Results 1-1 of 1.
((uid:50046208))

Bookmark and Share    
Full Text
Peer Reviewed
See detailRadio Regulation Compliance of NGSO Constellations’ Interference towards GSO Ground Stations
Jalali, Mahdis UL; Ortiz Gomez, Flor de Guadalupe UL; Lagunas, Eva UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 12–15 September 2022, Virtual Conference (2022, September)

The commercial low earth orbiting (LEO) satellite constellations have shown unprecedented growth. Accordingly, the risk of generating harmful interference to the geostationary orbit (GSO) satellite ... [more ▼]

The commercial low earth orbiting (LEO) satellite constellations have shown unprecedented growth. Accordingly, the risk of generating harmful interference to the geostationary orbit (GSO) satellite services increases with the number of satel- lites in such mega-constellations. As the GSO arc encompasses the primary and existing satellite assets providing essential fixed and broadcasting satellite services, the interference avoidance for this area is of the utmost importance. In particular, non- geostationary orbit (NGSO) operators should comply with the regulations set up both by their national regulators and by the International Telecommunications Union (ITU) to minimize the impact of emissions on existing GSO and non-GSO systems. In this paper, we first provide an overview of the most recent radio regulations that dictate the NGSO-GSO spectral co-existence. Next, we analyze the NGSO-GSO radio frequency interference for the downlink scenario, following the so-called time-simulation methodology introduced by ITU. The probability distribution of aggregated power flux-density for NGSO co-channel interference is evaluated and assessed, adopting different degrees of exclusion angle strategy for interference avoidance. We conclude the paper by discussing the resulting implications for the continuity of operation and service provision and we provide remarks for future work [less ▲]

Detailed reference viewed: 66 (20 UL)