Chen, L., Berke, P., Massart, T., Beex, L., Magliulo, M., & Bordas, S. (In press). A refinement indicator for adaptive quasicontinuum approaches for structural lattices. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.6629
Peer Reviewed verified by ORBi
Nguyen, V.-P., Kerfriden, P., Brino, M., Bordas, S., & Bonisoli, E. (In press). Nitsche’s method for two and three dimensional NURBS patch coupling. Computational Mechanics. doi:10.1007/s00466-013-0955-3
Peer Reviewed verified by ORBi
Deshpande, S., Sosa, R. I., Bordas, S., & Lengiewicz, J. (2023). Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics. Frontiers in Materials. doi:10.3389/fmats.2023.1128954
Peer Reviewed verified by ORBi
Bulle, R., Hale, J., Lozinski, A., Bordas, S., & Chouly, F. (01 February 2023). Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project. Computers and Mathematics with Applications, 131, 103-123. doi:10.1016/j.camwa.2022.11.009
Peer Reviewed verified by ORBi
Bulle, R., Barrera, O., Bordas, S., Chouly, F., & Hale, J. (2023). An a posteriori error estimator for the spectral fractional power of the Laplacian. Computer Methods in Applied Mechanics and Engineering, 407, 115943. doi:10.1016/j.cma.2023.115943
Peer Reviewed verified by ORBi
Deshpande, S., Lengiewicz, J., & Bordas, S. (01 August 2022). Probabilistic Deep Learning for Real-Time Large Deformation Simulations. Computer Methods in Applied Mechanics and Engineering, 398 (0045-7825), 115307. doi:10.1016/j.cma.2022.115307
Peer Reviewed verified by ORBi
Urcun, S., Lorenzo, G., Baroli, D., Rohan, P.-Y., Sciumè, G., Skalli, W., Lubrano, V., & Bordas, S. (30 June 2022). Oncology and mechanics: landmark studies and promising clinical applications. Advances in Applied Mechanics, 55, 513-571. doi:10.1016/bs.aams.2022.05.003
Peer reviewed
Hauseux, P., Ambrosetti, A., Bordas, S., & Tkatchenko, A. (2022). Colossal Enhancement of Atomic Force Response in van der Waals Materials Arising from Many-Body Electronic Correlations. Physical Review Letters. doi:10.1103/PhysRevLett.128.106101
Peer Reviewed verified by ORBi
Mazier, A., Bilger, A., Forte, A. E., Peterlik, I., Hale, J., & Bordas, S. (2022). Inverse deformation analysis: an experimental and numerical assessment using the FEniCS Project. Engineering with Computers. doi:10.1007/s00366-021-01597-z
Peer Reviewed verified by ORBi
Chen, L., Berke, P., Massart, T., Bordas, S., & Beex, L. (2022). An adaptive multiscale quasicontinuum approach for mechanical simulations of elastoplastic periodic lattices. Mechanics Research Communications, 126, 104019. doi:10.1016/j.mechrescom.2022.104019
Peer Reviewed verified by ORBi
Leist, A., Klee, M., Kim, J. H., Rehkopf, D., Bordas, S., Muniz-Terrera, G., & Wade, S. (2022). Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences. Science Advances, 8, 1942. doi:10.1126/sciadv.abk1942
Peer Reviewed verified by ORBi
Urcun, S., Rohan, P.-Y., Sciumè, G., & Bordas, S. (30 November 2021). Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 126. doi:10.1016/j.jmbbm.2021.104952
Peer Reviewed verified by ORBi
Mazier, A., Ribes, S., Gilles, B., & Bordas, S. (04 August 2021). A rigged model of the breast for preoperative surgical planning. Journal of Biomechanics, 128, 110645. doi:10.1016/j.jbiomech.2021.110645
Peer Reviewed verified by ORBi
Obeidat, A., Andreas, T., Bordas, S., & Zilian, A. (01 August 2021). Simulation of gas-dynamic, pressure surges and adiabatic compression phenomena in geometrically complex respirator oxygen valves. Thermal Science and Engineering Progress, 24. doi:10.1016/j.tsep.2021.100906
Peer reviewed
Zeraatpisheh, M., Beex, L., & Bordas, S. (2021). Bayesian model uncertainty quantification for hyperelastic soft tissue models. Data-Centric Engineering. doi:10.1017/dce.2021.9
Peer reviewed
Hale, J., Schenone, E., Baroli, D., Beex, L., & Bordas, S. (01 July 2021). A hyper-reduction method using adaptivity to cut the assembly costs of reduced order models. Computer Methods in Applied Mechanics and Engineering, 380, 113723. doi:10.1016/j.cma.2021.113723
Peer Reviewed verified by ORBi
Lee, C., Natarajan, S., Hale, J., Taylor, Z. A., Lee, J.-J., & Bordas, S. (19 April 2021). Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible Solids. Computer Modeling in Engineering and Sciences, 127 (2), 411-436. doi:10.32604/cmes.2021.014947
Peer reviewed
Farina, S., Claus, S., Hale, J., Skupin, A., & Bordas, S. (22 March 2021). A cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing. Advanced Modeling and Simulation in Engineering Sciences, 8, 5. doi:10.1186/s40323-021-00191-8
Peer Reviewed verified by ORBi
Piranda, B., Chodkiewicz, P., Holobut, P., Bordas, S., Bourgeois, J., & Lengiewicz, J. (2021). Distributed Prediction of Unsafe Reconfiguration Scenarios of Modular Robotic Programmable Matter. IEEE Transactions on Robotics, 37 (6), 2226-2233. doi:10.1109/TRO.2021.3074085
Peer Reviewed verified by ORBi
Chen, L., Beex, L., Berke, P., Massart, T., & Bordas, S. (01 July 2020). Generalized quasicontinuum modeling of metallic lattices with geometrical and material nonlinearity and variability. Computer Methods in Applied Mechanics and Engineering, 366 (112878). doi:10.1016/j.cma.2020.112878
Peer reviewed
Al-Saad, M., Suarez, C., Obeidat, A., Bordas, S., & Kulasegaram. (01 March 2020). Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Computer Modeling in Engineering and Sciences, 122 (3), 831-862. doi:10.32604/cmes.2020.08527
Peer reviewed
Hauseux, P., Nguyen, T.-T., Ambrosetti, A., Saleme Ruiz, K., Bordas, S., & Tkatchenko, A. (2020). From quantum to continuum mechanics in the delamination of atomically-thin layers from substrates. Nature Communications. doi:10.1038/s41467-020-15480-w
Peer Reviewed verified by ORBi
Hu, Q., Xia, Y., Natarajan, S., Zilian, A., Hu, P., & Bordas, S. (2020). Isogeometric analysis of thin Reissner-Mindlin shells: locking phenomena and B-bar method. Computational Mechanics, 65 (5), 1323-1341. doi:10.1007/s00466-020-01821-5
Peer Reviewed verified by ORBi
