Results 1-20 of 49.
((uid:50003110))

Bookmark and Share    
Full Text
Peer Reviewed
See detailA Statistical View on Calcium Oscillations.
Powell, Jake; Falcke, Martin; Skupin, Alexander UL et al

in Advances in experimental medicine and biology (2020), 1131

Transient rises and falls of the intracellular calcium concentration have been observed in numerous cell types and under a plethora of conditions. There is now a growing body of evidence that these whole ... [more ▼]

Transient rises and falls of the intracellular calcium concentration have been observed in numerous cell types and under a plethora of conditions. There is now a growing body of evidence that these whole-cell calcium oscillations are stochastic, which poses a significant challenge for modelling. In this review, we take a closer look at recently developed statistical approaches to calcium oscillations. These models describe the timing of whole-cell calcium spikes, yet their parametrisations reflect subcellular processes. We show how non-stationary calcium spike sequences, which e.g. occur during slow depletion of intracellular calcium stores or in the presence of time-dependent stimulation, can be analysed with the help of so-called intensity functions. By utilising Bayesian concepts, we demonstrate how values of key parameters of the statistical model can be inferred from single cell calcium spike sequences and illustrate what information whole-cell statistical models can provide about the subcellular mechanistic processes that drive calcium oscillations. In particular, we find that the interspike interval distribution of HEK293 cells under constant stimulation is captured by a Gamma distribution. [less ▲]

Detailed reference viewed: 322 (2 UL)
See detailFrom Diagnosing Diseases to Predicting Diseases
Balling, Rudi UL; Goncalves, Jorge UL; Magni, Stefano UL et al

in Betz, Ulrich A.K. (Ed.) Curious2018 (2019)

Chronic diseases can be considered as perturbations of complex adaptive systems. Transitions from healthy states to chronic diseases are often characterized by sudden and unexpected onset of diseases ... [more ▼]

Chronic diseases can be considered as perturbations of complex adaptive systems. Transitions from healthy states to chronic diseases are often characterized by sudden and unexpected onset of diseases. These critical transitions or catastrophic shifts have been studied in theoretical and applied physics, ecology, social science, economics and recently also in biomedical applications. If we could understand the underlying mechanisms and the dynamics of critical transitions involved in the development of diseases, we would be better equipped to predict and eventually prevent them from arising. The current paper gives an overview of the potential application of the concept of critical transitions to biomedical applications. [less ▲]

Detailed reference viewed: 99 (11 UL)
Full Text
Peer Reviewed
See detailMutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson's disease.
Grossmann, Dajana UL; Berenguer, Clara UL; Bellet, Marie Estelle et al

in Antioxidants & redox signaling (2019)

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial ... [more ▼]

OBJECTIVE: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition (MiST), which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. RESULTS: Here, for the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient-derived cellular models. Both mutations lead to decreased ER-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn lead to increased mitophagy. CONCLUSION: In summary, our data support the role of Miro1 in maintaining calcium homeostasis and mitochondrial quality control in PD. [less ▲]

Detailed reference viewed: 215 (30 UL)
See detailMitochondrial morphology provides a mechanism for energy buffering at synapses
Garcia, Guadalupe Clara UL; Bartol, Thomas M.; Phan, Sebastien A. et al

E-print/Working paper (2019)

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these ... [more ▼]

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these processes are well established, substantial evidence indicates that the internal structure is also highly variable in dependence on metabolic conditions. However, a quantitative mechanistic understanding of how mitochondrial morphology affects energetic states is still elusive. To address this question, we here present an agent-based dynamic model using three-dimensional morphologies from electron microscopy tomography which considers the molecular dynamics of the main ATP production components. We apply our modeling approach to mitochondria at the synapse which is the largest energy consumer within the brain. Interestingly, comparing the spatiotemporal simulations with a corresponding space-independent approach, we find minor space dependence when the system relaxes toward equilibrium but a qualitative difference in fluctuating environments. These results suggest that internal mitochondrial morphology is not only optimized for ATP production but also provides a mechanism for energy buffering and may represent a mechanism for cellular robustness. [less ▲]

