum depth, 3 for minimum samples split, 3 for minimum
377 samples leaf, 'True' for bootstrap and 'log2' for maximum features. The optimized RF model after
378 hyperparameter tuning provided accuracy of 79.2% in the test set (**Figure 1b**). In total, 235
379 instances/compounds were classified correctly (121+114) and 50 instances/compounds were
380 classified incorrectly.

381 **3.3.3 Importance of parameters**

382 The parameter importance ranking of the optimized RF model is presented in **Table 2**. As shown in
383 Table 2, $\text{Fragment}_{\text{score}}$ proved to be the most decisive parameter for the discrimination of the
384 identifications. It is important to note that $\text{Fragment}_{\text{score}}$ considers the number of unique fragments
385 detected in both DDA and DIA (where both are available). One reason mass accuracy was not ranked
386 high was that it is also used indirectly in the parameter $\text{Fragment}_{\text{score}}$. Moreover, the way that negative
387 hits were defined diminishes the possible importance of mz_{score} and to a lesser extent $\text{RTI}_{\text{score}}$. mz_{score}
388 proved less important because exact masses are not unique parameters and the negative hits used in
389 the study are per definition within the defined mass tolerance. Since the fragments capture additional
390 complementary information, they ended up with higher relevance and this made mz_{score} alone less
391 relevant. Finally, $\text{DDA}_{\text{score}}$ proved to be highly correlated with FitMolFormscore ($r=0.75$) thus it was
392 excluded from the evaluation.

393
394 Results from the machine learning approach showed that the number and the quality of the fragments
395 are the important parameters for a reliable identification. Isotopic fit also proved to play an important
396 role. RTI, mass accuracy and spectral similarity scores were ranked lower, but provided additional
397 meaningful information for the classifier. Based on the outcomes of the implemented approach and
398 the insights gained by the exercise, the next section details a simplified IP-based system for the
399 communication of identification confidence.

400

401
402 **Table 2.** Parameter importance of the optimized RF model. The scores $\text{Fragment}_{\text{score}}$, $\text{FitMolForm}_{\text{score}}$
403 and $\text{SpecSimil}_{\text{score}}$ transfer the spectral information (purple background). $\text{IsoFit}_{\text{score}}$, $\text{RTI}_{\text{score}}$, and mz_{score}
404 were colored with green, yellow and orange background, respectively. These colors were applied to
405 all graphical elements.

Score	Importance of parameters
$\text{Fragment}_{\text{score}}$	0.225
$\text{IsoFit}_{\text{score}}$	0.209
$\text{FitMolForm}_{\text{score}}$	0.173
$\text{RTI}_{\text{score}}$	0.162
mz_{score}	0.141
$\text{SpecSimil}_{\text{score}}$	0.090

406
407 The IP Score system proved helpful. However, it is difficult to be implemented for every laboratory,
408 since it is unreasonable to expect all laboratories to establish their own machine learning-based
409 system. Furthermore, in order to bring non-target screening at regulatory level, there is a clear need
410 for the generation of a harmonized identification scoring. This identification scoring system must allow
411 communication of the identification confidence in an automated, concise and unambiguous manner
412 that reflects all the available evidence. Reproducibility and transparency in confidence communication
413 will open up possibilities to develop novel prioritization schemes for the management of chemicals.
414 Therefore, the machine learning approach was used as the basis for the proposal of the IP system
415 described in section 4. The IP system is based on a combination of the results gained within this
416 exercise, intuition and common knowledge, which may be difficult to implement with machine
417 learning.
418

419 **4. Proposed Identification Points (IP) system in target & non-target HRMS analysis**

420 In this section, an IP system is proposed to help in the harmonization of HRMS-based identifications
421 for target and non-target screening. This system aims at being simple and easy to use, with only
422 objective criteria as outlined above. The maximum score of an identification can reach 1.00 for target
423 screening and 0.75 for suspect and non-target screening. The purchase of reference standard for the
424 confirmation of the identification (i.e. target analysis) is mandatory to achieve the highest IP score of
425 1.00. The fact that the system scales from 0 to 1 is important to communicate the identification
426 confidence to non-experts. It can transfer the information immediately to non-experts and can help
427 implement and embed non-target screening into future regulatory frameworks in an easily
428 interpretable manner.

429
430 Accuracy below 2 mDa / 5 ppm for the precursor ion was regarded as mandatory. Only for target
431 screening, a retention time match with a reference standard (± 0.2 min in target screening) the IP is
432 increased by 0.40 points. The ± 0.2 min decision was based on the decision of European Commission
433 2002/657/EC [49] and the fact that robustness of the LC systems has greatly improved during the last
434 decades. For non-target screening where retention time match is not available, retention time index
435 (RTI) is used. In case of RTI match (typically $\pm 20\%$ in suspect/non-target screening) the IP is increased
436 by 0.15 points (decision based on **Table 2**). The tolerance on RTI depends on the structure of the
437 suspected molecule, the QSRR model and the RTI system that is used. The number of IPs can increase

438 by 0.20, in case of excellent isotopic pattern fits match (decision based on **Table 2**). Fragmentation
 439 information can increase the IP by a total of 0.40 (experimental spectra available) and by a total of 0.20
 440 (*in-silico* spectra available). This decision was based on Fragment_{score}, SpecSimil_{score} and partially on
 441 FitMolForm_{score} (**Table 2**), because FitMolForm_{score} does not explicitly correspond to fragmentation.
 442 *In-silico* fragmentation score is not considered in cases where meaningful experimental fragmentation
 443 is available. The 0.40 points due to fragmentation match with experimental spectra are split: 0.20
 444 points in case of match of the most abundant fragment and 0.20 with the remaining fragments. A
 445 penalty of -0.10 points is applied in case of a compound with poor fragmentation (≤ 2 fragments).
 446 Finally, a penalty of -0.10 points is applied in case there is no recorded data-dependent scan with clear
 447 isolation and fragmentation of the precursor ion. This penalty relates to the fact that DIA suffers from
 448 matrix interferences. Introduction of additional separation dimensions (e.g. ion mobility) or other
 449 advanced acquisition types (e.g. SWATH MS) can make DIA acquisition more efficient and this penalty
 450 could thus be eliminated. However, this aspect has not been thoroughly investigated yet.

