Results 1-20 of 53.
((uid:50010708))

Bookmark and Share    
Full Text
Peer Reviewed
See detailDiscordant Monozygotic Parkinson Disease Twins: Role of Mitochondrial Integrity
Dulovic-Mahlow, Marija; König, Inke R.; Trinh, Joanne et al

in Annals of Neurology (2020)

Objective Even though genetic predisposition has proven to be an important element in Parkinson's disease (PD) etiology, monozygotic (MZ) twins with PD displayed a concordance rate of only about 20 ... [more ▼]

Objective Even though genetic predisposition has proven to be an important element in Parkinson's disease (PD) etiology, monozygotic (MZ) twins with PD displayed a concordance rate of only about 20% despite their shared identical genetic background. Methods We recruited 5 pairs of MZ twins discordant for idiopathic PD and established skin fibroblast cultures to investigate mitochondrial phenotypes in these cellular models against the background of a presumably identical genome. To test for genetic differences, we performed whole genome sequencing, deep mitochondrial DNA (mtDNA) sequencing, and tested for mitochondrial deletions by multiplex real‐time polymerase chain reaction (PCR) in the fibroblast cultures. Further, the fibroblast cultures were tested for mitochondrial integrity by immunocytochemistry, immunoblotting, flow cytometry, and real‐time PCR to quantify gene expression. Results Genome sequencing did not identify any genetic difference. We found decreased mitochondrial functionality with reduced cellular adenosine triphosphate (ATP) levels, altered mitochondrial morphology, elevated protein levels of superoxide dismutase 2 (SOD2), and increased levels of peroxisome proliferator‐activated receptor‐gamma coactivator‐α (PPARGC1A) messenger RNA (mRNA) in skin fibroblast cultures from the affected compared to the unaffected twins. Further, there was a tendency for a higher number of somatic mtDNA variants among the affected twins. Interpretation We demonstrate disease‐related differences in mitochondrial integrity in the genetically identical twins. Of note, the clinical expression matches functional alterations of the mitochondria [less ▲]

Detailed reference viewed: 25 (0 UL)
Full Text
Peer Reviewed
See detailMitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism
Borsche, Max; Koenig, Inke; Delcambre, Sylvie UL et al

in Brain: a Journal of Neurology (2020)

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the ... [more ▼]

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the release of mitochondrial DNA (mtDNA), thereby triggering inflammation. Specifically, the CGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway mitigates activation of the innate immune system, quantifiable as increased interleukin-6 (IL6) levels. However, the role of IL6 and circulating cell-free mtDNA in unaffected and affected individuals harbouring mutations in PRKN/PINK1 and idiopathic Parkinson’s disease patients remain elusive. We investigated IL6, C-reactive protein, and circulating cell-free mtDNA in serum of 245 participants in two cohorts from tertiary movement disorder centres. We performed a hypothesis-driven rank-based statistical approach adjusting for multiple testing. We detected (i) elevated IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy control subjects in a German cohort, supporting the concept of a role for inflammation in PRKN/PINK1-linked Parkinson’s disease. In addition, the comparison of patients with biallelic and heterozygous mutations in PRKN/PINK1 suggests a gene dosage effect. The differences in IL6 levels were validated in a second independent Italian cohort; (ii) a correlation between IL6 levels and disease duration in carriers of PRKN/PINK1 mutations, while no such association was observed for idiopathic Parkinson’s disease patients. These results highlight the potential of IL6 as progression marker in Parkinson’s disease due to PRKN/PINK1 mutations; (iii) increased circulating cell-free mtDNA serum levels in both patients with biallelic or with heterozygous PRKN/PINK1 mutations compared to idiopathic Parkinson’s disease, which is in line with previous findings in murine models. By contrast, circulating cell-free mtDNA concentrations in unaffected heterozygous carriers of PRKN/PINK1 mutations were comparable to control levels; and (iv) that circulating cell-free mtDNA levels have good predictive potential to discriminate between idiopathic Parkinson’s disease and Parkinson’s disease linked to heterozygous PRKN/PINK1 mutations, providing functional evidence for a role of heterozygous mutations in PRKN or PINK1 as Parkinson’s disease risk factor. Taken together, our study further implicates inflammation due to impaired mitophagy and subsequent mtDNA release in the pathogenesis of PRKN/PINK1-linked Parkinson’s disease. In individuals carrying mutations in PRKN/PINK1, IL6 and circulating cell-free mtDNA levels may serve as markers of Parkinson’s disease state and progression, respectively. Finally, our study suggests that targeting the immune system with anti-inflammatory medication holds the potential to influence the disease course of Parkinson’s disease, at least in this subset of patients. [less ▲]