Detailed reference viewed: 82 (8 UL)
See detailSingle-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids
Smits, Lisa UL; Magni, Stefano UL; Grzyb, Kamil UL et al

E-print/Working paper (2019)

Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organisation and function of a respective organ or part of an ... [more ▼]

Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organisation and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA-sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, and glutamatergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery. [less ▲]

Detailed reference viewed: 217 (45 UL)
Full Text
Peer Reviewed
See detailData-driven multiscale modeling reveals the role of metabolic coupling for the spatio-temporal growth dynamics of yeast colonies.
Intosalmi, Jukka; Scott, Adrian C.; Hays, Michelle et al

in BMC molecular and cell biology (2019), 20

Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result ... [more ▼]

Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell-cell and metabolic coupling lead to functionally optimized structures is still limited. Here, we present a data-driven spatial framework to computationally investigate the development of yeast colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed and parameterized a dynamic cell state and growth model for yeast based on on experimental data from homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation. We introduce a novel model for yeast colony formation, present a statistical methodology for model calibration in a data-driven manner, and demonstrate how the established model can be used to generate predictions across scales by validation against independent measurements of genetically distinct yeast strains. IM [less ▲]

Detailed reference viewed: 28 (4 UL)
Full Text
Peer Reviewed
See detailMitochondrial morphology provides a mechanism for energy buffering at synapses.
Garcia, Guadalupe Clara UL; Bartol, Thomas M.; Phan, Sébastien et al

in Scientific reports (2019), 9

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these ... [more ▼]

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these processes are well established, substantial evidence indicates that the internal structure is also highly variable in dependence on metabolic conditions. However, a quantitative mechanistic understanding of how mitochondrial morphology affects energetic states is still elusive. To address this question, we here present an agent-based multiscale model that integrates three-dimensional morphologies from electron microscopy tomography with the molecular dynamics of the main ATP producing components. We apply our modeling approach to mitochondria at the synapse which is the largest energy consumer within the brain. Interestingly, comparing the spatiotemporal simulations with a corresponding space-independent approach, we find minor spatial effects when the system relaxes toward equilibrium but a qualitative difference in fluctuating environments. These results suggest that internal mitochondrial morphology is not only optimized for ATP production but also provides a mechanism for energy buffering and may represent a mechanism for cellular robustness. IM [less ▲]

Detailed reference viewed: 42 (0 UL)
Full Text
Peer Reviewed
See detailStem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment
Dirkse, Anne; Golebiewska, Anna; Buder, Thomas et al

in Nature communications (2019), 10(1), 1787

Detailed reference viewed: 97 (3 UL)
Full Text
Peer Reviewed
See detailSingle-cell transcriptomics reveals distinct inflammation-induced microglia signatures
Sousa, Carole UL; Golebiewska, Anna; Poovathingal, Suresh K et al

in EMBO Reports (2018)

Microglia are specialized parenchymal‐resident phagocytes of the central nervous system (CNS) that actively support, defend and modulate the neural environment. Dysfunctional microglial responses are ... [more ▼]

Microglia are specialized parenchymal‐resident phagocytes of the central nervous system (CNS) that actively support, defend and modulate the neural environment. Dysfunctional microglial responses are thought to worsen CNS diseases; nevertheless, their impact during neuroinflammatory processes remains largely obscure. Here, using a combination of single‐cell RNA sequencing and multicolour flow cytometry, we comprehensively profile microglia in the brain of lipopolysaccharide (LPS)‐injected mice. By excluding the contribution of other immune CNS‐resident and peripheral cells, we show that microglia isolated from LPS‐injected mice display a global downregulation of their homeostatic signature together with an upregulation of inflammatory genes. Notably, we identify distinct microglial activated profiles under inflammatory conditions, which greatly differ from neurodegenerative disease‐associated profiles. These results provide insights into microglial heterogeneity and establish a resource for the identification of specific phenotypes in CNS disorders, such as neuroinflammatory and neurodegenerative diseases. [less ▲]