451

452 **Table 3.** Proposed Identification Point (IP) system in target and non-target HRMS analysis

Requirements	Identification Points (IP) earned
Precursor ion (Accuracy < 2 mDa / 5 ppm, R>15000)	mandatory
Retention time ± 0.2 min (only applicable in target)	0.40
Predicted Retention time index (only applicable in suspect where retention time match is not available, validated approach with provided uncertainty)	0.15
Isotopic fit (at least one isotope: abundance and accuracy of M+1, M+2,...)	0.20
Most intense experimental fragment ion	0.20
All other experimental fragment ions Number of experimental fragments normalized to the total number of fragments in the library	0.20
The “All other experimental fragment ions” score is penalized if the number of other experimental fragments present in the database is 2 or less	-0.10
<i>In silico</i> predicted fragment ions in case experimental fragments are not available Number of experimental fragments normalized to the total number of fragments in the library max number of fragments in library=10 most intense	0.20
Only DIA	-0.10

453

454 Overall, to avoid subjective evaluations, the use of software to calculate the isotopic fit is advised. The
 455 use of a single software (either vendor or open source) for a given case-study is highly encouraged.
 456 The reason for this recommendation is that there are various methodologies to calculate isotopic fit
 457 (e.g., dot product and overlap percentage). In this way, unbiased identification evaluations can be

458 achieved in a flexible manner. The IP value can be increased by the determination of previously known
459 fragment ions with accurate mass at the same RT (i.e., target screening). For in house method
460 comparison, the same system and instrumental conditions applying proper quality controls to ensure
461 RT accuracy and MS/MS spectra consistency should be used. An attempt to associate the IP system
462 (**Table 3**) with the widely used identification levels [**10**] is presented in **Table 4**. Level 1 (confirmed
463 identification) requires IP score higher than 0.75. Identifications of level 2 (probable structure) require
464 IP score from 0.60 to 0.75, whereas level 3 (tentative identification) requires score higher than or
465 equal to 0.50 and less or equal to 0.60. To claim a Level 4 (unequivocal molecular formula)
466 identification, the score should be below 0.5 and higher or equal to 0.2. All identifications that receive
467 below 0.20 IP can be presented as level 5 (exact mass) identifications.

468

469

470 **Table 4.** Connection of the identification levels [**10**] with the IP score proposed in this study.

Identification level	IP Score
1	>0.75-1.00
2	>0.60-0.75
3	0.50-0.60
4	>0.20-<0.50
5	0.00-0.20

471 **4.1 Application of IP score in target screening**

472 The first example (**Figure 2a**) shows an ideal target identification: the analysis of oxazepam in surface
473 water. In this case, a good peak for the precursor ion (*m/z*: 287.0582) was determined at the exact RT,
474 along with a good isotopic profile (very clear with the presence of one Cl atom) and qualifier fragments
475 at the same RT, reaching 1.0 IP, which translates to level 1 (**Table 4**).

476 Since target analysis does not always lead to such clear IP identification, the second example (**Figure**
477 **2b**) shows the target identification of tramadol in the wastewater from the national French campaign
478 [**50**]. In this case, the precursor ion (*m/z*: 264.1958) was determined with an acceptable RT (\pm 0.2 min)
479 and isotopic fit, reaching 0.60 IP. Only one qualifier ion (the most intense) could be determined, adding
480 0.20 IP to finally reach a score of 0.80 IP. The score is penalized by 0.10 because the acquisition has
481 been performed in DIA, reaching to 0.70 IP, corresponding to a level 2 ranking. It would have qualified
482 as level 1 (score >0.75) if DDA acquisition had been performed.

483 A third example given in **Figure 2c** shows the determination of perfluorohexanesulfonic acid (PFHxS),
484 which received just 0.60 IP, due to the lack of fragmentation of PFHxS. The lowest IP for target
485 compounds was set to 0.60 IP (**Table 4**). The lower IP shows clearly that the identification has a lower
486 confidence despite the matching reference standard. This information is often not provided for target
487 analysis. This example does not qualify for level 1, but instead is given a Level 3.

