Results 1-20 of 715.
((uid:50002797))

Bookmark and Share    
Full Text
Peer Reviewed
See detailUAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization
Tran Dinh, Hieu UL; Nguyen, van Dinh UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2021)

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of ... [more ▼]

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of disaster prediction, damageassessment, and rescue operations promptly. A UAV can bedeployed as a flying base station (BS) to collect data from time-constrained IoT devices and then transfer it to a ground gateway(GW). In general, the latency constraint at IoT devices and UAV’slimited storage capacity highly hinder practical applicationsof UAV-assisted IoT networks. In this paper, full-duplex (FD)radio is adopted at the UAV to overcome these challenges. Inaddition, half-duplex (HD) scheme for UAV-based relaying isalso considered to provide a comparative study between twomodes (viz., FD and HD). Herein, a device is considered tobe successfully served iff its data is collected by the UAV andconveyed to GW timely during flight time. In this context,we aim to maximize the number of served IoT devices byjointly optimizing bandwidth, power allocation, and the UAVtrajectory while satisfying each device’s requirement and theUAV’s limited storage capacity. The formulated optimizationproblem is troublesome to solve due to its non-convexity andcombinatorial nature. Towards appealing applications, we firstrelax binary variables into continuous ones and transform theoriginal problem into a more computationally tractable form.By leveraging inner approximation framework, we derive newlyapproximated functions for non-convex parts and then develop asimple yet efficient iterative algorithm for its solutions. Next,we attempt to maximize the total throughput subject to thenumber of served IoT devices. Finally, numerical results showthat the proposed algorithms significantly outperform benchmarkapproaches in terms of the number of served IoT devices andsystem throughput. [less ▲]

Detailed reference viewed: 27 (3 UL)
Full Text
Peer Reviewed
See detailA Cubesat-ready Phase Synchronization Digital Payload for Coherent Distributed Remote Sensing Missions
Querol, Jorge UL; Merlano Duncan, Juan Carlos UL; Martinez Marrero, Liz UL et al

in 2021 International Geoscience and Remote Sensing Symposium (2021)

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote ... [more ▼]

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote phase synchronization of physically separated oscillators is the first step towards a coherent operation of distributed systems. This work shows the preliminary results of a TDD remote phase synchronization algorithm with a master-follower architecture. Herein, we describe the implementation and validation of the proposed algorithm. The implementation has been conducted in a Cubesat-ready software defined radio and validated at the end-to-end satellite communications testbed available at the University of Luxembourg. [less ▲]

Detailed reference viewed: 37 (5 UL)
Full Text
Peer Reviewed
See detailMulti-Antenna Data-Driven Eavesdropping Attacks and Symbol-Level Precoding Countermeasures
Mayouche, Abderrahmane UL; Alves Martins, Wallace UL; Tsinos, Christos UL et al

in IEEE Open Journal of Vehicular Technology (2021)

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a ... [more ▼]

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a legit user trying to eavesdrop other users. In this setting, we exploit machine learning (ML) tools to design soft and hard decoding schemes by using precoded pilot symbols as training data. The proposed ML frameworks allow an Eve to determine the transmitted message with high accuracy. We thereby show that MU-MISO systems are vulnerable to such eavesdropping attacks even when relatively secure transmission techniques are employed, such as symbol-level precoding (SLP). To counteract this attack, we propose two novel SLP-based schemes that increase the bit-error rate at Eve by impeding the learning process. We design these two security-enhanced schemes to meet different requirements regarding runtime, security, and power consumption. Simulation results validate both the ML-based eavesdropping attacks as well as the countermeasures, and show that the gain in security is achieved without affecting the decoding performance at the intended users. [less ▲]

Detailed reference viewed: 36 (2 UL)
Full Text
Peer Reviewed
See detailExploiting Jamming Attacks for Energy Harvesting in Massive MIMO Systems
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to ... [more ▼]

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. An optimal time-switching policy is also proposed to ensure user-fairness in terms of both harvested energy and achievable rate. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can make use of RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Numerical results illustrate the effectiveness of the derived closed-form expressions over Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailBroadband Non-Geostationary Satellite Communication Systems: Research Challenges and Key Opportunities
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless ... [more ▼]

