Results 1-20 of 41.
((uid:50002203))

Bookmark and Share    
Full Text
Peer Reviewed
See detailCancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic CancerCancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic Cancer
Peiffer, Raphaël; Boumahd, Yasmine; Gullo, Charlotte et al

in Cancers (2023)

Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients remains at only 9%. Patients often show poor treatment response, due partly to a highly complex tumor ... [more ▼]

Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients remains at only 9%. Patients often show poor treatment response, due partly to a highly complex tumor microenvironment (TME). Cancer-associated fibroblast (CAF) heterogeneity is characteristic of the pancreatic TME, where several CAF subpopulations have been identified, such as myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen presenting CAFs (apCAFs). In PDAC, cancer cells continuously adapt their metabolism (metabolic switch) to environmental changes in pH, oxygenation, and nutrient availability. Recent advances show that these environmental alterations are all heavily driven by stromal CAFs. CAFs and cancer cells exchange cytokines and metabolites, engaging in a tight bidirectional crosstalk, which promotes tumor aggressiveness and allows constant adaptation to external stress, such as chemotherapy. In this review, we summarize CAF diversity and CAF-mediated metabolic rewiring, in a PDAC-specific context. First, we recapitulate the most recently identified CAF subtypes, focusing on the cell of origin, activation mechanism, species-dependent markers, and functions. Next, we describe in detail the metabolic crosstalk between CAFs and tumor cells. Additionally, we elucidate how CAF-driven paracrine signaling, desmoplasia, and acidosis orchestrate cancer cell metabolism. Finally, we highlight how the CAF/cancer cell crosstalk could pave the way for new therapeutic strategies. [less ▲]

Detailed reference viewed: 89 (2 UL)
Full Text
Peer Reviewed
See detailThe gut microbial metabolite formate exacerbates colorectal cancer progression
Ternes, Dominik UL; Tsenkova, Mina UL; Pozdeev, Vitaly UL et al

in Nature Metabolism (2022)

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the ... [more ▼]

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression. [less ▲]

Detailed reference viewed: 198 (13 UL)
Full Text
Peer Reviewed
See detailEvolution of the murine gut resistome following broad-spectrum antibiotic treatment.
de Nies, Laura UL; Busi, Susheel Bhanu UL; Tsenkova, Mina UL et al

in Nature communications (2022), 13(1), 2296

The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive ... [more ▼]

The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan. [less ▲]

Detailed reference viewed: 56 (5 UL)
Full Text
Peer Reviewed
See detailInvestigating children's chemical exposome - Description and possible determinants of exposure in the region of Luxembourg based on hair analysisInvestigating children's chemical exposome - Description and possible determinants of exposure in the region of Luxembourg based on hair analysis
Iglesias-González, Alba; Schweitzer, Mylène; Palazzi, Paul et al

in Water and Environmental International (2022)

The specific physiology and behaviour of children makes them particularly vulnerable to chemical exposure. Specific studies must therefore be conducted to understand the impact of pollution on children's ... [more ▼]

The specific physiology and behaviour of children makes them particularly vulnerable to chemical exposure. Specific studies must therefore be conducted to understand the impact of pollution on children's health. Human biomonitoring is a reliable approach for exposure assessment, and hair, allowing the detection of parent chemicals and metabolites, and covering wider time windows than urine and blood is particularly adapted to study chronic exposure. The present study aims at assessing chemical exposure and investigating possible determinants of exposure in children living in Luxembourg. Hair samples were collected from 256 children below 13 y/o and tested for 153 compounds (140 pesticides, 4 PCBs, 7 BDEs and 2 bisphenols). Moreover, anthropometric parameters, information on diet, residence, and presence of pets at home was collected through questionnaires. Correlations, regressions, t-tests, PLS-DA and MANOVAs, were used to investigate exposure patterns. Twenty-nine to 88 (median = 61) compounds were detected per sample. The highest median concentration was observed for BPA (133.6 pg/mg). Twenty-three biomarkers were detected in ≥ 95% of the samples, including 13 in all samples (11 pesticides, BPA and BPS). Exposure was higher at younger ages (R2 = 0.57), and boys were more exposed to non-persistent pesticides than girls. Presence of persistent organic pollutants in most children suggests that exposure is still ongoing. Moreover, diet (e.g. imazalil: 0.33 pg/mg in organic, 1.15 pg/mg in conventional, p-value < 0.001), residence area (e.g. imidacloprid: 0.29 pg/mg in urban, 0.47 pg/mg in countryside, p-value = 0.03), and having pets (e.g. fipronil: 0.32 pg/mg in pets, 0.09 pg/mg in no pets, p-value < 0.001) were identified as determinants of exposure. The present study demonstrates that children are simultaneously exposed to multiple pollutants from different chemical classes, and confirms the suitability of hair to investigate exposure. These results set the basis for further investigations to better understand the determinants of chemical exposure in children. [less ▲]