Mohtarami, E., Baghbanan, A., Hashemolhosseini, H., & Bordas, S. (13 September 2019). Fracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method. Theoretical and Applied Fracture Mechanics, 104. doi:10.1016/j.tafmec.2019.102359
Peer Reviewed verified by ORBi
Jacquemin, T. A. M., Tomar, S., Agathos, K., Mohseni-Mofidi, S., & Bordas, S. (2019). Taylor-Series Expansion Based Numerical Methods: A Primer, Performance Benchmarking and New Approaches for Problems with Non-smooth Solutions. Archives of Computational Methods in Engineering. doi:10.1007/s11831-019-09357-5
Peer reviewed
Obeidat, A., & Bordas, S. (15 August 2019). An Implicit boundary approach for viscous compressible high Reynolds flows using hybrid remeshed particle hydrodynamics method. Journal of Computational Physics, 391, 347-364. doi:10.1016/j.jcp.2019.01.041
Peer Reviewed verified by ORBi
Mathew, T., Beex, L., Bordas, S., & Natarajan, S. (July 2019). A stochastic Galerkin cell-based smoothed finite element method (SGCS-FEM). International Journal of Computational Methods, 17 (8). doi:10.1142/S0219876219500543
Peer Reviewed verified by ORBi
Cascio, M., Baroli, D., Bordas, S., Deretzis, I., Falci, G., Magliano, A., & La Magna, A. (17 June 2019). Coupled molecular-dynamics and finite-element-method simulations for the kinetics of particles subjected to field-mediated forces. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 99 (6). doi:10.1103/PhysRevE.99.063307
Peer Reviewed verified by ORBi
Chen, L. L., Lian, H., Chen, H. B., Atroshchenko, E., & Bordas, S. (12 June 2019). Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods. Computer Methods in Applied Mechanics and Engineering, 355, 926-951. doi:10.1016/j.cma.2019.06.012
Peer Reviewed verified by ORBi
Kosec, G., Slak, J., Depolli, M., Trobec, R., Pereira, K., Tomar, S., Jacquemin, T. A. M., Bordas, S., & Wahab, M. A. (28 May 2019). Weak and strong from meshless methods for linear elastic problem under fretting contact conditions. Tribology International, 138, 392-402. doi:10.1016/j.triboint.2019.05.041
Peer Reviewed verified by ORBi
Feng, S. Z., Bordas, S., Han, X., Wang, G., & Li, Z. X. (22 March 2019). A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. Acta Mechanica, 230, 2385–2398. doi:10.1007/s00707-019-02386-y
Peer Reviewed verified by ORBi
Katili, I., Maknun, I. J., Katili, A. M., Bordas, S., & Natarajan, S. (06 March 2019). A unified polygonal locking-free thin/thick smoothed plate element. Composite Structures, 219, 147-157. doi:10.1016/j.compstruct.2019.03.020
Peer Reviewed verified by ORBi
Agathos, K., Chatzi, E., & Bordas, S. (07 February 2019). A unified enrichment approach addressing blending and conditioning issues in enriched finite elements. Computer Methods in Applied Mechanics and Engineering, 349, 673-700. doi:10.1016/j.cma.2019.02.005
Peer Reviewed verified by ORBi
Ding, C., Deokar, R. R., Ding, Y., Li, G., Cui, X., Tamma, K. K., & Bordas, S. (03 February 2019). Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties. Computer Methods in Applied Mechanics and Engineering, 349, 266-284. doi:10.1016/j.cma.2019.02.004
Peer Reviewed verified by ORBi
Bansal, M., Singh, I. V., Patil, R. U., Claus, S., & Bordas, S. (01 February 2019). A simple and robust computational homogenization approach for heterogeneous particulate composites. Computer Methods in Applied Mechanics and Engineering, 349, 45-90. doi:10.1016/j.cma.2019.02.001
Peer Reviewed verified by ORBi
Khajah, T., Antoine, X., & Bordas, S. (21 January 2019). B-Spline FEM for Time-Harmonic Acoustic Scattering and Propagation. Journal of Theoretical and Computational Acoustics, 27. doi:10.1142/S2591728518500597
Peer reviewed
Francis, A., Natarajan, S., Atroshchenko, E., Lévy, B., & Bordas, S. (09 January 2019). A one point integration rule over star convex polytopes. Computers and Structures, 215, 43-64. doi:10.1016/j.compstruc.2019.01.001
Peer Reviewed verified by ORBi
Yang, J., Lian, H., Liang, W., Nguyen, V. P., & Bordas, S. (06 January 2019). Model I cohesive zone models of different rank coals. International Journal of Rock Mechanics and Mining Sciences, 115, 145-156. doi:10.1016/j.ijrmms.2019.01.001
Peer Reviewed verified by ORBi
Rappel, H., Beex, L., Hale, J., Noels, L., & Bordas, S. (2019). A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics. Archives of Computational Methods in Engineering, 1-25. doi:10.1007/s11831-018-09311-x
Peer reviewed
Rappel, H., Beex, L., Noels, L., & Bordas, S. (January 2019). Identifying elastoplastic parameters with Bayes' theorem considering double error sources and model uncertainty. Probabilistic Engineering Mechanics, 55, 28-41. doi:10.1016/j.probengmech.2018.08.004
Peer Reviewed verified by ORBi
Videla, J., Anitescu, C., Khajah, T., Bordas, S., & Atroshchenko, E. (16 December 2018). h- and p-adaptivity driven by recovery and residual-based error estimators for PHT-splines applied to time-harmonic acoustics. Computers and Mathematics with Applications, 77 (9), 2369-2395. doi:10.1016/j.camwa.2018.12.026
Peer Reviewed verified by ORBi
Chen, Y., Lian, H., Liang, W., Yang, J., Nguyen, V. P., & Bordas, S. (21 November 2018). The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. International Journal of Rock Mechanics and Mining Sciences, 113, 59-71. doi:10.1016/j.ijrmms.2018.11.017
Peer Reviewed verified by ORBi
Surendran, M., Natarajan, S., Palani, G. S., & Bordas, S. (02 November 2018). Linear smoothed extended finite element method for fatigue crack growth simulations. Engineering Fracture Mechanics, 206, 551-564. doi:10.1016/j.engfracmech.2018.11.011
Peer Reviewed verified by ORBi
Ortiz-Bernardin, A., Köbrich, P., Hale, J., Olate-Sanzana, E., Bordas, S., & Natarajan, S. (01 November 2018). A volume-averaged nodal projection method for the Reissner-Mindlin plate model. Computer Methods in Applied Mechanics and Engineering, 341, 827-850. doi:10.1016/j.cma.2018.07.023
Peer reviewed
Hale, J., Brunetti, M., Bordas, S., & Maurini, C. (15 October 2018). Simple and extensible plate and shell finite element models through automatic code generation tools. Computers and Structures, 209, 163-181. doi:10.1016/j.compstruc.2018.08.001