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless industries. These new scenarios bring many unprecedented challenges that will be discussed in this paper alongside with several potential future research opportunities. NGSO systems are known for various advantages, including their important features of low cost, lower propagation delay, smaller size, and lower losses in comparison to GSO satellites. However, there are still many deployment challenges to be tackled to ensure seamless integration not only with GSO systems but also with terrestrial networks. In this paper, we discuss several key challenges including satellite constellation and architecture designs, coexistence with GSO systems in terms of spectrum access and regulatory issues, resource management algorithms, and NGSO networking requirements. Additionally, the latest progress in provisioning secure communication via NGSO systems is discussed. Finally, this paper identifies multiple important open issues and research directions to inspire further studies towards the next generation of satellite networks. [less ▲]

Detailed reference viewed: 21 (0 UL)
Full Text
Peer Reviewed
See detailEnergy Efficiency Optimization Technique for SWIPT-enabled Multi-Group Multicasting Systems with Heterogeneous Users
Gautam, Sumit UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in The international Conference on Acoustics, Speech, & Signal Processing (ICASSP) (2021, June)

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In ... [more ▼]

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In this context, we investigate a precoder design framework to explicitly serve the ID and EH users categorized within certain MC and EH groups. Specifically, the ID users are categorized within multiple MC groups while the EH users are a part of single (last) group. We formulate a problem to optimize the energy efficiency in the considered scenario under a quality-of-service (QoS) constraint. An algorithm based on Dinkelback method, slack-variable replacement, and second-order conic programming (SOCP)/semi-definite relaxation (SDR) is proposed to obtain a suitable solution for the above-mentioned fractional-objective dependent non-convex problem. Simulation results illustrate the benefits of proposed algorithm under several operating conditions and parameter values, while drawing a comparison between the two proposed methods. [less ▲]

Detailed reference viewed: 50 (4 UL)
Full Text
Peer Reviewed
See detailChannel Modeling and Analysis of Reconfigurable Intelligent Surfaces Assisted Vehicular Networks
Kong, Long UL; He, Jiguang; Ai, Yun et al

Scientific Conference (2021, June)

Detailed reference viewed: 65 (4 UL)
Full Text
Peer Reviewed
See detailA design strategy for phase synchronization in Precoding-enabled DVB-S2X user terminals
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2021, June)

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the ... [more ▼]

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the channel, and the thermal noise at the receiver are taken into account. Using the expected phase noise mask, the optimal parameters for a second-order PLL intended to track channel variations from the pilots are calculated. To validate the results a Simulink model was implemented considering the characteristics of the hardware prototype. The performance of the design was evaluated in terms of the accuracy and stability for the frame structure of superframe Format 2, as described in Annex E of DVB-S2X. [less ▲]

Detailed reference viewed: 87 (5 UL)
Full Text
Peer Reviewed
See detailEnergy Minimization in UAV-Aided Networks: Actor-Critic Learning for Constrained Scheduling Optimization
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in IEEE Transactions on Vehicular Technology (2021)

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we ... [more ▼]

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we investigate energy minimization for UAV-aided communication networks by jointly optimizing data-transmission scheduling and UAV hovering time. The formulated problem is combinatorial and non-convex with bilinear constraints. To tackle the problem, firstly, we provide an optimal relax-and-approximate solution and develop a near-optimal algorithm. Both the proposed solutions are served as offline performance benchmarks but might not be suitable for online operation. To this end, we develop a solution from a deep reinforcement learning (DRL) aspect. The conventional RL/DRL, e.g., deep Q-learning, however, is limited in dealing with two main issues in constrained combinatorial optimization, i.e., exponentially increasing action space and infeasible actions. The novelty of solution development lies in handling these two issues. To address the former, we propose an actor-critic-based deep stochastic online scheduling (AC-DSOS) algorithm and develop a set of approaches to confine the action space. For the latter, we design a tailored reward function to guarantee the solution feasibility. Numerical results show that, by consuming equal magnitude of time, AC-DSOS is able to provide feasible solutions and saves 29.94% energy compared with a conventional deep actor-critic method. Compared to the developed near-optimal algorithm, AC-DSOS consumes around 10% higher energy but reduces the computational time from minute-level to millisecond-level. [less ▲]