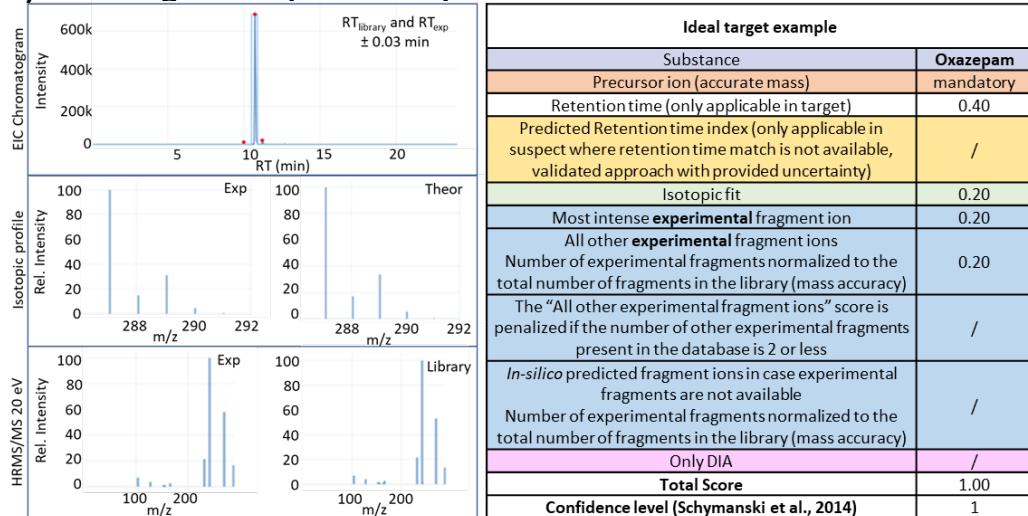
488 Several other examples of the application of the IP system are provided for both target and
489 suspect/non-target screening in the following sections and in the SI (**Table S3** for target screening and
490 **Table S4** for non-target screening). **Table S3** provides 11 additional target screening examples. More
491 specifically, it provides 1) an example with maximum possible score, 2) an ideal target screening
492 example, 3) an acceptable target example, 4) a target example with isotopic fit but without fragments,

493 5) an ideal target example in DIA, 6) another target example in DIA, 7) a poor target example in DIA,
494 8) a target example without isotopic fit and fragments, 9) a target example with no isotopic fit, 10) a
495 target example with no isotopic fit and no other experimental fragments, and 11) a target example
496 without retention time but isotopic fit and fragments. The examples of **Table S3** match the IP to the
497 well-established identification levels **[10]**.

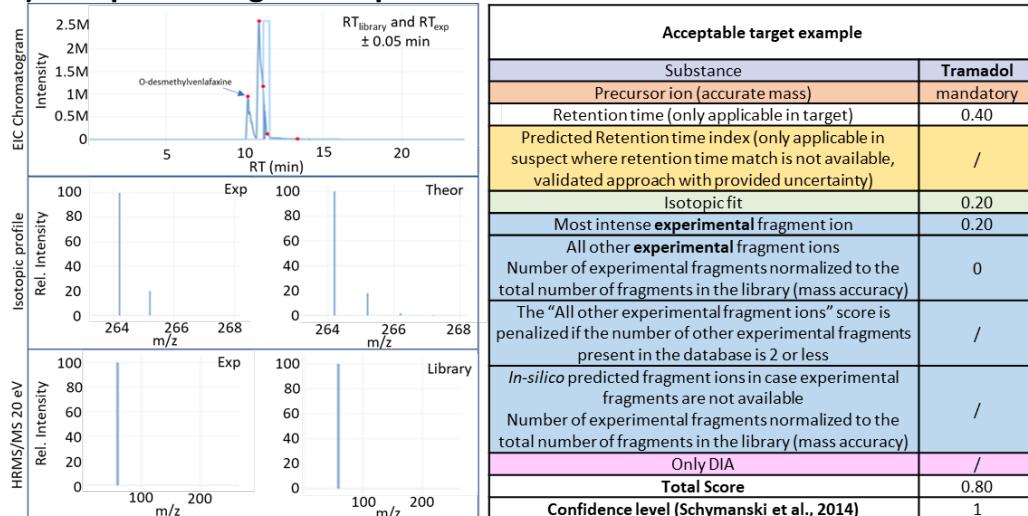
498

499

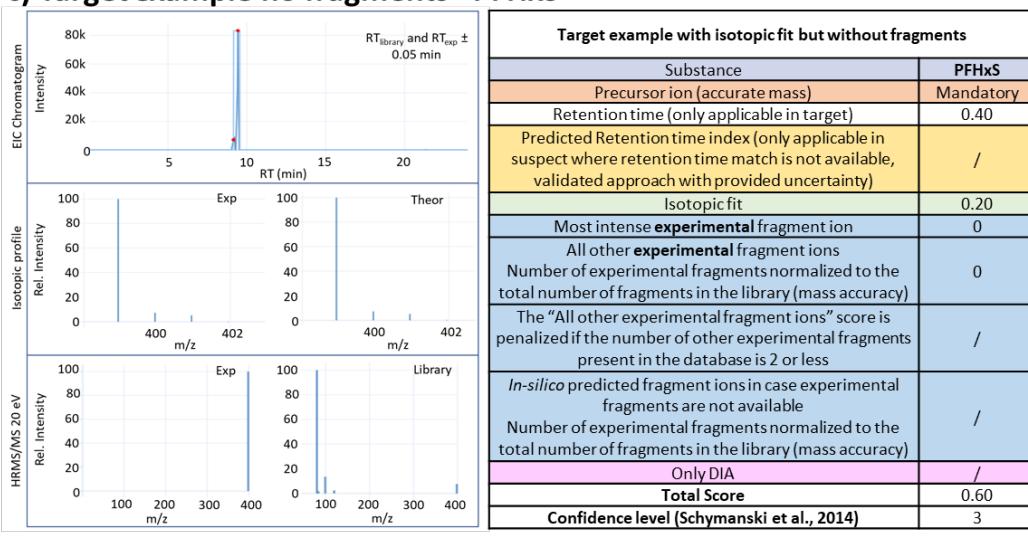
a) Ideal target example - Oxazepam



b) Acceptable target example - Tramadol



c) Target example no fragments - PFHxS



500

501 **Figure 2.** Target examples for IP identification: a) Oxazepam (DDA acquisition of surface water
 502 sample); b) tramadol (DIA acquisition of effluent wastewater - the compound is frequently confused
 503 with O-desmethyl-venlafaxine, which is the first peak shown in the chromatogram), c) PFHxS example
 504 with 0.60 IP evidence.

