Results 1-20 of 461.
((uid:50000969))

Bookmark and Share    
Full Text
Peer Reviewed
See detailA hyper-reduction method using adaptivity to cut the assembly costs of reduced order models
Hale, Jack UL; Schenone, Elisa; Baroli, Davide UL et al

in Computer Methods in Applied Mechanics and Engineering (in press)

At every iteration or timestep of the online phase of some reduced-order modelling schemes, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The ... [more ▼]

At every iteration or timestep of the online phase of some reduced-order modelling schemes, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The projected small linear systems are cheap to solve, but assembly and projection are now the dominant computational cost. In this paper we introduce a new hyper-reduction strategy called reduced assembly (RA) that drastically cuts these costs. RA consists of a triangulation adaptation algorithm that uses a local error indicator to con- struct a reduced assembly triangulation specially suited to the reduced order basis. Crucially, this reduced assembly triangulation has fewer cells than the original one, resulting in lower assembly and projection costs. We demonstrate the efficacy of RA on a Galerkin-POD type reduced order model (RAPOD). We show performance increases of up to five times over the baseline Galerkin-POD method on a non-linear reaction-diffusion problem solved with a semi-implicit time-stepping scheme and up to seven times for a 3D hyperelasticity problem solved with a continuation Newton-Raphson algorithm. The examples are implemented in the DOLFIN finite element solver using PETSc and SLEPc for linear algebra. Full code and data files to produce the results in this paper are provided as supplementary material. [less ▲]

Detailed reference viewed: 284 (40 UL)
Full Text
Peer Reviewed
See detailNitsche’s method for two and three dimensional NURBS patch coupling
Nguyen, Vinh-Phu; Kerfriden, Pierre; Brino, Marco et al

in Computational Mechanics (in press)

We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear ... [more ▼]

We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications. [less ▲]

Detailed reference viewed: 995 (66 UL)
Full Text
See detailThe edge-based strain smoothing method for compressible and nearly incompressible non-linear elasticity for solid mechanics
Lee, Chang-Kye; Mihai, L. Angela; Kerfriden, Pierre et al

E-print/Working paper (in press)

Detailed reference viewed: 507 (38 UL)
Full Text
Peer Reviewed
See detailA refinement indicator for adaptive quasicontinuum approaches for structural lattices
Chen, Li UL; Berke, Peter; Massart, Thierry et al

in International Journal for Numerical Methods in Engineering (in press)

The quasicontinuum method is a concurrent multiscale approach in which lattice models are fully resolved in small regions of interest and coarse-grained elsewhere. Since the method was originally proposed ... [more ▼]

The quasicontinuum method is a concurrent multiscale approach in which lattice models are fully resolved in small regions of interest and coarse-grained elsewhere. Since the method was originally proposed to accelerate atomistic lattice simulations, its refinement criteria – that drive refining coarse-grained regions and/or increasing fully-resolved regions – are generally associated with quantities relevant to the atomistic scale. In this contribution, a new refinement indicator is presented, based on the energies of dedicated cells at coarse-grained domain surfaces. This indicator is incorporated in an adaptive scheme of a generalization of the quasicontinuum method able to consider periodic representative volume elements, like the ones employed in most computational homogenization approaches. However, this indicator can also be used for conventional quasicontinuum frameworks. Illustrative numerical examples of elastic indentation and scratch of different lattices demonstrate the capabilities of the refinement indicator and its impact on adaptive quasicontinuum simulations. [less ▲]

Detailed reference viewed: 56 (2 UL)
Full Text
Peer Reviewed
See detailBubble-enriched smoothed finite element methods for nearly-incompressible solids
Lee, Changkye; Natarajan, Sundararajan; Hale, Jack UL et al

in Computer Modeling in Engineering and Sciences (in press)

This work presents a locking-free smoothed finite element method (S-FEM) for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity. The proposed method overcomes ... [more ▼]

This work presents a locking-free smoothed finite element method (S-FEM) for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity. The proposed method overcomes well-known issues of standard finite element methods (FEM) in the incompressible limit: the over-estimation of stiffness and sensitivity to severely distorted meshes. The concepts of cell-based, edge-based and node-based S-FEMs are extended in this paper to three-dimensions. Additionally, a cubic bubble function is utilized to improve accuracy and stability. For the bubble function, an additional displacement degree of freedom is added at the centroid of the element. Several numerical studies are performed demonstrating the stability and validity of the proposed approach. The obtained results are compared with standard FEM and with analytical solutions to show the effectiveness of the method. [less ▲]

Detailed reference viewed: 60 (1 UL)
Full Text
Peer Reviewed
See detailA cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing
Farina, Sofia UL; Claus, Susanne; Hale, Jack UL et al

in Advanced Modeling and Simulation in Engineering Sciences (2021)

A thorough understanding of brain metabolism is essential to tackle neurodegenerative diseases. Astrocytes are glial cells which play an important metabolic role by supplying neurons with energy. In ... [more ▼]