Detailed reference viewed: 47 (12 UL)
Full Text
Peer Reviewed
See detail5G-SpaceLab
Querol, Jorge UL; Abdalla, Abdelrahman UL; Bokal, Zhanna UL et al

Poster (2021, April 19)

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼]

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲]

Detailed reference viewed: 205 (15 UL)
Full Text
Peer Reviewed
See detailActor‑critic learning‑based energy optimization for UAV access and backhaul networks
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in EURASIP Journal on Wireless Communications and Networking (2021)

In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In ... [more ▼]

In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In this paper, we investigate an energy minimization problem with a limited power supply for both backhaul and access links. The difficul- ties for solving such a non-convex and combinatorial problem lie at the high compu- tational complexity/time. In solution development, we consider the approaches from both actor-critic deep reinforcement learning (AC-DRL) and optimization perspectives. First, two offline non-learning algorithms, i.e., an optimal and a heuristic algorithms, based on piecewise linear approximation and relaxation are developed as benchmarks. Second, toward real-time decision-making, we improve the conventional AC-DRL and propose two learning schemes: AC-based user group scheduling and backhaul power allocation (ACGP), and joint AC-based user group scheduling and optimization-based backhaul power allocation (ACGOP). Numerical results show that the computation time of both ACGP and ACGOP is reduced tenfold to hundredfold compared to the offline approaches, and ACGOP is better than ACGP in energy savings. The results also verify the superiority of proposed learning solutions in terms of guaranteeing the feasibility and minimizing the system energy compared to the conventional AC-DRL. [less ▲]

Detailed reference viewed: 55 (9 UL)
Full Text
Peer Reviewed
See detailModeling and Optimization of RF-Energy Harvesting-assisted Quantum Battery System
Gautam, Sumit UL; Sharma, Shree Krishna UL; Chatzinotas, Symeon UL et al

in Proceedings of 2021 IEEE 93rd Vehicular Technology Conference: VTC2021-Spring (2021, April)

The quest for finding a small-sized energy supply to run the small-scale wireless gadgets, with almost an infinite lifetime, has intrigued humankind since past several decades. In this context, the ... [more ▼]

The quest for finding a small-sized energy supply to run the small-scale wireless gadgets, with almost an infinite lifetime, has intrigued humankind since past several decades. In this context, the concept of Quantum batteries has come into limelight more recently to serve the purpose. However, the main issue revolving around the closed-system design of Quantum batteries is to ensure a loss-less environment, which is extremely difficult to realize in practice. In this paper, we present the modeling and optimization aspects of a Radio-Frequency (RF) Energy Harvesting (EH) assisted Quantum battery, wherein several EH modules (in the form of micro- or nano- sized integrated circuits (ICs)) help each of the involved Quantum sources achieve the so-called quasi-stable state. Specifically, a micro-controller manages the overall harvested energy from the RF-EH ICs and a photon emitting device, such that the emitted photons are absorbed by the electrons in the Quantum sources. In order to precisely model and optimize the considered framework, we formulate a transmit power minimization problem for an RF-based wireless system to optimize the number of RF-EH ICs under the given EH constraints at the Quantum battery-enabled wireless device. We obtain an analytical solution to the above-mentioned problem using a rational approach, while additionally seeking another solution obtained via a non-linear program solver. The effectiveness of the proposed technique is reported in the form of numerical results by taking a range of system parameters into account. [less ▲]

Detailed reference viewed: 129 (8 UL)
Full Text
Peer Reviewed
See detailJoint Beam-Hopping Scheduling and Power Allocation in NOMA-Assisted Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

Scientific Conference (2021, March 31)

In this paper, we investigate potential synergies of non-orthogonal multiple access (NOMA) and beam hopping (BH) for multi-beam satellite systems. The coexistence of BH and NOMA provides time-power-domain ... [more ▼]