Detailed reference viewed: 30 (0 UL)
Full Text
Peer Reviewed
See detailHaploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy
Neumann, Marie Anne-Catherine UL; Grossmann, Dajana UL; Schimpf-Linzenbold, Simone et al

in Scientific Reports (2020)

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of ... [more ▼]

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy. [less ▲]

Detailed reference viewed: 109 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial Mechanisms of LRRK2 G2019S Penetrance
Delcambre, Sylvie UL; Ghelfi, Jenny UL; Ouzren, Nassima et al

in Frontiers in Neurology (2020)

Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson’s disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is ... [more ▼]

Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson’s disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers [less ▲]

Detailed reference viewed: 76 (8 UL)
Full Text
Peer Reviewed
See detailImpaired Mitochondrial-Endoplasmic Reticulum Interaction and Mitophagy in Miro1-Mutant Neurons in Parkinson’s Disease
Berenguer-Escuder, Clara; Grossmann, Dajana; Antony, Paul UL et al

in Human Molecular Genetics (2020)

Detailed reference viewed: 278 (9 UL)
Full Text
Peer Reviewed
See detailVariants in Miro1 cause alterations of ER-mitochondria contact sites in fibroblasts from Parkinson's disease patients
Berenguer, Clara UL; Grossmann, Dajana; Massart, François UL et al

in Journal of Clinical Medicine (2019)

Background: Although most cases of Parkinson´s disease (PD) are idiopathic with unknown cause, an increasing number of genes and genetic risk factors have been discovered that play a role in PD ... [more ▼]

Background: Although most cases of Parkinson´s disease (PD) are idiopathic with unknown cause, an increasing number of genes and genetic risk factors have been discovered that play a role in PD pathogenesis. Many of the PD‐associated proteins are involved in mitochondrial quality control, e.g., PINK1, Parkin, and LRRK2, which were recently identified as regulators of mitochondrial‐endoplasmic reticulum (ER) contact sites (MERCs) linking mitochondrial homeostasis to intracellular calcium handling. In this context, Miro1 is increasingly recognized to play a role in PD pathology. Recently, we identified the first PD patients carrying mutations in RHOT1, the gene coding for Miro1. Here, we describe two novel RHOT1 mutations identified in two PD patients and the characterization of the cellular phenotypes. Methods: Using whole exome sequencing we identified two PD patients carrying heterozygous mutations leading to the amino acid exchanges T351A and T610A in Miro1. We analyzed calcium homeostasis and MERCs in detail by live cell imaging and immunocytochemistry in patient‐derived fibroblasts. Results: We show that fibroblasts expressing mutant T351A or T610A Miro1 display impaired calcium homeostasis and a reduced amount of MERCs. All fibroblast lines from patients with pathogenic variants in Miro1, revealed alterations of the structure of MERCs. Conclusion: Our data suggest that Miro1 is important for the regulation of the structure and function of MERCs. Moreover, our study supports the role of MERCs in the pathogenesis of PD and further establishes variants in RHOT1 as rare genetic risk factors for neurodegeneration. [less ▲]