Peer Reviewed verified by ORBi
Bui, H. P., Tomar, S., & Bordas, S. (12 October 2018). Corotational cut finite element method for real-time surgical simulation: Application to needle insertion simulation. Computer Methods in Applied Mechanics and Engineering, 345, 183-211. doi:10.1016/j.cma.2018.10.023
Peer Reviewed verified by ORBi
Lin, X., Zhu, H., Yuan, X., Wang, Z., & Bordas, S. (October 2018). The elastic properties of composites reinforced by a transversely isotropic random fibre-network. Composite Structures, 208, 33-44. doi:10.1016/j.compstruct.2018.09.097
Peer Reviewed verified by ORBi
Agathos, K., Bordas, S., & Chatzi, E. (2018). Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2018.08.007
Peer reviewed
Koronaki, E. D., Gkinis, P. A., Beex, L., Bordas, S., & Theodoropoulos, C. (September 2018). Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity. Computers and Chemical Engineering, 121, 148-157. doi:10.1016/j.compchemeng.2018.08.023
Peer Reviewed verified by ORBi
Agathos, K., Chatzi, E., & Bordas, S. (2018). Multiple crack detection in 3D using a stable XFEM and global optimization. Computational Mechanics. doi:10.1007/s00466-017-1532-y
Peer Reviewed verified by ORBi
Akbari, A., Kerfriden, P., & Bordas, S. (February 2018). On the effect of grains interface parameters on the macroscopic properties of polycrystalline materials. Computers and Structures, 196, 355-368. doi:10.1016/j.compstruc.2017.09.005
Peer Reviewed verified by ORBi
Atroshchenko, E., Tomar, S., Xu, G., & Bordas, S. (2018). Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximaTion (GIFT). International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5778
Peer Reviewed verified by ORBi
Bansal, M., Singh, I. V., Mishra, B. K., & Bordas, S. (2018). A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2018.12.023
Peer reviewed
Hauseux, P., Hale, J., Cotin, S., & Bordas, S. (2018). Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Applied Mathematical Modelling, 62, 86-102. doi:10.1016/j.apm.2018.04.021
Peer Reviewed verified by ORBi
Hu, Q., Chouly, F., Hu, P., Cheng, G., & Bordas, S. (2018). Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. Computer Methods in Applied Mechanics and Engineering, 341, 188-220. doi:10.1016/j.cma.2018.05.024
Peer reviewed
Nguyen, T., Ghazlan, A., Kashani, A., Bordas, S., & Ngo, T. (2018). 3D meso-scale modelling of foamed concrete based on X-ray Computed Tomography. Construction and Building Materials, 188, 583-598. doi:10.1016/j.conbuildmat.2018.08.085
Peer reviewed
Nguyen, T., Kashani, A., Ngo, T., & Bordas, S. (2018). Deep neural network with high-order neuron for the prediction of foamed concrete strength. Computer-Aided Civil and Infrastructure Engineering. doi:10.1111/mice.12422
Peer Reviewed verified by ORBi
Nguyen, T. T., Réthoré, J., Bolivar, J., Baietto, M.-C., Fregonese, M., & Bordas, S. (2018). Modelling of inter- and transgranular stress corrosion crack propagation in polycrystalline material by using phase field method. Journal of the Mechanical Behavior of Materials, 26, 181--191.
Peer reviewed
Xu, G., Li, M., Mourrain, B., Rabczuk, T., Xu, J., & Bordas, S. (2018). Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization. Computer Methods in Applied Mechanics and Engineering, 328, 175-200. doi:10.1016/j.cma.2017.08.052
Peer reviewed
Yu, P., Anitescu, C., Tomar, S., Bordas, S., & Kerfriden, P. (2018). Adaptive Isogeometric analysis for plate vibrations: An efficient approach of local refinement based on hierarchical a posteriori error estimation. Computer Methods in Applied Mechanics and Engineering, 342, 251-286. doi:10.1016/j.cma.2018.08.010
Peer reviewed
Hauseux, P., Hale, J., & Bordas, S. (20 December 2017). Calculating the Malliavin derivative of some stochastic mechanics problems. PLoS ONE, 12 (12), 0189994. doi:10.1371/journal.pone.0189994
Peer Reviewed verified by ORBi
Atroshchenko, E., Hale, J., Videla, J. A., Potapenko, S., & Bordas, S. (October 2017). Micro-structured materials: inhomogeneities and imperfect interfaces in plane micropolar elasticity, a boundary element approach. Engineering Analysis with Boundary Elements, 83, 195-203. doi:10.1016/j.enganabound.2017.07.023
Peer Reviewed verified by ORBi
Rappel, H., Beex, L., & Bordas, S. (2017). Bayesian inference to identify parameters in viscoelasticity. Mechanics of Time-Dependent Materials. doi:10.1007/s11043-017-9361-0
Peer reviewed
Obeidat, A., & Bordas, S. (2017). Three-dimensional remeshed smoothed particle hydrodynamics for the simulation of isotropic turbulence. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.4405
Peer Reviewed verified by ORBi
Hauseux, P., Hale, J., & Bordas, S. (01 May 2017). Accelerating Monte Carlo estimation with derivatives of high-level finite element models. Computer Methods in Applied Mechanics and Engineering, 318, 917-936. doi:10.1016/j.cma.2017.01.041
Peer reviewed
Obeidat, A., & Bordas, S. (2017). Three-dimensional remeshed smoothed particle hydrodynamics for the simulation of isotropic turbulence. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS. doi:10.1002/fld.4405
Nguyen, V. P., Lian, H., Rabczuk, T., & Bordas, S. (20 April 2017). Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 225, 68-82. doi:10.1016/j.enggeo.2017.04.010
Peer Reviewed verified by ORBi
Lee, C.-K., Mihai, L. A., Hale, J., Kerfriden, P., & Bordas, S. (01 April 2017). Strain smoothed for compressible and nearly-incompressible finite elasticity. Computers and Structures, 182, 540-555. doi:10.1016/j.compstruc.2016.05.004
Peer Reviewed verified by ORBi
Agathos, K., Ventura, G., Chatzi, E., & Bordas, S. (2017). Stable 3D XFEM/vector-level sets for non-planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5611
Peer Reviewed verified by ORBi
Bourantas, G., Loukopoulos, V. C., Chowdhury, H. A., Joldes, G. R., Miller, K., & Bordas, S. (2017). An implicit potential method along with a meshless technique for incompressible fluid flows for regular and irregular geometries in 2D and 3D. Engineering Analysis with Boundary Elements, 77, 97-111. doi:10.1016/j.enganabound.2017.01.009