A thorough understanding of brain metabolism is essential to tackle neurodegenerative diseases. Astrocytes are glial cells which play an important metabolic role by supplying neurons with energy. In addition, astrocytes provide scaffolding and homeostatic functions to neighboring neurons and contribute to the blood–brain barrier. Recent investigations indicate that the complex morphology of astrocytes impacts upon their function and in particular the efficiency with which these cells metabolize nutrients and provide neurons with energy, but a systematic understanding is still elusive. Modelling and simulation represent an effective framework to address this challenge and to deepen our understanding of brain energy metabolism. This requires solving a set of metabolic partial differential equations on complex domains and remains a challenge. In this paper, we propose, test and verify a simple numerical method to solve a simplified model of metabolic pathways in astrocytes. The method can deal with arbitrarily complex cell morphologies and enables the rapid and simple modification of the model equations by users also without a deep knowledge in the numerical methods involved. The results obtained with the new method (CutFEM) are as accurate as the finite element method (FEM) whilst CutFEM disentangles the cell morphology from its discretisation, enabling us to deal with arbitrarily complex morphologies in two and three dimensions. [less ▲]

Detailed reference viewed: 69 (3 UL)
Full Text
See detailHierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project
Bulle, Raphaël UL; Hale, Jack UL; Lozinski, Alexei et al

E-print/Working paper (2021)

In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp.283-301] a new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann problem on every cell of ... [more ▼]

In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp.283-301] a new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann problem on every cell of the finite element mesh. Despite the promise of Bank-Weiser type estimators, namely locality, computational efficiency, and asymptotic sharpness, they have seen little use in practical computational problems. The focus of this contribution is to describe a novel implementation of hierarchical estimators of the Bank-Weiser type in a modern high-level finite element software with automatic code generation capabilities. We show how to use the estimator to drive (goal-oriented) adaptive mesh refinement and to mixed approximations of the nearly-incompressible elasticity problems. We provide comparisons with various other used estimators. An open-source implementation based on the FEniCS Project finite element software is provided as supplementary material. [less ▲]

Detailed reference viewed: 48 (3 UL)
Full Text
See detailInverse deformation analysis: an experimental and numerical assessment using the FEniCS Project
Mazier, Arnaud UL; Bilger, Alexandre; Forte, Antonio E. et al

E-print/Working paper (2021)

In this paper, we develop a framework for solving inverse deformation problems using the FEniCS Project finite element software. We validate our approach with experimental imaging data acquired from a ... [more ▼]

In this paper, we develop a framework for solving inverse deformation problems using the FEniCS Project finite element software. We validate our approach with experimental imaging data acquired from a soft silicone beam under gravity. In contrast with inverse iterative algorithms that require multiple solutions of a standard elasticity problem, the proposed method can compute the undeformed configuration by solving only one modified elasticity problem. This modified problem has a complexity comparable to the standard one. The framework is implemented within an open-source pipeline enabling the direct and inverse deformation simulation directly from imaging data. We use the high-level Unified Form Language (UFL) of the FEniCS Project to express the finite element model in variational form and to automatically derive the consistent Jacobian. Consequently, the design of the pipeline is flexible: for example, it allows the modification of the constitutive models by changing a single line of code. We include a complete working example showing the inverse deformation of a beam deformed by gravity as supplementary material. [less ▲]

Detailed reference viewed: 33 (0 UL)
Full Text
Peer Reviewed
See detailGeneralized quasicontinuum modeling of metallic lattices with geometrical and material nonlinearity and variability
Chen, Li UL; Beex, Lars UL; Berke, Peter et al

in Computer Methods in Applied Mechanics and Engineering (2020), 366(112878),

We propose a generalized quasicontinuum method to model the mechanical response of 3D lattice structures. The method relies on the spatial coupling of fully-resolved domains and coarse-grained domains. In ... [more ▼]

We propose a generalized quasicontinuum method to model the mechanical response of 3D lattice structures. The method relies on the spatial coupling of fully-resolved domains and coarse-grained domains. In the fully-resolved domain, the full micro-structure is taken into account. In the coarse-grained domain, the kinematics of the micro-structure are individually interpolated based on their connectivity. On top of that, the contributions of the microstructure to the governing equations in the coarse-grained domain are sampled using only a few unit cells. In both domains, geometrical and material variability along the strut can be naturally taken into account using a 3D co-rotational beam finite element with embedded plastic hinges. We verify the approach for BCC lattices, demonstrating that the new method can capture both material and geometrical non-linearities of single struts at a fraction of the cost of a direct numerical simulation. [less ▲]

Detailed reference viewed: 61 (8 UL)
Full Text
Peer Reviewed
See detailDATA DRIVEN SURGICAL SIMULATIONS
Deshpande, Saurabh UL; Bordas, Stéphane UL; Beex, Lars UL et al