Detailed reference viewed: 108 (6 UL)
Full Text
Peer Reviewed
See detailOn the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling
Falcke, Martin; Moein, Mahsa UL; Tilunaite et al

in Chaos (2018), 28(4), 045115

Detailed reference viewed: 139 (13 UL)
Full Text
Peer Reviewed
See detailData-driven dynamical model indicates that the heat shock response in Chlamydomonas reinhardtii is tailored to handle natural temperature variation
Magni, Stefano UL; Succurro, Antonella; Skupin, Alexander UL et al

in Journal of the Royal Society, Interface (2018), 15(142), 20170965

Global warming exposes plants to severe heat stress, with consequent crop yield reduction. Organisms exposed to high temperature stresses typically protect themselves with a heat shock response (HSR ... [more ▼]

Global warming exposes plants to severe heat stress, with consequent crop yield reduction. Organisms exposed to high temperature stresses typically protect themselves with a heat shock response (HSR), where accumulation of unfolded proteins initiates the synthesis of heat shock proteins through the heat shock transcription factor HSF1. While the molecular mechanisms are qualitatively well characterized, our quantitative understanding of the under- lying dynamics is still very limited. Here, we study the dynamics of HSR in the photosynthetic model organism Chlamydomonas reinhardtii with a data-driven mathematical model of HSR. We based our dynamical model mostly on mass action kinetics, with a few nonlinear terms. The model was parametrized and validated by several independent datasets obtained from the literature. We demonstrate that HSR quantitatively and significantly differs if an increase in temperature of the same magnitude occurs abruptly, as often applied under laboratory conditions, or gradually, which would rather be expected under natural conditions. In contrast to rapid temperature increases, under gradual changes only negligible amounts of misfolded proteins accumulate, indicating that the HSR of C. reinhardtii efficiently avoids the accumulation of misfolded proteins under conditions most likely to prevail in nature. The mathematical model we developed is a flexible tool to simulate the HSR to different conditions and complements the current experimental approaches. [less ▲]

Detailed reference viewed: 113 (16 UL)
Full Text
Peer Reviewed
See detailCaSiAn: a Calcium Signaling Analyzer tool
Moein, Mahsa UL; Grzyb, Kamil UL; Gonçalves Martins, Teresa et al

in Bioinformatics (2018), 1

Ca2þ is a central second messenger in eukaryotic cells that regulates many cellular proc- esses. Recently, we have indicated that typical Ca2þ signals are not purely oscillatory as widely assumed, but ... [more ▼]

Ca2þ is a central second messenger in eukaryotic cells that regulates many cellular proc- esses. Recently, we have indicated that typical Ca2þ signals are not purely oscillatory as widely assumed, but exhibit stochastic spiking with cell type and pathway specific characteristics. Here, we present the Calcium Signaling Analyzer (CaSiAn), an open source software tool that allows for quantifying these signal characteristics including individual spike properties and time course statis- tics in a semi-automated manner. CaSiAn provides an intuitive graphical user interface allowing experimentalists to easily process a large amount of Ca2þ signals, interactively tune peak detection, revise statistical measures and access the quantified signal properties as excel or text files. [less ▲]

Detailed reference viewed: 65 (4 UL)
Full Text
Peer Reviewed
See detailLoss of inter-cellular cooperation by complete epithelial-mesenchymal transition supports favorable outcomes in basal breast cancer patients
Grosse-Wilde, Anne; Kuestner, Rolf E.; Skelton, Stephanie M. et al

in Oncotarget (2018), 9(28), 20018

According to the sequential metastasis model, aggressive mesenchymal (M) metastasis-initiating cells (MICs) are generated by an epithelial-mesenchymal transition (EMT) which eventually is reversed by a ... [more ▼]