Peer reviewed
Deng, J., Zhou, G., Bordas, S., Xiang, C., & Cai, D. A. (2017). Numerical evaluation of buckling behaviour induced by compression on patch-repaired composites. Composite Structures, 168, 582-596. doi:10.1016/j.compstruct.2016.12.071
Peer reviewed
Hirshikesh, Natarajan, S., Ratna Kumar, A. K., Bordas, S., & Atroshchenko, E. (2017). Trefftz polygonal finite element for linear elasticity: convergence, accuracy, and properties. Asia Pacific Journal on Computational Engineering. doi:10.1186/s40540-017-0020-3
Peer Reviewed verified by ORBi
Jin, Y., González-Estrada, O. A., Pierard, O., & Bordas, S. (2017). Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation. Computer Methods in Applied Mechanics and Engineering, 318, 319-348. doi:10.1016/j.cma.2016.12.016
Peer reviewed
Martínez-Pañeda, E., Natarajan, S., & Bordas, S. (2017). Gradient plasticity crack tip characterization by means of the extended finite element method. Computational Mechanics. doi:10.1007/s00466-017-1375-6
Peer Reviewed verified by ORBi
Paladim, D.-A., de Almeida, J. P. B., Bordas, S., & Kerfriden, P. (2017). Guaranteed error bounds in homogenisation: an optimum stochastic approach to preserve the numerical separation of scales. International Journal for Numerical Methods in Engineering, 110 (2), 103–132. doi:10.1002/nme.5348
Peer Reviewed verified by ORBi
Phuoc Bui, H., Tomar, S., Courtecuisse, H., Cotin, S., & Bordas, S. (2017). Real-time Error Control for Surgical Simulation. IEEE Transactions on Biomedical Engineering. doi:10.1109/TBME.2017.2695587
Peer Reviewed verified by ORBi
Sinaie, S., Nguyen, V. H., Nguyen, C. T., & Bordas, S. (2017). Programming the material point method in Julia. Advances in Engineering Software, 105, 17-29. doi:10.1016/j.advengsoft.2017.01.008
Peer reviewed
Wan, D., Hu, D., Natarajan, S., Bordas, S., & Long, T. (2017). A linear smoothed higher-order CS-FEM for the analysis of notched laminated composites. Engineering Analysis with Boundary Elements, 85, 127-135. doi:10.1016/j.enganabound.2017.10.003
Peer Reviewed verified by ORBi
Wan, D., Hu, D., Natarajan, S., Bordas, S., & Long, T. (2017). A linear smoothed quadratic finite element for the analysis of laminated composite Reissner–Mindlin plates. Composite Structures, 180, 395-411. doi:10.1016/j.compstruct.2017.07.092
Peer reviewed
Wan, D., Hu, D., Natarajan, S., Bordas, S., & Yang, G. (2017). A fully smoothed XFEM for analysis of axisymmetric problems with weak discontinuities. International Journal for Numerical Methods in Engineering, 110 (3), 203-226. doi:10.1002/nme.5352
Peer reviewed
Peng, X., Atroshchenko, E., Kerfriden, P., & Bordas, S. (2016). Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment. International Journal of Fracture. doi:10.1007/s10704-016-0153-3
Peer Reviewed verified by ORBi
Peng, X., Atroshchenko, E., Kerfriden, P., & Bordas, S. (2016). Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2016.05.038
Peer reviewed
Goury, O., Amsallem, D., Bordas, S., Liu, W. K., & Kerfriden, P. (2016). Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization. Computational Mechanics. doi:10.1007/s00466-016-1290-2
Peer Reviewed verified by ORBi
Agathos, K., Chatzi, E., & Bordas, S. (2016). Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture. Computer Methods in Applied Mechanics and Engineering, 306, 19-46. doi:10.1016/j.cma.2016.03.023
Peer reviewed
Hoang, K. C., Kerfriden, P., & Bordas, S. (2016). A fast, certified and "tuning free" two-field reduced basis method for the metamodelling of affinely-parametrised elasticity problems. Computer Methods in Applied Mechanics and Engineering, 298, 121-158. doi:10.1016/j.cma.2015.08.016
Peer reviewed
Nguyen, V. H., Nguyen, C. T., Bordas, S., & Heidarpour, A. (2016). Modelling interfacial cracking with non-matching cohesive interface elements. Computational Mechanics, 58 (5), 731-746. doi:10.1007/s00466-016-1314-y
Peer reviewed
Pereira, K., Bordas, S., Tomar, S., Trobec, R., Depolli, M., Kosec, G., & Magd, A. W. (2016). On the convergence of stresses in fretting fatigue. Materials, 9 (8). doi:10.3390/ma9080639
Peer reviewed
Haojie, L., Pierre, K., & Bordas, S. (2015). Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. International Journal for Numerical Methods in Engineering.
Peer Reviewed verified by ORBi
Beex, L., Rokos, O., Zeman, J., & Bordas, S. (03 September 2015). Higher-order quasicontinuum methods for elastic and dissipative lattice models: uniaxial deformation and pure bending. GAMM Mitteilungen, 38 (2), 344-368. doi:10.1002/gamm.201510018
Peer reviewed
Jung, A., Beex, L., Diebels, S., & Bordas, S. (08 August 2015). Open-Cell Aluminium Foams with Graded Coatings as Passively Controllable Energy Absorbers. Materials and Design, 87, 36-41. doi:10.1016/j.matdes.2015.07.165
Peer reviewed
Akbari Rahimabadi, A., Kerfriden, P., & Bordas, S. (15 July 2015). Scale selection in nonlinear fracture mechanics of heterogeneous materials. Philosophical Magazine, 95 (28-30), 3328-3347. doi:10.1080/14786435.2015.1061716
Peer Reviewed verified by ORBi
Phung-Van, P., Nguyen, L. B., V. Tran, L., T.D., D., Thai, C. H., Wahab, M., Bordas, S., & Nguyen-Xuan, H. (2015). An efficient Computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. International Journal of Non-Linear Mechanics. doi:10.1016/j.ijnonlinmec.2015.06.003
Peer Reviewed verified by ORBi
Nguyen, V.-P., Anitescu, C., Bordas, S., & Rabczuk, T. (2015). Isogeometric analysis: an overview and computer implementation aspects. Mathematics and Computers in Simulation. doi:10.1016/j.matcom.2015.05.008
Peer reviewed
P., P.-V., M., A.-W., K.M., L., Bordas, S., & H., N.-X. (May 2015). Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures, 123, 137-149. doi:10.1016/j.compstruct.2014.12.021
Peer Reviewed verified by ORBi
Agathos, K., Chatzi, E., & Bordas, S. (2015). Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2016.03.023
Peer reviewed
Akbari, A., Kerfriden, I., & Bordas, S. (2015). Error Controlled Adaptive Multiscale Method For Fracture Modelling in Polycrystalline materials. Philosophical Magazine.