Detailed reference viewed: 36 (2 UL)
Full Text
Peer Reviewed
See detailMitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis
Kiweler, Nicole; Delbrouck, Catherine; Pozdeev, Vitaly UL et al

in Nature Communications (2022)

Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells ... [more ▼]

Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential. [less ▲]

Detailed reference viewed: 29 (0 UL)
Full Text
Peer Reviewed
See detailStromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages
Stadler, Mira; Pudelko, Karoline; Biermeier, Alexander et al

in Cancer Letters (2021)

Colorectal cancer (CRC) accounts for about 10% of cancer deaths worldwide. Colon carcinogenesis is critically influenced by the tumor microenvironment. Cancer associated fibroblasts (CAFs) and tumor ... [more ▼]

Colorectal cancer (CRC) accounts for about 10% of cancer deaths worldwide. Colon carcinogenesis is critically influenced by the tumor microenvironment. Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) represent the major components of the tumor microenvironment. TAMs promote tumor progression, angiogenesis and tissue remodeling. However, the impact of the molecular crosstalk of tumor cells (TCs) with CAFs and macrophages on monocyte recruitment and their phenotypic conversion is not known in detail so far. In a 3D human organotypic CRC model, we show that CAFs and normal colonic fibroblasts are critically involved in monocyte recruitment and for the establishment of a macrophage phenotype, characterized by high CD163 expression. This is in line with the steady recruitment and differentiation of monocytes to immunosuppressive macrophages in the normal colon. Cytokine profiling revealed that CAFs produce M-CSF, and IL6, IL8, HGF and CCL2 secretion was specifically induced by CAFs in co-cultures with macrophages. Moreover, macrophage/CAF/TCs co-cultures increased TC invasion. We demonstrate that CAFs and macrophages are the major producers of CCL2 and, upon co-culture, increase their CCL2 production twofold and 40-fold, respectively. CAFs and macrophages expressing high CCL2 were also found in vivo in CRC, strongly supporting our findings. CCL2, CCR2, CSF1R and CD163 expression in macrophages was dependent on active MCSFR signaling as shown by M-CSFR inhibition. These results indicate that colon fibroblasts and not TCs are the major cellular component, recruiting and dictating the fate of infiltrated monocytes towards a specific macrophage population, characterized by high CD163 expression and CCL2 production. [less ▲]

Detailed reference viewed: 40 (1 UL)
Full Text
Peer Reviewed
See detailMapping the Metabolic Networks of Tumor Cells and Cancer-Associated Fibroblasts
Karta, Jessica UL; Bossicard, Ysaline UL; Kotzamanis, Konstantinos UL et al

in Cells (2021)

Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known ... [more ▼]

Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one important component of the TME. CAFs play a significant role in reprogramming the metabolic landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather unclear. This review aims to highlight the metabolic landscape of tumor cells and CAFs, including their recently identified subtypes, in different tumor types. In addition, we discuss various in vitro and in vivo metabolic techniques as well as different in silico computational tools that can be used to identify and characterize CAF–tumor cell interactions. Finally, we provide our view on how mapping the complex metabolic networks of stromal-tumor metabolism will help in finding novel metabolic targets for cancer treatment. [less ▲]

Detailed reference viewed: 220 (27 UL)
Full Text
Peer Reviewed
See detailHighly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF
Lesur, Antoine; Schmit, Pierre-Olivier; Bernardin, François et al

in Analytical Chemistry (2021)

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a ... [more ▼]

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations. [less ▲]

Detailed reference viewed: 104 (3 UL)
Full Text
See detailUnderstanding the role of Fusobacterium nucleatum metabolism in colon cancer initiation and progression
Ternes, Dominik UL; Karta, Jessica UL; Tsenkova, Mina UL et al

Poster (2020, February 22)

Accumulating evidence suggests that dysbiosis, a state of pathological imbalance in the human gut microbiome, is present in patients suffering from colorectal cancer (CRC). 16S rRNA gene sequencing, as ... [more ▼]