In this paper, we investigate potential synergies of non-orthogonal multiple access (NOMA) and beam hopping (BH) for multi-beam satellite systems. The coexistence of BH and NOMA provides time-power-domain flexibilities in mitigating a practical mismatch effect between offered capacity and requested traffic per beam. We formulate the joint BH scheduling and NOMA-based power allocation problem as mixed-integer nonconvex programming. We reveal the xponential-conic structure for the original problem, and reformulate the problem to the format of mixed-integer conic programming (MICP), where the optimum can be obtained by exponential-complexity algorithms. A greedy scheme is proposed to solve the problem on a timeslot-by-timeslot basis with polynomial-time complexity. Numerical results show the effectiveness of the proposed efficient suboptimal algorithm in reducing the matching error by 62.57% in average over the OMA scheme and achieving a good trade-off between computational complexity and performance compared to the optimal solution. [less ▲]

Detailed reference viewed: 68 (17 UL)
Full Text
Peer Reviewed
See detailShort-Packet Communications for MIMO NOMA Systems over Nakagami-m Fading: BLER and Minimum Blocklength Analysis
Tran, Duc Dung UL; Sharma, Shree Krishna UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Vehicular Technology (2021)

Recently, ultra-reliable and low-latency communications (URLLC) using short-packets has been proposed to fulfill the stringent requirements regarding reliability and latency of emerging applications in 5G ... [more ▼]

Recently, ultra-reliable and low-latency communications (URLLC) using short-packets has been proposed to fulfill the stringent requirements regarding reliability and latency of emerging applications in 5G and beyond networks. In addition, multiple-input multiple-output non-orthogonal multiple access (MIMO NOMA) is a potential candidate to improve the spectral efficiency, reliability, latency, and connectivity of wireless systems. In this paper, we investigate short-packet communications (SPC) in a multiuser downlink MIMO NOMA system over Nakagami-m fading, and propose two antenna-user selection methods considering two clusters of users having different priority levels. In contrast to the widely-used long data-packet assumption, the SPC analysis requires the redesign of the communication protocols and novel performance metrics. Given this context, we analyze the SPC performance of MIMO NOMA systems using the average block error rate (BLER) and minimum blocklength, instead of the conventional metrics such as ergodic capacity and outage capacity. More specifically, to characterize the system performance regarding SPC, asymptotic (in the high signal-to-noise ratio regime) and approximate closed-form expressions of the average BLER at the users are derived. Based on the asymptotic behavior of the average BLER, an analysis of the diversity order, minimum blocklength, and optimal power allocation is carried out. The achieved results show that MIMO NOMA can serve multiple users simultaneously using a smaller blocklength compared with MIMO OMA, thus demonstrating the benefits of MIMO NOMA for SPC in minimizing the transmission latency. Furthermore, our results indicate that the proposed methods not only improve the BLER performance, but also guarantee full diversity gains for the respective users. [less ▲]

Detailed reference viewed: 101 (5 UL)
Full Text
Peer Reviewed
See detailAutomotive Squint-forward-looking SAR: High Resolution and Early Warning
Hu, Ruizhi UL; Mysore Rama Rao, Bhavani Shankar UL; Murtada, Ahmed Abdelnaser Elsayed UL et al

in IEEE Journal of Selected Topics in Signal Processing (2021)

Forward-looking automotive radars can sense long-distant targets to enable early warning, but the lateral resolution is limited. Synthetic aperture radar (SAR) techniques can achieve very high azimuth ... [more ▼]

Forward-looking automotive radars can sense long-distant targets to enable early warning, but the lateral resolution is limited. Synthetic aperture radar (SAR) techniques can achieve very high azimuth resolution but cannot resolve targets in the forward direction. As a trade-off, squint-forward-looking SAR (SFL-SAR) can perform 2D imaging on a distant area squint to the moving direction, providing both high resolution and early warning. In this paper, we analyzed and derived the constraints of automotive SFL-SAR to satisfy both the required resolution and braking distance. Simulations and imaging results verified the analysis. [less ▲]