Detailed reference viewed: 94 (11 UL)
Full Text
Peer Reviewed
See detailMtDNA deletions discriminate affected from unaffected LRRK2 mutation carriers
Ouzren, Nassima UL; Delcambre, Sylvie UL; Ghelfi, Jenny UL et al

in Annals of Neurology (2019), 86(2), 324-326

Detailed reference viewed: 137 (15 UL)
Full Text
Peer Reviewed
See detailMutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson's disease.
Grossmann, Dajana UL; Berenguer, Clara UL; Bellet, Marie Estelle et al

in Antioxidants & redox signaling (2019)

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial ... [more ▼]

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition (MiST), which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. RESULTS: Here, for the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient-derived cellular models. Both mutations lead to decreased ER-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn lead to increased mitophagy. CONCLUSION: In summary, our data support the role of Miro1 in maintaining calcium homeostasis and mitochondrial quality control in PD. [less ▲]

Detailed reference viewed: 288 (35 UL)
Full Text
Peer Reviewed
See detailNew insights into the complex role of mitochondria in Parkinson's disease
Grünewald, Anne UL; Kumar, Kishore R; Sue, Carolyn M

in Progress in Neurobiology (2019), 177

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the ... [more ▼]

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the neurodegenerative process of Parkinson's disease (PD). Respiratory chain impairment is a key feature in sporadic PD patients and there is growing evidence that links proteins encoded by PD-associated genes to disturbances in mitochondrial function. Against the backdrop of latest advances in the development of PD treatments that target mitochondria, we aim to give an overview of the literature published in the last three decades on the significance of mitochondria in the pathogenesis of PD. We describe the contribution of mitochondrial genome alterations and PD-associated genes to mitochondrial maintenance. We highlight mitophagy as a key mechanism in neurodegeneration. Moreover, we focus on the reciprocal interaction between alpha-synuclein aggregation and mitochondrial dysfunction. We discuss a novel trafficking pathway involving mitochondrial-derived vesicles within the context of PD and provide a synopsis of the most recently emerging topics in PD research with respect to mitochondria. This includes the relationship between mitochondria and cell-mediated immunity, the ER-mitochondria axis, sirtuin-mediated mitochondrial stress response and the role of micro RNAs in the aetiology of PD. In addition, recent studies have challenged the neuro-centric view of PD pathology, moving microglia and astrocytes into the research spotlight. Greater insights into these mechanisms may hold the key for the development of novel targeted therapies, addressing the need for a disease-modifying treatment, which has remained elusive to date. [less ▲]

Detailed reference viewed: 163 (5 UL)
Full Text
Peer Reviewed
See detailGenotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene Review.
Trinh, Joanne; Zeldenrust, Florentine M. J.; Huang, Jana et al

in Movement Disorders (2018), 33(12), 1857-1870

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total ... [more ▼]

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total of 2,972 citations, and is based on fully curated phenotypic and genotypic data on 937 patients with dominantly inherited PD attributed to 44 different mutations in SNCA, LRRK2, or VPS35. All of these data are also available in an easily searchable online database (www.mdsgene.org), which additionally provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including later onset of disease (median age at onset: ∼49 years) compared to recessive forms of PD of an overall excellent treatment response. Our systematic review validates previous reports showing that SNCA mutation carriers have a younger age at onset compared to LRRK2 and VPS35 (P < 0.001). SNCA mutation carriers often have additional psychiatric symptoms, and although not exclusive to only LRRK2 or VPS35 mutation carriers, LRRK2 mutation carriers have a typical form of PD, and, lastly, VPS35 mutation carriers have good response to l-dopa. [less ▲]

Detailed reference viewed: 36 (1 UL)
Full Text
Peer Reviewed
See detail3D Cultures of Parkinson's Disease‐Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing
Bolognin, Silvia UL; Fossépré, Marie; Qing, Xiaobing et al

in Advanced Science (2018)

Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem ... [more ▼]

Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem cells carrying the LRRK2‐G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease‐relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High‐content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2‐G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2‐G2019S‐dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2‐G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development. [less ▲]

Detailed reference viewed: 302 (38 UL)
Full Text
Peer Reviewed
See detailMutationen im VSP13D-Gen verursachen eine oftmals frühkindliche spastische Ataxie
Grünewald, Anne UL

in DGNeurologie (2018), 1(1), 58-59

Detailed reference viewed: 89 (1 UL)
Full Text
Peer Reviewed
See detailSubcellular origin of mitochondrial DNA deletions in human skeletal muscle.
Vincent, Amy E; Rosa, Hannah S; Pabis, Kamil et al

in Annals of Neurology (2018), 84(2), 289-301

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain ... [more ▼]

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed to identify the sub-cellular origin and potential mechanisms underlying this process. METHODS: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellular immunofluorescent, histochemical, and genetic analysis. RESULTS: We report respiratory chain-deficient perinuclear foci containing mtDNA deletions, which show local elevations of both mitochondrial mass and mtDNA copy number. These subcellular foci of respiratory chain deficiency are associated with a local increase in mitochondrial biogenesis and unfolded protein response signaling pathways. We also find that the commonly reported segmental pattern of mitochondrial deficiency is consistent with the three-dimensional organization of the human skeletal muscle mitochondrial network. INTERPRETATION: We propose that mtDNA deletions first exceed the biochemical threshold causing biochemical deficiency in focal regions adjacent to the myonuclei, and induce mitochondrial biogenesis before spreading across the muscle fiber. These subcellular resolution data provide new insights into the possible origin of mitochondrial respiratory chain deficiency in mitochondrial myopathy. [less ▲]

Detailed reference viewed: 50 (1 UL)
Full Text
Peer Reviewed
See detailFaithful SGCE imprinting in iPSC-derived cortical neurons: an endogenous cellular model of myoclonus-dystonia
Grütz, Karen; Weisbach, Anne; Lohmann, Katja et al

in Scientific Reports (2017)

In neuropathology research, induced pluripotent stem cell (iPSC)-derived neurons are considered a tool closely resembling the patient brain. Albeit in respect to epigenetics, this concept has been ... [more ▼]

In neuropathology research, induced pluripotent stem cell (iPSC)-derived neurons are considered a tool closely resembling the patient brain. Albeit in respect to epigenetics, this concept has been challenged. We generated iPSC-derived cortical neurons from myoclonus-dystonia patients with mutations (W100G and R102X) in the maternally imprinted ε-sarcoglycan (SGCE) gene and analysed properties such as imprinting, mRNA and protein expression. Comparison of the promoter during reprogramming and differentiation showed tissue-independent differential methylation. DNA sequencing with methylation-specific primers and cDNA analysis in patient neurons indicated selective expression of the mutated paternal SGCE allele. While fibroblasts only expressed the ubiquitous mRNA isoform, brain-specific SGCE mRNA and ε-sarcoglycan protein were detected in iPSC-derived control neurons. However, neuronal protein levels were reduced in both mutants. Our phenotypic characterization highlights the suitability of iPSC-derived cortical neurons with SGCE mutations for myoclonus-dystonia research and, in more general terms, prompts the use of iPSC-derived cellular models to study epigenetic mechanisms impacting on health and disease. [less ▲]

Detailed reference viewed: 80 (0 UL)
Full Text
Peer Reviewed
See detailAcylated and unacylated ghrelin confers neuroprotection to mesencephalic neurons
Wagner, J; Vulinovic, F; Grünewald, Anne UL et al

in Neuroscience (2017)

The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility ... [more ▼]

