Results 1-1 of 1.
((uid:50020387))
![]() Trauthwein, Tara ![]() in Uniform distribution theory (2020), 15(2), 73-92 We give a heuristic argument predicting that the number N*(T) of rationals p/q on Cantor’s middle thirds set C such that gcd(p, q) = 1 and q ≤ T, has asymptotic growth O(T^{d+ε}), for d = dim C. Our ... [more ▼] We give a heuristic argument predicting that the number N*(T) of rationals p/q on Cantor’s middle thirds set C such that gcd(p, q) = 1 and q ≤ T, has asymptotic growth O(T^{d+ε}), for d = dim C. Our heuristic is related to similar heuristics and conjectures proposed by Fishman and Simmons. We also describe extensive numerical computations supporting this heuristic. Our heuristic predicts a similar asymptotic if C is replaced with any similar fractal with a description in terms of missing digits in a base expansion. Interest in the growth of N*(T) is motivated by a problem of Mahler on intrinsic Diophantine approximation on C. [less ▲] Detailed reference viewed: 161 (19 UL) |
||