Peer Reviewed verified by ORBi
Atroshchenko, E., & Bordas, S. (2015). Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 471 (2179). doi:10.1098/rspa.2015.0216
Peer reviewed
Bordas, S., gonzález-estrada, O. A., ródenas, J. J., Nadal, E., Kerfriden, P., & Fuenmayor, F. J. (2015). Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Computers and Structures. doi:10.1016/j.compstruc.2015.01.015
Peer Reviewed verified by ORBi
Ghasemi, H., Kerfriden, P., Bordas, S., Muthu, J., Zi, G., & Rabczuk, T. (2015). Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Composites. Part B, Engineering, 81, 107-119. doi:10.1016/j.compositesb.2015.06.023
Peer Reviewed verified by ORBi
Ghasemi, H., Kerfriden, P., Muthu, J., Zi, G., Rabczuk, T., & Bordas, S. (2015). Interfacial shear stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing ingredients. Composite Structures. doi:10.1016/j.compstruct.2014.10.005
Peer Reviewed verified by ORBi
Hoang, K. C., Kerfriden, P., & Bordas, S. (2015). A fast, certified and "tuning-free" two-field reduced basis method for the metamodelling of parametrised elasticity problems. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2015.08.016
Peer reviewed
Hoang, K. C., Kerfriden, P., Khoo, B. C., & Bordas, S. (2015). An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. Numerical Methods for Partial Differential Equations, 31 (2), 575-608. doi:10.1002/num.21932
Peer reviewed
Natarajan, S., Bordas, S., & Ooi, E. T. (2015). Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods. International Journal for Numerical Methods in Engineering, 104 (13), 1173-1199. doi:10.1002/nme.4965
Peer reviewed
Ong, T. H., Hoang, T. T. P., Bordas, S., & Nguyen-Xuan, H. (2015). A staggered cell-centered finite element method for compressible and nearly-incompressible linear elasticity on general meshes. SIAM Journal on Numerical Analysis, 53 (4), 2051-2073. doi:10.1137/140990103
Peer reviewed
Sheng, M., Li, G., Shah, S., Lamb, A. R., & Bordas, S. (2015). Enriched finite elements for branching cracks in deformable porous media. Engineering Analysis with Boundary Elements, 50, 435-446. doi:10.1016/j.enganabound.2014.09.010
Peer Reviewed verified by ORBi
Thai, C. H., Nguyen-Xuan, H., Bordas, S., Nguyen-Thanh, N., & Rabczuk, T. (2015). Isogeometric Analysis of Laminated Composite Plates Using the Higher-Order Shear Deformation Theory. Mechanics of Advanced Materials and Structures, 22 (6), 451-469. doi:10.1080/15376494.2013.779050
Peer reviewed
Yang, S.-W., Budarapu, P. R., Mahapatra, D. R., Bordas, S., Zi, G., & Rabczuk, T. (2015). A meshless adaptive multiscale method for fracture. Computational Materials Science, 96 (PB), 382-395. doi:10.1016/j.commatsci.2014.08.054
Peer Reviewed verified by ORBi
Zhao, X., Bordas, S., & Qu, J. (2015). Equilibrium morphology of misfit particles in elastically stressed solids under chemo-mechanical equilibrium conditions. Journal of the Mechanics and Physics of Solids, 81, 1-21. doi:10.1016/j.jmps.2015.04.008
Peer reviewed
Shuohui, Y., Hale, J., Yu, T., Bui, T. Q., & Bordas, S. (December 2014). Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Composite Structures, 118, 121-138. doi:10.1016/j.compstruct.2014.07.028
Peer Reviewed verified by ORBi
Akmar, I., Lahmer, T., Beex, L., Bordas, S., & Rabczuk, T. (September 2014). Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties. Composite Structures, 116, 1-17. doi:10.1016/j.compstruct.2014.04.014
Peer Reviewed verified by ORBi
Xu, G., Atroshchenko, E., Ma, W., & Bordas, S. (2014). Geometry-Independent Field approximaTion: CAD-Analysis Integration, geometrical exactness and adaptivity. Computer Methods in Applied Mechanics and Engineering.
Peer reviewed
Kerfriden, P., Ródenas, J.-J., & Bordas, S. (February 2014). Certification of projection-based reduced order modelling in computational homogenisation by the Constitutive Relation Error. International Journal for Numerical Methods in Engineering, 97 (6), 395-422. doi:10.1002/nme.4588
Peer Reviewed verified by ORBi
Atroshchenko, E., & Bordas, S. (2014). Fundamental Solutions and Dual Boundary Element Method for Crack Problems in Plane Cosserat Elasticity. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences. doi:10.1098/rspa.2015.0216
Peer Reviewed verified by ORBi
Beex, L., Kerfriden, P., Rabczuk, T., & Bordas, S. (2014). Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation. Computer Methods in Applied Mechanics and Engineering, 279, 348-378. doi:10.1016/j.cma.2014.06.018
Peer reviewed
Cahill, L. M. A., Natarajan, S., Bordas, S., O’Higgins, R. M., & McCarthy, C. T. (2014). An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Composite Structures, 107, 119--130. doi:10.1016/j.compstruct.2013.05.039
Peer reviewed
Chen, L., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., Bordas, S., & Limbert, G. (2014). Explicit finite deformation analysis of isogeometric membranes. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2014.04.015
Peer reviewed
Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S., Cotin, S., & Duriez, C. (2014). Real-time simulation of contact and cutting of heterogeneous soft-tissues. Medical Image Analysis, 18 (2), 394-410. doi:10.1016/j.media.2013.11.001
Peer reviewed
Hoang, K. C., Kerfriden, P., Bordas, S., & Khoo, B. C. (2014). An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. Numerical Methods for Partial Differential Equations. doi:10.1002/num.21932
Peer Reviewed verified by ORBi
Moumnassi, M., Bordas, S., Figueredo, R., & Sansen, P. (2014). Analysis using higher-order XFEM: implicit representation of geometrical features from a given parametric representation. Mechanics and Industry, 15 (05), 443-448. doi:10.1051/meca/2014033
Peer Reviewed verified by ORBi
Natarajan, S., Ferreira, Bordas, S., Carrera, E., Cinefra, M., & Zenkour, A. (2014). Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Mathematical Problems in Engineering, Article ID 247932, 13. doi:10.1155/2014/247932
Peer reviewed
Natarajan, S., Kerfriden, P., Mahapatra, D. R., & Bordas, S. (2014). Numerical analysis of the inclusion-crack interaction by the extended finite element method. International Journal for Computational Methods in Engineering Science and Mechanics. doi:10.1080/15502287.2013.833999
Peer Reviewed verified by ORBi
Nguyen, V.-P., Kerfriden, P., & Bordas, S. (2014). Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis. Composites. Part B, Engineering, 60, 193-212. doi:10.1016/j.compositesb.2013.12.018
Peer Reviewed verified by ORBi
Nguyen, V.-P., Kerfriden, P., Bordas, S., & Rabczuk, T. (2014). An integrated design-analysis framework for three dimensional composite panels. Computer-Aided Design.
Peer Reviewed verified by ORBi
Nguyen, V.-P., Kerfriden, P., Bordas, S., & Rabczuk, T. (2014). Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm. Computer-Aided Design, 55, 49-63. doi:10.1016/j.cad.2014.05.004
Peer Reviewed verified by ORBi
Nguyen, V., Kerfriden, P., Brino, M., Bordas, S., & Bonisoli, E. (2014). Nitsche’s method for two and three dimensional NURBS patch coupling. Computational Mechanics, 53 (6), 1163-1182. doi:10.1007/s00466-013-0955-3
Peer reviewed
Nguyen, V., Kerfriden, P., Claus, S., & Bordas, S. (2014). Nitsche’s method method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling. Computer Methods in Applied Mechanics and Engineering.