The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility. Postprandial ghrelin levels have been reported to be reduced in patients suffering from Parkinson disease (PD). Experimental studies revealed neuroprotective effects of ghrelin in different PD models. The purpose of the present study was (i) to further elucidate the mechanism underlying the neuroprotective action of ghrelin and (ii) to determine whether these effects occur with both the acylated and the unacylated form. The study was conducted in primary mesencephalic cultures treated with mitochondrial complex I and complex II inhibitors. We show that protective effects of ghrelin against complex I inhibition with MPP+ were independent of the acylation status of ghrelin, although acylated ghrelin appeared to be more potent. Protection by both forms was also observed when neurons were exposed to the complex II inhibitor 3-NP. Both forms led to higher oxygen consumption rates upon electron transport chain uncoupling, indicating that the two peptides may exert uncoupling effects themselves. We demonstrate that the rescue provided by ghrelin required calcium influx through L-type voltage-gated calcium channels. Whereas the protective effects of acylated ghrelin required receptor binding, effects of the unacylated form remained unaffected by treatment with a ghrelin receptor antagonist. Importantly, inhibition of ghrelin O-acyltransferase failed to reduce the activity of unacylated ghrelin. Overall, our data suggest that both acylated and unacylated ghrelin afford protection to dopamine neurons but through mechanisms that only partially overlap. [less ▲]

Detailed reference viewed: 34 (0 UL)
Full Text
Peer Reviewed
See detailSLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila
Zanon, A; Kalvakuri, S; Rakovic, A et al

in Human Molecular Genetics (2017)

Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of ... [more ▼]

Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies. [less ▲]

Detailed reference viewed: 70 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons.
Grünewald, Anne UL; Rygiel, Karolina A.; Hepplewhite, Philippa D. et al

in Annals of Neurology (2016), 79(3), 366-378

OBJECTIVE: To determine the extent of respiratory chain abnormalities and investigate the contribution of mitochondrial DNA (mtDNA) to the loss of respiratory chain complexes (CI-IV) in the substantia ... [more ▼]

OBJECTIVE: To determine the extent of respiratory chain abnormalities and investigate the contribution of mitochondrial DNA (mtDNA) to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. METHODS: Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2 and COXI), and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (Porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number and presence of transcription/replication-associated 7S DNA employing a triplex real-time PCR assay. RESULTS: While mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At single-cell level, CI and II deficiencies were correlated in patients. The CI deficit concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe complex I deficiency. INTERPRETATION: Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. This article is protected by copyright. All rights reserved. [less ▲]

Detailed reference viewed: 287 (47 UL)
Full Text
Peer Reviewed
See detailUrinary LRRK2 phosphorylation: Penetrating the thicket of Parkinson disease?
Grünewald, Anne UL; Klein, C

in Neurology (2016)

Detailed reference viewed: 45 (3 UL)
Peer Reviewed
See detailA novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis.
Rocha, Mariana C.; Grady, John P.; Grünewald, Anne UL et al

in Scientific reports (2015), 5

Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme ... [more ▼]

Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches. [less ▲]

Detailed reference viewed: 106 (21 UL)
Peer Reviewed
See detailSCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts.
Deuse, Tobias; Wang, Dong; Stubbendorff, Mandy et al

in Cell Stem Cell (2015), 16(1), 33-8

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this ... [more ▼]

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this methodical breakthrough speculated that SCNT would allow the creation of patient-matched embryonic stem cells, even in patients with hereditary mitochondrial diseases. However, herein we show that mismatched mitochondria in nuclear-transfer-derived embryonic stem cells (NT-ESCs) possess alloantigenicity and are subject to immune rejection. In a murine transplantation setup, we demonstrate that allogeneic mitochondria in NT-ESCs, which are nucleus-identical to the recipient, may trigger an adaptive alloimmune response that impairs the survival of NT-ESC grafts. The immune response is adaptive, directed against mitochondrial content, and amenable for tolerance induction. Mitochondrial alloantigenicity should therefore be considered when developing therapeutic SCNT-based strategies. [less ▲]

Detailed reference viewed: 157 (12 UL)