Accumulating evidence suggests that dysbiosis, a state of pathological imbalance in the human gut microbiome, is present in patients suffering from colorectal cancer (CRC). 16S rRNA gene sequencing, as well as metagenomic and metatranscriptomic analyses, identified specific bacteria being associated with CRC. Among others, Fusobacterium ssp. have been found to directly interact with cancer or immune cells of their host. However, only a limited number of CRC-associated microbes have been examined for host-microbial interactions and, as such, the role of bacteria in the etiology of the disease remains largely elusive. Our aim is the development of predictive and experimental models that allow to not only study the host-microbiota interactions but are also amenable to high-throughput experimentation and large-scale omics-data integration. Ultimately, such models should help to get from meta-omics to cellular mechanism and, moreover, serve as tools for reproducible analyses of host-microbial interaction mechanisms of on a transcriptomic, proteomic, and metabolomic level. Our research proposes an integrative study approach allowing us to bridge meta-omics with functional mechanisms by focusing on the interaction taking place between F. nucleatum and patient-derived CRC cells. [less ▲]

Detailed reference viewed: 249 (35 UL)
Full Text
Peer Reviewed
See detailMicrobiome in Colorectal Cancer: How to Getfrom Meta-omics to Mechanism?
Ternes, Dominik UL; Karta, Jessica UL; Tsenkova, Mina UL et al

in Trends in Microbiology (2020)

Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have ... [more ▼]

Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease path-ways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question.Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome’s role in cancer pathogenesis [less ▲]

Detailed reference viewed: 330 (38 UL)
Full Text
Peer Reviewed
See detailPrognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges
Koncina, Eric UL; Haan, Serge UL; Rauh, Stefan et al

in Cancers (2020)

Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations ... [more ▼]

Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations in RAS, along with the mismatch repair gene deficiency, are currently routinely tested in clinics. Such biomarkers provide information for patient risk stratification and for the choice of the best treatment options. Nevertheless, reliable and powerful prognostic markers that can identify “high-risk” CRC patients, who might benefit from adjuvant chemotherapy, in early stages, are currently missing. To bridge this gap, genomic information has increasingly gained interest as a potential method for determining the risk of recurrence. However, due to several limitations of gene-based signatures, these have not yet been clinically implemented. In this review, we describe the different molecular markers in clinical use for CRC, highlight new markers that might become indispensable over the next years, discuss recently developed gene expression-based tests and highlight the challenges in biomarker research. [less ▲]

Detailed reference viewed: 224 (19 UL)
Full Text
Peer Reviewed
See detailMyosins: Driving us towards novel targets and biomarkers in cancer
Letellier, Elisabeth UL; Koncina, Eric UL

in Actin Cytoskeleton in Cancer Progression and Metastasis - Part B (2020)

The view that myosins, which are actin based molecular motors, are only driving muscle contraction evolved a lot during the last decades. Nowadays, it is known that they reshape the actin skeleton, anchor ... [more ▼]

The view that myosins, which are actin based molecular motors, are only driving muscle contraction evolved a lot during the last decades. Nowadays, it is known that they reshape the actin skeleton, anchor or transport vesicles, organelles as well as protein complexes. Here, we review how their role in cell division, polarization, migration and death is related to the cancer phenotype. We will further focus our attention on recent evidences suggesting that these central roles make them prime biomarker candidates for the prognosis of various cancers. Finally, we will discuss emerging evidences raising myosins as new therapeutic targets to fight malignant tumors. [less ▲]

Detailed reference viewed: 73 (3 UL)
Full Text
Peer Reviewed
See detailHypoxia-induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway
Qureshi-Baig, Komal; Kuhn; Viry, Elodie et al

in Autophagy (2019)

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously ... [more ▼]

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enriched patient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. [less ▲]

Detailed reference viewed: 210 (15 UL)
Full Text
Peer Reviewed
See detailHypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells
Ullmann, Pit; Nurmik, Martin UL; Begaj, Rubens UL et al

in Cells (2019), 8(6),

Colorectal cancer (CRC), the second most common cause of cancer mortality in theWestern world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as ... [more ▼]

Colorectal cancer (CRC), the second most common cause of cancer mortality in theWestern world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of di erent approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic di erences between TICs and less aggressive di erentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they a ect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced e ects on colon TICs. [less ▲]

Detailed reference viewed: 182 (14 UL)
Full Text
Peer Reviewed
See detailIdentifying and targeting cancer-specific metabolism with network-based drug target prediction
Pacheco, Maria UL; Bintener, Tamara Jean Rita UL; Ternes, Dominik UL et al

in EBioMedicine (2019), 43(May 2019), 98-106

Background Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the cancer-specific cellular metabolism will safeguard healthy tissues. Methods We developed the ... [more ▼]