Peer reviewed
Nguyen-Xuan, H., Tran, L. V., Thai, C. H., Kulasegaram, S., & Bordas, S. (2014). Isogeometric analysis of functionally graded plates using a refined plate theory. Composites. Part B, Engineering, 64, 222-234. doi:10.1016/j.compositesb.2014.04.001
Peer Reviewed verified by ORBi
Peng, X., Kulasegaram, S., Bordas, S., & Wu, S. (2014). An extended finite element method (XFEM) for linear elastic fracture with smooth nodal stress. Engineering Fracture Mechanics.
Peer Reviewed verified by ORBi
Rodrigues, J. D., Natarajan, S., Ferreira, A., Carrera, E., Cinefra, M., & Bordas, S. (2014). Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Computers and Structures, 135, 83-87. doi:10.1016/j.compstruc.2014.01.011
Peer Reviewed verified by ORBi
Silani, M., Talebi, H., Ziaei-Rad, S., Kerfriden, P., Bordas, S., & Rabczuk, T. (2014). Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 118, 241-249. doi:10.1016/j.compstruct.2014.07.009
Peer reviewed
Thai, C. H. A., Bordas, S., Ferreira, A., Rabczuk, T. E., & Nguyen-Xuan, H. A. F. (2014). Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 43, 89-108. doi:10.1016/j.euromechsol.2013.09.001
Peer Reviewed verified by ORBi
Abu Bakar, I. A., Kramer, O., Bordas, S., & Rabczuk, T. (June 2013). Optimization of elastic properties and weaving patterns of woven composites. Composite Structures, 100, 575-591. doi:10.1016/j.compstruct.2012.12.043
Peer Reviewed verified by ORBi
Bui, T. Q., Rabczuk, T., González-Estrada, O. A., Natarajan, S., Valizadeh, N., & Bordas, S. (May 2013). NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 99, 309-326. doi:10.1016/j.compstruct.2012.11.008
Peer Reviewed verified by ORBi
Natarajan, S., Manickam, G., & Bordas, S. (May 2013). Supersonic flutter analysis of functionally graded material plates with cracks. Frontiers in Aerospace Engineering, 2 (2), 91--97.
Peer reviewed
Lian, H., Simpson, R., & Bordas, S. (03 April 2013). Stress analysis without meshing: isogeometric boundary element method. Proceedings of the ICE - Engineering and Computational Mechanics, 166 (2), 88–99. doi:10.1680/eacm.11.00024
Peer reviewed
Simpson, R., Bordas, S., Lian, H., & Travelyan, J. (March 2013). An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects. Computers and Structures, 118, 2-12. doi:10.1016/j.compstruc.2012.12.021
Peer Reviewed verified by ORBi
Amiri, F., Anitescu, C., Arroyo, M., Bordas, S., & Rabczuk, T. (2013). XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 1-13. doi:10.1007/s00466-013-0891-2
Peer reviewed
González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 1-20. doi:10.1007/s00466-013-0942-8
Peer reviewed
González-Estrada, O. A., Natarajan, S., Ródenas, J. J., Nguyen-Xuan, H., & Bordas, S. (2013). Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Computational Mechanics, 52 (1), 37-52. doi:10.1007/s00466-012-0795-6
Peer reviewed
Kerfriden, P., Goury, O., Rabczuk, T., & Bordas, S. (2013). A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 256, 169-188. doi:10.1016/j.cma.2012.12.004
Peer reviewed
Kerfriden, P., Ródenas, J. J., & Bordas, S. (2013). Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.4588
Peer reviewed
Kerfriden, P., Schmidt, K. M., Rabczuk, T., & Bordas, S. (2013). Statistical extraction of process zones and representative subspaces in fracture of random composites. International Journal for Multiscale Computational Engineering, 11 (3), 253-287. doi:10.1615/IntJMultCompEng.2013005939
Peer reviewed
Lian, H., Simpson, R. N., & Bordas, S. (2013). Stress analysis without meshing: Isogeometric boundary-element method. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 166 (2), 88-99. doi:10.1680/eacm.11.00024
Peer reviewed
Natarajan, S., Ferreira, A., Bordas, S., Carrera, E., & Cinefra, M. (2013). Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements. Composite Structures, 105, 75-81. doi:10.1016/j.compstruct.2013.04.040
Peer Reviewed verified by ORBi
Nguyen, V., Kerfriden, P., & Bordas, S. (2013). Isogeometric cohesive elements for two and three dimensional composite delamination analysis. Composites. Part B, Engineering. doi:10.1016/j.compositesb.2013.12.018
Peer Reviewed verified by ORBi
Nguyen-Xuan, H., Liu, G. R., Bordas, S., Natarajan, S., & Rabczuk, T. (2013). An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 253, 252-273. doi:10.1016/j.cma.2012.07.017
Peer reviewed
Pattabhi, B., Robert, G., Bordas, S., & Timon, R. (2013). An Adaptive Multiscale Method for Quasi-static Crack Growth. Computational Mechanics. doi:10.1007/s00466-013-0952-6
Peer reviewed
Peng, Q., Crean, J., Dearden, A. K., Huang, C., Wen, X., Bordas, S., & De, S. (2013). Defect engineering of 2D monatomic-layer materials. Modern Physics Letters B, 27 (23). doi:10.1142/S0217984913300172
Peer Reviewed verified by ORBi
Rahimabadi, A. A., Natarajan, S., & Bordas, S. (2013). Vibration of functionally graded material plates with cutouts & cracks in thermal environment. Key Engineering Materials, 560, 157-180. doi:10.4028/www.scientific.net/KEM.560.157
Peer reviewed
Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S., Hughes, T. J. R., & Sederberg, T. W. (2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied Mechanics and Engineering, 254, 197-221. doi:10.1016/j.cma.2012.11.001
Peer reviewed
Simpson, R. N., Bordas, S., Lian, H., & Trevelyan, J. (2013). An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects. Computers and Structures, 118, 2-12. doi:10.1016/j.compstruc.2012.12.021
Peer Reviewed verified by ORBi
Talebi, H., Silani, M., Bordas, S., Kerfriden, P., & Rabczuk, T. (2013). A computational library for multiscale modeling of material failure. Computational Mechanics, 1-25. doi:10.1007/s00466-013-0948-2
Peer reviewed
Talebi, H., Silani, M., Bordas, S., Kerfriden, P., & Rabczuk, T. (2013). Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 11 (6), 527-541. doi:10.1615/IntJMultCompEng.2013005838
Peer reviewed
Wu, S., Peng, X., Zhang, W., & Bordas, S. (2013). The virtual node polygonal element method for nonlinear thermal analysis with application to hybrid laser welding. International Journal of Heat and Mass Transfer, 67, 1247-1254. doi:10.1016/j.ijheatmasstransfer.2013.08.062
Peer Reviewed verified by ORBi
Zhao, X., Bordas, S., & Qu, J. (2013). A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities. Computational Mechanics, 1-12. doi:10.1007/s00466-013-0884-1
Peer reviewed
Zhao, X., Duddu, R., Bordas, S., & Qu, J. (2013). Effects of elastic strain energy and interfacial stress on the equilibrium morphology of misfit particles in heterogeneous solids. Journal of the Mechanics and Physics of Solids, 61 (6), 1433-1445. doi:10.1016/j.jmps.2013.01.012
Peer Reviewed verified by ORBi
Chen, L., Rabczuk, T., Bordas, S., Liu, G. R., Zeng, K. Y., & Kerfriden, P. (2012). Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 209-212, 250-265. doi:10.1016/j.cma.2011.08.013
Peer reviewed
González-Estrada, O. A., Ródenas, J. J., Bordas, S., Duflot, M., Kerfriden, P., & Giner, E. (2012). On the role of enrichment and statistical admissibility of recovered fields in a posteriori error estimation for enriched finite element methods. Engineering Computations, 29 (8), 814-841. doi:10.1108/02644401211271609
Peer reviewed
Kerfriden, P., Passieux, J. C., & Bordas, S. (2012). Local/global model order reduction strategy for the simulation of quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 89 (2), 154-179. doi:10.1002/nme.3234
Peer reviewed
Lian, H., Bordas, S., & Sevilla, R. (2012). Recent developments in CAD/analysis integration. Computational Technology Reviews, 6, 1-36.