505 **4.2 Application of IP score in suspect screening**

506 In suspect screening, identifications are more challenging given the lack of reference standards. Thus,
507 the maximum score in a suspect identification is 0.55 IP for *in silico* predicted fragments and 0.75 for
508 experimental fragments. The identification of the accurate mass of the parent ion with a plausible RT
509 via a predicted RTI provides 0.15 IP. Isotopic fit can provide an additional 0.20 IP. While the presence
510 of heteroatoms may provide additional meaning to isotopic fit, this is not reflected in the IPs to avoid
511 additional complexity in the scheme. The presence of all fragments included in a good quality library
512 can lead to a maximum of 0.40 IP. However, penalties in the score are applied if (i) only DIA data is
513 available (-0.10), and (ii) the database for other experimental fragments (apart the most intense ion)
514 includes two or less fragments (-0.10 IP).

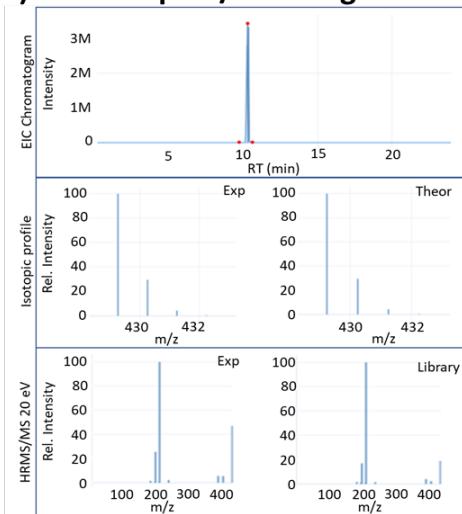
515 **Figure 3a** shows an example of the suspect identification of irbesartan. In this case, an intense and
516 well-shaped peak was detected for the precursor ion (*m/z*: 429.2397) at a plausible RT according to
517 the RT prediction model and excellent isotopic fit, obtaining 0.35 IP. The seven fragments included in
518 the library were detected in the experimental spectra, providing additional 0.40 IP up to a total score
519 of 0.75 IP, leading to a level 2 identification.

520 A second example of suspect screening with a slightly lower score is given in **Figure 3b**, showing the
521 identification of triethyl phosphate (TEP). A score of 0.18 IP (out of 0.20 IP) was assigned for the
522 isotopic fit, while the RTI within acceptable range (0.15 IP). To avoid subjective evaluations, the vendor
523 software (Agilent MassHunter® Workstation Software) was used to calculate the isotopic fit, which
524 was found to be 0.18 IP. In this case the three fragments present in the library were also detected
525 (0.40 IP). However, given that a penalty is applied since only 2 other experimental fragments (apart
526 the most intense one) were present, the identification ended up with a score of 0.63 IP, corresponding
527 to level 2.

528 In the final example, less confidence was achieved in the case of nordiazepam (**Figure 3c**). The
529 precursor ion was found at a plausible RT and good isotopic fit, indicating the presence of
530 heteroatoms. The most intense fragment was detected (+0.20). Moreover, 5 of the 10 other fragments
531 present in the library were detected, providing +0.10 IP, but since only DIA data was available (-0.10
532 IP), this led to a total score of 0.55 IP and a level 3 identification.

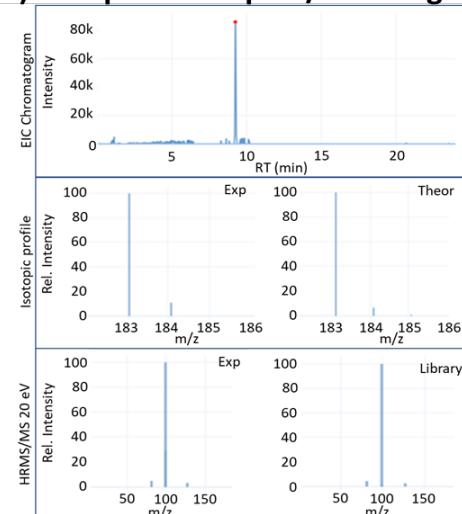
533 **Table S4** provides 13 additional suspect/non-target examples. More specifically, it provides 1) an
534 example with the maximum possible score, 2) an ideal non-target example, 3) an acceptable non-
535 target example in DIA, 4) an example with partial fragment match in DIA, 5) an example with partial
536 fragment match in DDA, 6) an example with partial isotopic fit, 7) an example with partial isotopic fit
537 and partial fragment match, 8) an example without fragments, 9) an example without isotopic fit, 10)
538 an example with only predicted RTI match, 11) an example without predicted retention index but ideal
539 match for other scores, 12) an ideal example with match for the most intense fragment only, and 13)
540 an ideal example with match for predicted fragments. The examples of **Table S4** match the IP to the
541 well-established identification levels **[10]**.