Background Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the cancer-specific cellular metabolism will safeguard healthy tissues. Methods We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build 10,005 high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies in cancer cells. Colorectal cancer (CRC) was used as a test case for a repurposing workflow based on rFASTCORMICS. Findings Alternative pathways that are not required for proliferation or survival tend to be shut down and, therefore, tumours display cancer-specific essential genes that are significantly enriched for known drug targets. We identified naftifine, ketoconazole, and mimosine as new potential CRC drugs, which were experimentally validated. Interpretation The here presented rFASTCORMICS workflow successfully reconstructs a metabolic model based on RNA-seq data and successfully predicted drug targets and drugs not yet indicted for colorectal cancer. [less ▲]

Detailed reference viewed: 272 (43 UL)
Full Text
Peer Reviewed
See detailTumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity
Ullmann, Pit UL; Nurmik, Martin UL; Schmitz, Martine UL et al

in Cancer Letters (2019), 450

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including ... [more ▼]

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches. [less ▲]

Detailed reference viewed: 171 (13 UL)
Full Text
Peer Reviewed
See detailIntegrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells
Greenhalgh, Kacy UL; Ramiro Garcia, Javier UL; Heinken et al

in Cell Reports (2019), 27

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations ... [more ▼]

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combina- torial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebi- otic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarci- nogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal ca- pacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbi- otics-based treatments in the future. [less ▲]

Detailed reference viewed: 405 (39 UL)
Full Text
Peer Reviewed
See detailIn search of definitions: Cancer-associated fibroblasts and their markers
Nurmik, Martin UL; Ullmann, Pit UL; Rodriguez, Fabien UL et al

in International Journal of Cancer (2019)

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually ... [more ▼]

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various "CAF markers", such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting. [less ▲]

Detailed reference viewed: 165 (15 UL)
Full Text
Peer Reviewed
See detailKinase inhibitor library screening identifies synergistic drug combinations effective in sensitive and resistant melanoma cells
Margue, Christiane UL; Philippidou, Demetra UL; Kozar, Ines UL et al

in Journal of Experimental and Clinical Cancer Research (2019), 38(1),

Background: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma ... [more ▼]

Background: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma patients) has markedly improved overall survival of patients with late-stage tumors, even more so when combined with MEK inhibitors targeting the same signaling pathway. However, invariably patients become resistant to this targeted therapy resulting in rapid progression with treatment-refractory disease. The purpose of this study was the identification of new kinase inhibitors that do not lead to the development of resistance in combination with BRAF inhibitors (BRAFi), or that could be of clinical benefit as a 2nd line treatment for late-stage melanoma patients that have already developed resistance. Methods: We have screened a 274-compound kinase inhibitor library in 3 BRAF mutant melanoma cell lines (each one sensitive or made resistant to 2 distinct BRAFi). The screening results were validated by dose-response studies and confirmed the killing efficacies of many kinase inhibitors. Two different tools were applied to investigate and quantify potential synergistic effects of drug combinations: the Chou-Talalay method and the Synergyfinder application. In order to exclude that resistance to the new treatments might occur at later time points, synergistic combinations were administered to fluorescently labelled parental and resistant cells over a period of > 10 weeks. Results: Eight inhibitors targeting Wee1, Checkpoint kinase 1/2, Aurora kinase, MEK, Polo-like kinase, PI3K and Focal adhesion kinase killed melanoma cells synergistically when combined with a BRAFi. Additionally, combination of a Wee1 and Chk inhibitor showed synergistic killing effects not only on sensitive cell lines, but also on intrinsically BRAFi- and treatment induced-resistant melanoma cells. First in vivo studies confirmed these observations. Interestingly, continuous treatment with several of these drugs, alone or in combination, did not lead to emergence of resistance. Conclusions: Here, we have identified new, previously unexplored (in the framework of BRAFi resistance) inhibitors that have an effect not only on sensitive but also on BRAFi-resistant cells. These promising combinations together with the new immunotherapies could be an important step towards improved 1st and 2nd line treatments for late-stage melanoma patients. [less ▲]

Detailed reference viewed: 195 (29 UL)
Full Text
Peer Reviewed
See detailThe TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond
Dostert, Catherine; Grustat, M.; Letellier, Elisabeth UL et al

in Physiological Reviews (2019), 99(1),

The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The ... [more ▼]

The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies. [less ▲]

Detailed reference viewed: 240 (7 UL)