According to the sequential metastasis model, aggressive mesenchymal (M) metastasis-initiating cells (MICs) are generated by an epithelial-mesenchymal transition (EMT) which eventually is reversed by a mesenchymal-epithelial transition (MET) and outgrowth of life-threatening epithelial (E) macrometastases. Paradoxically, in breast cancer M signatures are linked with more favorable outcomes than E signatures, and M cells are often dispensable for metastasis in mouse models. Here we present evidence at the cellular and patient level for the cooperation metastasis model, according to which E cells are MICs, while M cells merely support E cell persistence through cooperation. We tracked the fates of co-cultured E and M clones and of fluorescent CDH1-promoter-driven cell lines reporting the E state derived from basal breast cancer HMLER cells. Cells were placed in suspension state and allowed to reattach and select an EMT cell fate. Flow cytometry, single cell and bulk gene expression analyses revealed that only pre-existing E cells generated E cells, mixed E/M populations, or stem-like hybrid E/M cells after suspension and that complete EMT manifest in M clones and CDH1-negative reporter cells resulted in loss of cell plasticity, suggesting full transdifferentiation. Mechanistically, E-M coculture experiments supported the persistence of pre-existing E cells where M cells inhibited EMT of E cells in a mutual cooperation via direct cell-cell contact. Consistently, M signatures were associated with more favorable patient outcomes compared to E signatures in breast cancer, specifically in basal breast cancer patients. These findings suggest a potential benefit of complete EMT for basal breast cancer patients. [less ▲]

Detailed reference viewed: 59 (3 UL)
Full Text
Peer Reviewed
See detailHow to address cellular heterogeneity by distribution biology
Skupin, Alexander UL; Komin, Niko UL

in Current Opinion in Systems Biology (2017), 3

Cellular heterogeneity is an immanent property of biological systems that covers very different aspects of life ranging from genetic diversity to cell-to-cell variability driven by stochastic molecular ... [more ▼]

Cellular heterogeneity is an immanent property of biological systems that covers very different aspects of life ranging from genetic diversity to cell-to-cell variability driven by stochastic molecular interactions, and noise induced cell differentiation. Here, we review recent developments in characterizing cellular heterogeneity by distributions and argue that understanding multicellular life requires the analysis of heterogeneity dy- namics at single cell resolution by integrative approaches that combine methods from non-equilibrium statistical physics, in- formation theory and omics biology. [less ▲]

Detailed reference viewed: 378 (168 UL)
Full Text
Peer Reviewed
See detailInhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1-/- zebrafish
Soman, Smijin; Keatinge, Marcus; Moein, Mahsa et al

in European Journal of Neuroscience (2017), 45(4), 528

Detailed reference viewed: 27 (2 UL)
Full Text
Peer Reviewed
See detailNeurological Diseases from a Systems Medicine Point of View.
Ostaszewski, Marek UL; Skupin, Alexander UL; Balling, Rudi UL

in Methods in molecular biology (Clifton, N.J.) (2016), 1386

The difficulty to understand, diagnose, and treat neurological disorders stems from the great complexity of the central nervous system on different levels of physiological granularity. The individual ... [more ▼]

The difficulty to understand, diagnose, and treat neurological disorders stems from the great complexity of the central nervous system on different levels of physiological granularity. The individual components, their interactions, and dynamics involved in brain development and function can be represented as molecular, cellular, or functional networks, where diseases are perturbations of networks. These networks can become a useful research tool in investigating neurological disorders if they are properly tailored to reflect corresponding mechanisms. Here, we review approaches to construct networks specific for neurological disorders describing disease-related pathology on different scales: the molecular, cellular, and brain level. We also briefly discuss cross-scale network analysis as a necessary integrator of these scales. [less ▲]

Detailed reference viewed: 248 (8 UL)
Full Text
Peer Reviewed
See detailAnalysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization
Nonnenmacher, Yannic; Palorini, Roberta; d’ Herouël, Aymeric Fouquier et al

in Metabolic Engineering (2016)

Detailed reference viewed: 99 (3 UL)
Full Text
Peer Reviewed
See detailCell Fate Decision as High-Dimensional Critical State Transition
Mojtahedi, Mitra; Skupin, Alexander UL; Zhou, Joseph et al

in PLOS Biology (2016), 14(12), 2000640

Detailed reference viewed: 157 (14 UL)