a) Ideal suspect/non-target example - Irbesartan



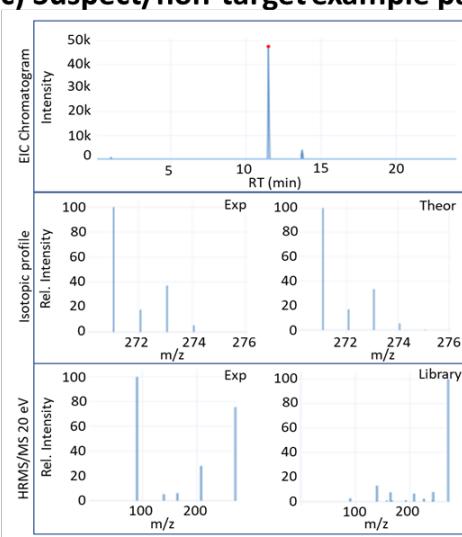
Ideal non-target example	
Substance	Irbesartan
Precursor ion (accurate mass)	mandatory
Retention time (only applicable in target)	/
Predicted Retention time index (only applicable in suspect where retention time match is not available, validated approach with provided uncertainty)	0.15
Isotopic fit	0.20
Most intense experimental fragment ion	0.20
All other experimental fragment ions	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	0.20
The "All other experimental fragment ions" score is penalized if the number of other experimental fragments present in the database is 2 or less	/
In-silico predicted fragment ions in case experimental fragments are not available	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	/
Only DIA	/
Total Score	0.75
Confidence level (Schymanski et al., 2014)	2

b) Acceptable suspect/non-target example - Triethyl phosphate (TEP)



Acceptable non-target example	
Substance	TEP
Precursor ion (accurate mass)	Mandatory
Retention time (only applicable in target)	/
Predicted Retention time index (only applicable in suspect where retention time match is not available, validated approach with provided uncertainty)	0.15
Isotopic fit	0.18
Most intense experimental fragment ion	0.20
All other experimental fragment ions	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	0.20
The "All other experimental fragment ions" score is penalized if the number of other experimental fragments present in the database is 2 or less	-0.10
In-silico predicted fragment ions in case experimental fragments are not available	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	/
Only DIA	/
Total Score	0.63
Confidence level (Schymanski et al., 2014)	2

c) Suspect/non-target example partial fragment match - Nordiazepam



Non-target example with partial fragment match - DIA	
Substance	Nordiazepam
Precursor ion (accurate mass)	Mandatory
Retention time (only applicable in target)	/
Predicted Retention time index (only applicable in suspect where retention time match is not available, validated approach with provided uncertainty)	0.15
Isotopic fit	0.20
Most intense experimental fragment ion	0.20
All other experimental fragment ions	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	0.10
The "All other experimental fragment ions" score is penalized if the number of other experimental fragments present in the database is 2 or less	/
In-silico predicted fragment ions in case experimental fragments are not available	
Number of experimental fragments normalized to the total number of fragments in the library (mass accuracy)	/
Only DIA	-0.10
Total Score	0.55
Confidence level (Schymanski et al., 2014)	3

546 **4.3 Consideration of analysis of samples batch**

547 In the case where several samples are analyzed by batch, the same substances can be determined in
548 different samples at various levels/scores, depending notably on the intensities obtained. For
549 instance, a substance analyzed via target screening and present at a high intensity in a sample of this
550 batch would provide a maximum score of 1.0, corresponding to a level 1 identification. The same
551 substance with a lower intensity in a different sample could potentially end up with a reduced score
552 for isotopic fit and fragmentation score (score down to 0.60 for example leading to a level 3 rank). If
553 there is sufficient evidence to indicate that it is indeed the same substance (notably by similar
554 experimental retention times), then the latter case can be elevated to the level of the best scoring
555 within the batch, here at level 1 instead of level 3. Overall, contemporary LC systems have robust
556 retention time that should not shift more than 2.5% [49]. This means that for a chromatographic run
557 of 1200 seconds (20 minutes), the maximum acceptable RT shift is 30 seconds. This consideration can
558 be implemented with the requirement that the samples have been analyzed within the same batch
559 and that LC system operates as expected. Given these restrictions, this operation can be automated.

560

561 **5. Perspective: Towards a harmonized identification scoring system for NTS**

562 Machine learning approaches can help in creating reproducible decisions on the evidence surrounding
563 the confidence of identification. A higher degree of automation and the reduction of manual decisions
564 will improve the reproducibility of NTS identification efforts and empower high throughput screening
565 efforts. In this regard, the use of advanced models aimed to mimic/reproduce expert decisions will
566 reduce the time need for a human to validate identification results, as the evidence can be presented
567 clearly for quick confirmation. To ensure trust in machine driven data treatment, robust validation
568 processes coupled with specific QA/QC procedures should be developed on large sample datasets to
569 ensure the validity of the results. Based on the experience gained in this study, conducted with the
570 results obtained by four laboratories with wide expertise in NTA, a scoring system is proposed that
571 provides a simplified and harmonized approach for presenting the evidence associated with an
572 identification. It aims at improving reproducibility and facilitating the communication of the evidence
573 associated with identification based on objective criteria.

574 The design of the scoring system is based on current data extraction capabilities, both in terms of
575 algorithmic and instrumentation limits. The proposal described in the present paper can serve as a
576 basis that can and should be further improved and adapted to new technological and conceptual
577 opportunities. A representative example can be found in the use of CCS values (both experimental and
578 predicted), which have proven effective in confirming structure identification [37]. The use of CCS
579 could be introduced into the scheme presented here once its use becomes more widespread in the
580 majority of NTS laboratories, and thus when sufficient data is available for implementing the approach
581 as described here.