Peer reviewed
Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S., & Rabczuk, T. (2012). Size-dependent free flexural vibration behavior of functionally graded nanoplates. Computational Materials Science, 65, 74-80. doi:10.1016/j.commatsci.2012.06.031
Peer Reviewed verified by ORBi
Nguyen-Vinh, H., Bakar, I., Msekh, M. A., Song, J.-H., Muthu, J., Zi, G., Le, P., Bordas, S., Simpson, R., Natarajan, S., Lahmer, T., & Rabczuk, T. (2012). Extended finite element method for dynamic fracture of piezo-electric materials. Engineering Fracture Mechanics, 92, 19-31. doi:10.1016/j.engfracmech.2012.04.025
Peer Reviewed verified by ORBi
Nguyen-Xuan, H., Nguyen, H. M., Bordas, S., Rabczuk, T., & Duflot, M. (2012). A cell-based smoothed finite element method for three dimensional solid structures. KSCE Journal of Civil Engineering, 16 (7), 1230-1242. doi:10.1007/s12205-012-1515-7
Peer reviewed
Simpson, R. N., Bordas, S., Asenov, A., & Brown, A. R. (2012). Enriched residual free bubbles for semiconductor device simulation. Computational Mechanics, 50 (1), 119-133. doi:10.1007/s00466-011-0658-6
Peer reviewed
Simpson, R. N., Bordas, S., Trevelyan, J., & Rabczuk, T. (2012). A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100. doi:10.1016/j.cma.2011.08.008
Peer reviewed
Baiz, P. M., Natarajan, S., Bordas, S., Kerfriden, P., & Rabczuk, T. (2011). Linear buckling analysis of cracked plates by SFEM and XFEM. Journal of Mechanics of Material and Structures, 6 (9-10), 1213-1238. doi:10.2140/jomms.2011.6.1213
Peer reviewed
Bordas, S., Natarajan, S., Kerfriden, P., Augarde, C. E., Mahapatra, D. R., Rabczuk, T., & Pont, S. D. (2011). On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 86 (4-5), 637-666. doi:10.1002/nme.3156
Peer reviewed
Dunant, C. F., Bordas, S., Kerfriden, P., Scrivener, K. L., & Rabczuk, T. (2011). An Algorithm to compute damage from load in composites. Frontiers of Architecture and Civil Engineering in China, 5 (2), 180-193. doi:10.1007/s11709-011-0107-9
Peer reviewed
Kerfriden, P., Gosselet, P., Adhikari, S., & Bordas, S. (2011). Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200 (5-8), 850-866. doi:10.1016/j.cma.2010.10.009
Peer reviewed
Menk, A., & Bordas, S. (2011). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85 (13), 1609-1632. doi:10.1002/nme.3032
Peer reviewed
Menk, A., & Bordas, S. (2011). Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Computational Materials Science, 50 (3), 1145-1156. doi:10.1016/j.commatsci.2010.11.014
Peer Reviewed verified by ORBi
Moumnassi, M., Belouettar, S., Béchet, T., Bordas, S., Quoirin, D., & Potier-Ferry, M. (2011). Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200 (5-8), 774-796. doi:10.1016/j.cma.2010.10.002
Peer reviewed
Natarajan, S., Baiz, P. M., Bordas, S., Rabczuk, T., & Kerfriden, P. (2011). Natural frequencies of cracked functionally graded material plates by the extended finite element method. Composite Structures, 93 (11), 3082-3092. doi:10.1016/j.compstruct.2011.04.007
Peer Reviewed verified by ORBi
Natarajan, S., Baiz, P. M., Ganapathi, M., Kerfriden, P., & Bordas, S. (2011). Linear free flexural vibration of cracked functionally graded plates in thermal environment. Computers and Structures, 89 (15-16), 1535-1546. doi:10.1016/j.compstruc.2011.04.002
Peer Reviewed verified by ORBi
Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S., & Rabczuk, T. (2011). Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 200 (21-22), 1892-1908. doi:10.1016/j.cma.2011.01.018
Peer reviewed
Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., & Bordas, S. (2011). An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates. Finite Elements in Analysis and Design, 47 (5), 519-535. doi:10.1016/j.finel.2011.01.004
Peer reviewed
Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., & Bordas, S. (2011). A cell - based smoothed finite element method for free vibration and buckling analysis of shells. KSCE Journal of Civil Engineering, 15 (2), 347-361. doi:10.1007/s12205-011-1092-1
Peer reviewed
Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R. N., Liu, G. R., & Rabczuk, T. (2011). A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Computer Modeling in Engineering and Sciences, 73 (4), 331-355. doi:10.3970/cmes.2011.073.331
Peer reviewed
Zhuang, X., Augarde, C., & Bordas, S. (2011). Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling. International Journal for Numerical Methods in Engineering, 86 (2), 249-268. doi:10.1002/nme.3063
Peer reviewed
Ahmad Akbari, R., Bagri, A., Bordas, S., & Rabczuk, T. (2010). Analysis of thermoelastic waves in a two-dimensional functionally graded materials domain by the Meshless Local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering and Sciences, 65 (1), 27-74. doi:10.3970/cmes.2010.065.027
Peer reviewed
Akbari R., A., Bagri, A., Bordas, S., & Rabczuk, T. (2010). Analysis of thermoelastic waves in a two-dimensional functionally graded materials domain by the Meshless Local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering and Sciences, 65 (1), 27-74.