Detailed reference viewed: 86 (10 UL)
Full Text
Peer Reviewed
See detailEfficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks
Nguyen, van Dinh UL; Sharma, Shree Krishna UL; Vu, Thang Xuan UL et al

in IEEE Internet of Things Journal (2021), 8(5), 3394-3409

Federated learning (FL) allows multiple edge computing nodes to jointly build a shared learning model without having to transfer their raw data to a centralized server, thus reducing communication ... [more ▼]

Federated learning (FL) allows multiple edge computing nodes to jointly build a shared learning model without having to transfer their raw data to a centralized server, thus reducing communication overhead. However, FL still faces a number of challenges such as non-iid distributed data and heterogeneity of user equipments (UEs). Enabling a large number of UEs to join the training process in every round raises a potential issue of the heavy global communication burden. To address these issues, we generalize the current state-of-the-art Federated Averaging (FedAvg) by adding a weight-based proximal term to the local loss function. The proposed FL algorithm runs stochastic gradient descent in parallel on a sampled subset of the total UEs with replacement during each global round. We provide a convergence upper bound characterizing the trade-off between convergence rate and global rounds, showing that a small number of active UEs per round still guarantees convergence. Next, we employ the proposed FL algorithm in wireless Internet-of-Things (IoT) networks to minimize either total energy consumption or completion time of FL, where a simple yet efficient path-following algorithm is developed for its solutions. Finally, numerical results on unbalanced datasets are provided to demonstrate the performance improvement and robustness on the convergence rate of the proposed FL algorithm over FedAvg. They also reveal that the proposed algorithm requires much less training time and energy consumption than the FL algorithm with full user participation. These observations advocate the proposed FL algorithm for a paradigm shift in bandwidth- constrained learning wireless IoT networks. [less ▲]

Detailed reference viewed: 310 (41 UL)
Full Text
Peer Reviewed
See detailDesign Optimization for Low-Complexity FPGA Implementation of Symbol-Level Multiuser Precoding
Haqiqatnejad, Alireza UL; Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL et al

in IEEE Access (2021), 9

This paper proposes and validates a low-complexity FPGA design for symbol-level precoding (SLP) in multiuser multiple-input single-output (MISO) downlink communication systems. In the optimal case, the ... [more ▼]

This paper proposes and validates a low-complexity FPGA design for symbol-level precoding (SLP) in multiuser multiple-input single-output (MISO) downlink communication systems. In the optimal case, the symbol-level precoded transmit signal is obtained as the solution to an optimization problem tailored for a given set of users’ data symbols. This symbol-by-symbol design, however, imposes excessive computational complexity on the system. To alleviate this issue, we aim to reduce the per-symbol complexity of the SLP scheme by developing an approximate yet computationally-efficient closed-form solution. The proposed solution allows us to achieve a high symbol throughput in real-time implementations. To develop the FPGA design, we express the proposed solution in an algorithmic way and translate it to hardware description language (HDL). We then optimize the processing to accelerate the performance and generate the corresponding intellectual property (IP) core. We provide the synthesis report for the generated IP core, including performance and resource utilization estimates and interface descriptions. To validate our design, we simulate an uncoded transmission over a downlink multiuser channel using the LabVIEW software, where the SLP IP core is implemented as a clock-driven logic (CDL) unit. Our simulation results show that a throughput of 100 Mega symbols per second per user can be achieved via the proposed SLP design. We further use the MATLAB software to produce numerical results for the conventional zero-forcing (ZF) and the optimal SLP techniques as benchmarks for comparison. Thereby, it is shown that the proposed FPGA implementation of SLP offers an improvement of up to 50 percent in power efficiency compared to the ZF precoding. Remarkably, it enjoys the same per-symbol complexity order as that of the ZF technique. We also evaluate the loss of the real-time SLP design, introduced by the algebraic approximations and arithmetic inaccuracies, with respect to the optimal scheme. [less ▲]

Detailed reference viewed: 53 (7 UL)
Full Text
Peer Reviewed
See detailMachine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Nguyen, van Dinh UL et al

in IEEE Transactions on Wireless Communications (2021), 20(6), 3710-3722

We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial ... [more ▼]

We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information (CSI), the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and quality of service (QoS) requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a deep neural network (DNN) to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance. [less ▲]

Detailed reference viewed: 79 (21 UL)