582 A wide use of the scoring system by different users following their specific approaches with large data
583 sets will help define the important pieces of evidence more precisely and improve the prediction
584 accuracy. The system described and assessed here on a wide range of selected cases will be
585 implemented in the NORMAN DSFP. This will enable a large-scale community validation and will help

586 determine whether the proposed system is ready to become a basis to support identification
587 confidence communication in a reproducible and transparent manner.

588 **Funding**

589 PGF acknowledges his Ramon y Cajal fellowship (RYC2019-027913-I) from the AEI-MICI. ELS is
590 supported by the Luxembourg National Research Fund (FNR) for project A18/BM/12341006.

591 **Contributions**

- 592 • **Nikiforos Alygizakis:** Writing original draft preparation, formal analysis, machine-learning,
593 software development, review and editing
- 594 • **Francois Lestremau:** Writing original draft preparation, formal analysis, data contributor,
595 method validation, review and editing
- 596 • **Pablo Gago-Ferrero:** Writing original draft preparation, formal analysis, data contributor,
597 method validation, review and editing
- 598 • **Rubén Gil-Solsona:** Data contributor, Review and editing
- 599 • **Katarzyna Arturi:** Evaluation of machine-learning approaches, Review and editing
- 600 • **Juliane Hollender:** Data contributor, Review and editing
- 601 • **Emma L. Schymanski:** Formal analysis, Review and editing
- 602 • **Valeria Dulio:** Investigation, Review and editing
- 603 • **Jaroslav Slobodnik:** Investigation, Review and editing
- 604 • **Nikolaos S. Thomaïdis:** Investigation, Review and editing

605 **References**

606

607 [1] J. Hollender, B. van Bavel, V. Dulio, E. Farmen, K. Furtmann, J. Koschorreck, U. Kunkel, M.
608 Krauss, J. Munthe, M. Schlabach, J. Slobodnik, G. Stroomberg, T. Ternes, N.S. Thomaïdis, A. Togola, V.
609 Tornero, Environmental Sciences Europe 31 (2019) DOI: 10.1021/acs.est.7b02184.

610 [2] Z. Wang, G.W. Walker, D.C.G. Muir, K. Nagatani-Yoshida, Environmental Science & Technology
611 54 (2020) 2575 DOI: 10.1021/acs.est.9b06379.

612 [3] S. Finckh, L.-M. Beckers, W. Busch, E. Carmona, V. Dulio, L. Kramer, M. Krauss, L. Posthuma, T.
613 Schulze, J. Slootweg, P.C. Von der Ohe, W. Brack, Environment International 164 (2022) 107234 DOI:
614 10.1016/j.envint.2022.107234.

615 [4] S. Petromelidou, D. Margaritis, C. Nannou, C. Keramidas, D.A. Lambropoulou, Science of The
616 Total Environment 848 (2022) 157696 DOI: 10.1016/j.scitotenv.2022.157696.

617 [5] W. Yang, Y. Tang, L. Jiang, P. Luo, Y. Wu, Y. Cao, X. Wu, J. Xiong, Science of The Total
618 Environment 809 (2022) 151117 DOI: 10.1016/j.scitotenv.2021.151117.

619 [6] Y. Han, L.-X. Hu, T. Liu, J. Liu, Y.-Q. Wang, J.-H. Zhao, Y.-S. Liu, J.-L. Zhao, G.-G. Ying, Science of
620 The Total Environment 837 (2022) 155705 DOI: 10.1016/j.scitotenv.2022.155705.

621 [7] F. Menger, P. Gago-Ferrero, K. Wiberg, L. Ahrens, Trends in Environmental Analytical
622 Chemistry 28 (2020) e00102 DOI: 10.1016/j.teac.2020.e00102.

623 [8] W.-L. Chen, S.-C. Lin, C.-H. Huang, S.-Y. Peng, Y.S. Ling, Science of The Total Environment 750
624 (2021) 141519 DOI: 10.1016/j.scitotenv.2020.141519.

625 [9] F. Freeling, N.A. Alygizakis, P.C. von der Ohe, J. Slobodnik, P. Oswald, R. Aalizadeh, L. Cirka,
626 N.S. Thomaïdis, M. Scheurer, Science of The Total Environment 681 (2019) 475 DOI:
627 10.1016/j.scitotenv.2019.04.445.

628 [10] E.L. Schymanski, J. Jeon, R. Gulde, K. Fenner, M. Ruff, H.P. Singer, J. Hollender, Environmental
629 Science and Technology 48 (2014) 2097 DOI: 10.1021/es5002105.

630 [11] J.A. Charbonnet, C.A. McDonough, F. Xiao, T. Schwichtenberg, D. Cao, S. Kaserzon, K.V.
631 Thomas, P. Dewapriya, B.J. Place, E.L. Schymanski, J.A. Field, D.E. Helbling, C.P. Higgins, Environmental
632 Science & Technology Letters 9 (2022) 473 DOI: 10.1021/acs.estlett.2c00206.

633 [12] M. Pourchet, L. Debrauwer, J. Klanova, E.J. Price, A. Covaci, N. Caballero-Casero, H. Oberacher,
634 M. Lamoree, A. Damont, F. Fenaille, J. Vlaanderen, J. Meijer, M. Krauss, D. Sarigiannis, R. Barouki, B.
635 Le Bizec, J.P. Antignac, Environment International 139 (2020) 105545 DOI:
636 10.1016/j.envint.2020.105545.