Peer reviewed
Bordas, S., & Natarajan, S. (2010). On the approximation in the smoothed finite element method (SFEM) [letter to the editor]. International Journal for Numerical Methods in Engineering, 81 (5), 660-670. doi:10.1002/nme.2713
Peer reviewed
Bordas, S., Rabczuk, T., Hung, N.-X., Nguyen, V. P., Natarajan, S., Bog, T., Quan, D. M., & Hiep, N. V. (2010). Strain smoothing in FEM and XFEM. Computers and Structures, 88 (23-24), 1419-1443. doi:10.1016/j.compstruc.2008.07.006
Peer Reviewed verified by ORBi
Le, C. V., Nguyen-Xuan, H., Askes, H., Bordas, S., Rabczuk, T., & Nguyen-Vinh, H. (2010). A cell-based smoothed finite element method for kinematic limit analysis. International Journal for Numerical Methods in Engineering, 83 (12), 1651-1674. doi:10.1002/nme.2897
Peer reviewed
Menk, A., & Bordas, S. (2010). Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. International Journal for Numerical Methods in Engineering, 83 (7), 805-828. doi:10.1002/nme.2858
Peer reviewed
Natarajan, S., Roy Mahapatra, D., & Bordas, S. (2010). Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. International Journal for Numerical Methods in Engineering, 83 (3), 269-294. doi:10.1002/nme.2798
Peer reviewed
Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., & Bordas, S. (2010). An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes. Journal of Computational and Applied Mathematics, 233 (9), 2112-2135. doi:10.1016/j.cam.2009.08.117
Peer reviewed
Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., & Bordas, S. (2010). A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computational Mechanics, 46 (5), 679-701. doi:10.1007/s00466-010-0509-x
Peer reviewed
Rabczuk, T., Bordas, S., & Zi, G. (2010). On three-dimensional modelling of crack growth using partition of unity methods. Computers and Structures, 88 (23-24), 1391-1411. doi:10.1016/j.compstruc.2008.08.010
Peer Reviewed verified by ORBi
Rabczuk, T., Zi, G., Bordas, S., & Nguyen-Xuan, H. (2010). A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 199 (37-40), 2437-2455. doi:10.1016/j.cma.2010.03.031
Peer reviewed
Hung, N.-X., Bordas, S., & Hung, N.-D. (2009). Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods in Engineering, 25 (1), 19-34. doi:10.1002/cnm.1098
Peer reviewed
Natarajan, S., Bordas, S., & Roy mahapatra, D. (2009). Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering, 80 (1), 103-134. doi:10.1002/nme.2589
Peer reviewed
Bordas, S., Duflot, M., & Le, P. (2008). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24 (11), 961-971. doi:10.1002/cnm.1001
Peer reviewed
Bordas, S., Rabczuk, T., & Zi, G. (2008). Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 75 (5), 943-960. doi:10.1016/j.engfracmech.2007.05.010
Peer Reviewed verified by ORBi
Duddu, R., Bordas, S., Chopp, D., & Moran, B. (2008). A combined extended finite element and level set method for biofilm growth. International Journal for Numerical Methods in Engineering, 74 (5), 848-870. doi:10.1002/nme.2200
Peer reviewed
Duflot, M., & Bordas, S. (2008). A posteriori error estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76 (8), 1123-1138. doi:10.1002/nme.2332
Peer reviewed
Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., & Bordas, S. (2008). A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 198 (2), 165-177. doi:10.1016/j.cma.2008.05.029
Peer reviewed
Nguyen, V. P., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 79 (3), 763-813. doi:10.1016/j.matcom.2008.01.003
Peer reviewed
Nguyen-Xuan, H., Rabczuk, T., Bordas, S., & Debongnie, J. F. (2008). A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 197 (13-16), 1184-1203. doi:10.1016/j.cma.2007.10.008
Peer reviewed
Rabczuk, T., Zi, G., Bordas, S., & Nguyen-Xuan, H. (2008). A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 75 (16), 4740-4758. doi:10.1016/j.engfracmech.2008.06.019
Peer Reviewed verified by ORBi
Bordas, S., Conley, J. G., Moran, B., Gray, J., & Nichols, E. (2007). A simulation-based design paradigm for complex cast components. Engineering with Computers, 23 (1), 25-37. doi:10.1007/s00366-006-0030-1
Peer reviewed
Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196 (35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011
Peer reviewed
Bordas, S., Nguyen, P. V., Dunant, C., Guidoum, A., & Nguyen-Dang, H. (2007). An extended finite element library. International Journal for Numerical Methods in Engineering, 71 (6), 703-732. doi:10.1002/nme.1966
Peer reviewed
Dunant, C., Nguyen, V. P., Belgasmia, M., Bordas, S., & Guidoum, A. (2007). Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software. European Journal of Computational Mechanics, 16 (2), 237-258. doi:10.3166/remn.16.237-258
Peer reviewed
Rabczuk, T., Bordas, S., & Zi, G. (2007). A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 40 (3), 473-495. doi:10.1007/s00466-006-0122-1
Peer reviewed
Bordas, S., & Moran, B. (2006). Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73 (9), 1176-1201. doi:10.1016/j.engfracmech.2006.01.006
Peer Reviewed verified by ORBi
Agathos, K., Chatzi, E., Bordas, S., & Talaslidis, D. (n.d.). A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.4982
Peer Reviewed verified by ORBi
Bui, H. P., Tomar, S., Courtecuisse, H., Cotin, S., & Bordas, S. (n.d.). Real-time error controlled adaptive mesh refinement in surgical simulation: Application to needle insertion simulation. IEEE Transactions on Biomedical Engineering.
Peer Reviewed verified by ORBi
Cascio, M., Baroli, D., Deretzsis, I., Bordas, S., & La Magna, A. (n.d.). Coupled Molecular Dynamics and Finite Element Method: simulations of kinetics induced by field mediated interaction. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics.
Peer Reviewed verified by ORBi
Introini, C., Baroli, D., Lorenzi, S., Cammi, A., Bordas, S., & Peters, B. (n.d.). A mass conservative Kalman filter algorithm for thermo-computational fluid dynamics. Materials.
Peer reviewed
Shih-Wei, Y., Pattabhi Ramaiah, B., Roy Mahapatra, D., Bordas, S., Pierre, K., & Timon, R. (n.d.). Coarsen Graining: A Renewal Concept of Efficient Adaptivity Techniques for Multiscale Models. Computer Methods in Applied Mechanics and Engineering.
Peer reviewed
Sutula, D., & Bordas, S. (n.d.). Minimum energy multiple crack propagation Part I: Theory. Engineering Fracture Mechanics.
Peer reviewed
Sutula, D., & Bordas, S. (n.d.). Minimum energy multiple crack propagation. Part II: Discrete Solution with XFEM. Engineering Fracture Mechanics. doi:10.1016/j.engfracmech.2017.07.029
Peer Reviewed verified by ORBi
Sutula, D., & Bordas, S. (n.d.). Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Engineering Fracture Mechanics. doi:10.1016/j.engfracmech.2017.08.004
Peer Reviewed verified by ORBi