637 [13] B. González-Gaya, N. Lopez-Herguedas, A. Santamaria, F. Mijangos, N. Etxebarria, M. Olivares,
638 A. Prieto, O. Zuloaga, Chemosphere 274 (2021) 129964 DOI: 10.1016/j.chemosphere.2021.129964.

639 [14] P. Gago-Ferrero, A. Krettek, S. Fischer, K. Wiberg, L. Ahrens, Environmental Science and
640 Technology 52 (2018) 6881 DOI: 10.1021/acs.est.7b06598.

641 [15] S. Samanipour, J.A. Baz-Lomba, N.A. Alygizakis, M.J. Reid, N.S. Thomaidis, K.V. Thomas, Journal
642 of Chromatography A 1501 (2017) 68 DOI: 10.1016/j.chroma.2017.04.040.

643 [16] E.L. Schymanski, H.P. Singer, J. Slobodnik, I.M. Ipolyi, P. Oswald, M. Krauss, T. Schulze, P.
644 Haglund, T. Letzel, S. Grosse, N.S. Thomaidis, A. Bletsou, C. Zwiener, M. Ibanez, T. Portoles, R. de Boer,
645 M.J. Reid, M. Onghena, U. Kunkel, W. Schulz, A. Guillou, N. Noyon, G. Leroy, P. Bados, S. Bogialli, D.
646 Stipanicev, P. Rostkowski, J. Hollender, Analytical Bioanalytical Chemistry 407 (2015) 6237 DOI:
647 10.1007/s00216-015-8681-7.

648 [17] P. Gago-Ferrero, A.A. Bletsou, D.E. Damalas, R. Aalizadeh, N.A. Alygizakis, H.P. Singer, J.
649 Hollender, N.S. Thomaidis, Journal of Hazardous Materials 387 (2020) 121712 DOI:
650 10.1016/j.jhazmat.2019.121712.

651 [18] ISO Standard 21253, Water quality - Multi-compound class methods Criteria for the
652 identification of target compounds by gas and liquid chromatography and mass spectrometry (2019).

653 [19] R. Helmus, T.L. ter Laak, A.P. van Wezel, P. de Voogt, E.L. Schymanski, Journal of
654 Cheminformatics 13 (2021) 1 DOI: 10.1186/s13321-020-00477-w.

655 [20] N.A. Alygizakis, P. Oswald, N.S. Thomaidis, E.L. Schymanski, R. Aalizadeh, T. Schulze, M.
656 Oswaldova, J. Slobodnik, TrAC Trends in Analytical Chemistry 115 (2019) 129 DOI:
657 10.1016/j.trac.2019.04.008.

658 [21] N. Caballero-Casero, L. Belova, P. Vervliet, J.-P. Antignac, A. Castaño, L. Debrauwer, M.E.
659 López, C. Huber, J. Klanova, M. Krauss, A. Lommen, H.G.J. Mol, H. Oberacher, O. Pardo, E.J. Price, V.
660 Reinstadler, C.M. Vitale, A.L.N. van Nuijs, A. Covaci, TrAC Trends in Analytical Chemistry 136 (2021)
661 116201 DOI: 10.1016/j.trac.2021.116201.

662 [22] P. Rostkowski, P. Haglund, R. Aalizadeh, N. Alygizakis, N. Thomaidis, J.B. Arandes, P.B. Nizzetto,
663 P. Booij, H. Budzinski, P. Brunswick, A. Covaci, C. Gallampois, S. Grosse, R. Hindle, I. Ipolyi, K. Jobst, S.L.
664 Kaserzon, P. Leonards, F. Lestremau, T. Letzel, J. Magnér, H. Matsukami, C. Moschet, P. Oswald, M.
665 Plassmann, J. Slobodnik, C. Yang, Analytical and Bioanalytical Chemistry 411 (2019) 1957 DOI:
666 10.1007/s00216-019-01615-6.

667 [23] R. Bade, L. Bijlsma, T.H. Miller, L.P. Barron, J.V. Sancho, F. Hernández, Science of The Total
668 Environment 538 (2015) 934 DOI: 10.1016/j.scitotenv.2015.08.078.

669 [24] C. Feng, Q. Xu, X. Qiu, Y.e. Jin, J. Ji, Y. Lin, S. Le, J. She, D. Lu, G. Wang, Chemosphere 271 (2021)
670 129447 DOI: 10.1016/j.chemosphere.2020.129447.

671 [25] D. Pasin, C.B. Mollerup, B.S. Rasmussen, K. Linnet, P.W. Dalsgaard, Analytica Chimica Acta
672 1184 (2021) 339035 DOI: 10.1016/j.aca.2021.339035.

673 [26] E. Kováts, Helvetica Chimica Acta 41 (1958) 1915 DOI: 10.1002/hlca.19580410703.

674 [27] R. Aalizadeh, N. Alygizakis, E.L. Schymanski, M. Krauss, T. Schulze, M. Ibáñez, A.D. McEachran,
675 A. Chao, A.J. Williams, P. Gago-Ferrero, A. Covaci, C. Moschet, T. Young, J. Hollender, J. Slobodnik, N.
676 Thomaidis, Analytical Chemistry 93 (2021) 11601 DOI: 10.1021/acs.analchem.1c02348

677 [28] MassBank, Available at <https://massbank.eu/MassBank/>, Last accessed 21 September 2022.
678 2022.

679 [29] MoNA, Available at <https://mona.fiehnlab.ucdavis.edu/>, Last accessed 21 September 2022.
680 2022.

681 [30] mzCloud, Available at <https://www.mzcloud.org/>, Last accessed 21 September 2022. 2022.

682 [31] K. Dührkop, M. Fleischauer, M. Ludwig, A.A. Aksенов, A.V. Melnik, M. Meusel, P.C. Dorrestein,

683 J. Rousu, S. Böcker, *Nature Methods* 16 (2019) 299 DOI: 10.1038/s41592-019-0344-8.

684 [32] F. Wang, J. Liigand, S. Tian, D. Arndt, R. Greiner, D.S. Wishart, *Analytical Chemistry* 93 (2021)

685 11692 DOI: 10.1021/acs.analchem.1c01465.

686 [33] C. Ruttkies, E.L. Schymanski, S. Wolf, J. Hollender, S. Neumann, *Journal of Cheminformatics* 8

687 (2016) 3 DOI: 10.1186/s13321-016-0115-9.

688 [34] L. Ridder, J.J.J. van der Hooft, S. Verhoeven, *Mass Spectrometry* 3 (2014) S0033 DOI:

689 10.5702/massspectrometry.S0033.

690 [35] M. Loos, nontarget: Detecting Isotope, Adduct and Homologue Relations in LC-MS Data

691 <https://CRAN.R-project.org/package=nontarget>. 2016.

692 [36] C.D. Broeckling, F.A. Afsar, S. Neumann, A. Ben-Hur, J.E. Prenni, *Analytical Chemistry* 86 (2014)

693 6812 DOI: 10.1021/ac501530d.

694 [37] A. Celma, L. Ahrens, P. Gago-Ferrero, F. Hernández, F. López, J. Lundqvist, E. Pitarch, J.V.

695 Sancho, K. Wiberg, L. Bijlsma, *Chemosphere* 280 (2021) 130799 DOI:

696 10.1016/j.chemosphere.2021.130799.

697 [38] D.H. Ross, J.H. Cho, L. Xu, *Analytical Chemistry* 92 (2020) 4548 DOI:

698 10.1021/acs.analchem.9b05772.

699 [39] M. Meringer, E.L. Schymanski, *Metabolites* 3 (2013) 440 DOI: 10.3390/metabo3020440.

700 [40] M. Meringer, S. Reinker, J. Zhang, A. Muller, *Communications in Mathematical and in*

701 *Computer Chemistry* 65 (2011) ISSN: 0340-6253.

702 [41] N. Dodder, K. Mullen, *OrgMassSpecR: Organic Mass Spectrometry* (Available at <https://cran.r-project.org/web/packages/OrgMassSpecR/index.html>, Last accessed 21 January 2022). 2017.

703 [42] A. Togola, C. Guillemain, F. Lestremau, C. Coureau, C. Margoum, C. Soulier, APPLICABILITE DE

704 LA TECHNIQUE DE « SCREENING NON CIBLE » POUR LA SURVEILLANCE PROSPECTIVE. Réseau de

705 Surveillance prospective-AQUAREF ; Rapport BRGM/RP-70108-FR (Accessible at

706 https://professionnels.ofb.fr/sites/default/files/pdf/documentation/Pollution/LotC_4.pdf, Last

707 accessed 21 January 2022). 2020.

708 [43] R. Gil-Solsona, M.-C. Nika, M. Bustamante, C.M. Villanueva, M. Foraster, M. Cosin-Tomás, N.

709 Alygizakis, M.D. Gómez-Roig, E. Llurba-Olive, J. Sunyer, N.S. Thomaidis, P. Dadvand, P. Gago-Ferrero,

710 *Environmental Science & Technology Letters* 8 (2021) 1077 DOI: 10.1021/acs.estlett.1c00848.

711 [44] R. Gil-Solsona, S. Rodriguez-Mozaz, M.S. Diaz-Cruz, A. Sunyer-Caldu, T. Luarte, J. Hofer, C.

712 Galban-Malagon, P. Gago-Ferrero, *MethodsX* 8 (2021) 101193 DOI: 10.1016/j.mex.2020.101193.

713 [45] K. Kiefer, A. Muller, H. Singer, J. Hollender, *Water Research* 165 (2019) 114972 DOI:

714 10.1016/j.watres.2019.114972.

715 [46] R. Tautenhahn, C. Böttcher, S. Neumann, *BMC Bioinformatics* 9 (2008) 504 DOI:

716 10.1186/1471-2105-9-504.

717 [47] G. Libiseller, M. Dvorzak, U. Kleb, E. Gander, T. Eisenberg, F. Madeo, S. Neumann, G.

718 Trausinger, F. Sinner, T. Pieber, C. Magnes, *BMC Bioinformatics* 16 (2015) 118 DOI: 10.1186/s12859-

719 015-0562-8.

720 [48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

721 Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

722 E. Duchesnay, *Journal of Machine Learning Research* 12 (2011) 2825.

723 [49] European Commission, Commission decision of 12 August 2002 implementing Council

724 Directive 96/23/EC concerning the performance of analytical methods and the interpretation of

725 results Official Journal of the European Commission 221 (2002) 8.

726 [50] A. Assoumani, F. Lestremau, M. Salomon, C. Ferret, B. Lepot, *Campagne Emergents Nationaux*

727 2018 (EMNAT 2018) - Résultats de la recherche de contaminants émergents dans les eaux de surface

728 et les rejets de STEU (2020).