Scientific Conference (2020, July)

Detailed reference viewed: 40 (4 UL)
Full Text
See detailPractical aspects of the Bank-Weiser estimator implementation and Biomechanics applications.
Bulle, Raphaël UL; Bordas, Stéphane UL; Chouly, Franz et al

Scientific Conference (2020, July)

Detailed reference viewed: 69 (8 UL)
Full Text
Peer Reviewed
See detailInverse simulation for retrieving the undeformed position for hyperelastic materials : application to breast simulations
Mazier, Arnaud UL; Bilger, Alexandre; Forte, Antonio et al

Scientific Conference (2020, July)

Detailed reference viewed: 68 (18 UL)
Full Text
Peer Reviewed
See detailIsogeometric analysis of thin Reissner-Mindlin shells: locking phenomena and B-bar method
Hu, Qingyuan; Xia, Yang; Natarajan, Sundararajan et al

in Computational Mechanics (2020), 65(5), 1323-1341

We propose a local type of B-bar formulation, addressing locking in degenerated Reissner–Mindlin shell formulation in the context of isogeometric analysis. Parasitic strain components are projected onto ... [more ▼]

We propose a local type of B-bar formulation, addressing locking in degenerated Reissner–Mindlin shell formulation in the context of isogeometric analysis. Parasitic strain components are projected onto the physical space locally, i.e. at the element level, using a least-squares approach. The formulation allows the flexible utilization of basis functions of different orders as the projection bases. The introduced formulation is much cheaper computationally than the classical $$\bar{B}$$B¯ method. We show the numerical consistency of the scheme through numerical examples, moreover they show that the proposed formulation alleviates locking and yields good accuracy even for slenderness ratios of $$10^5$$105, and has the ability to capture deformations of thin shells using relatively coarse meshes. In addition it can be opined that the proposed method is less sensitive to locking with irregular meshes. [less ▲]

Detailed reference viewed: 76 (2 UL)
Full Text
Peer Reviewed
See detailFrom quantum to continuum mechanics in the delamination of atomically-thin layers from substrates
Hauseux, Paul; Nguyen, Thanh-Tung; Ambrosetti, Alberto et al

in Nature Communications (2020)

Detailed reference viewed: 51 (7 UL)
Full Text
See detailData Centric Engineering and Data-Driven Modelling - Computational Engineering Lab Report 2019
Bordas, Stéphane UL; Peters, Bernhard UL; Viti, Francesco UL et al

Report (2019)

https://www.cambridge.org/core/journals/data-centric-engineering

Detailed reference viewed: 66 (6 UL)
Full Text
See detailMechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo
Elouneg, Aflah; Sutula, Danas; Sensale, Marco UL et al

Scientific Conference (2019, December 09)

The human skin behaves as an elastic membrane initially prestressed but not uniformly. The presence of anatomical sites favorable to the appearance of some tumors, a keloid in our case, while other sites ... [more ▼]

The human skin behaves as an elastic membrane initially prestressed but not uniformly. The presence of anatomical sites favorable to the appearance of some tumors, a keloid in our case, while other sites never develop them attests to the importance of the mechanical environment of the tissue. Thus, a mechanical characterization of the tumored skin is necessary to understand the keloid expansion from a mechanical point of view. Our case study consists in modeling a bi-material structure composed of a keloid skin surrounded by healthy skin located on upper left arm of a young female. From the experimental measurements in vivo, by combining force sensor, displacement sensor and Digital Image Correlation techniques, we perform a mechanical analysis to characterize the mechanical stress fields over the entire area and on the interface ‘healthy skin/keloid skin’. Since the mechanical behavior of the tumorous skin is unknown, many physical models can be implemented and assessed very easily inside the specific digital software to fit with the real data. Once a set of mechanical parameters for both the healthy skin and the keloid skin are identified, the stress fields around the keloid are calculated. Next steps consist in determining matching preferential directions in order to define as precisely as possible the specifications of a device for preventing the growth of keloids. [less ▲]

Detailed reference viewed: 24 (3 UL)
Full Text
See detailParameter identification problem in bimaterial human skin and sensitivity analysis : Uncertainties in biomechanics of skin
Sutula, Danas; Elouneg, Aflah; Sensale, Marco UL et al

Scientific Conference (2019, December 09)

The proposed paper concerns the prediction of the numerical response of a biomechanical structure submitted to an unknown external loading state. The methodology is based on homogeneous and then ... [more ▼]

The proposed paper concerns the prediction of the numerical response of a biomechanical structure submitted to an unknown external loading state. The methodology is based on homogeneous and then heterogeneous structures such as healthy or pathological cutaneous tissues that can be mechanically tested in vivo under a patchy knowledge of boundary conditions. Experimental data corresponding to the extension of a piece of skin located between two pads with displacement enslavement, represent input data to the numerical model. Data are reaction force on one pad and displacement field between the two pads and all around. The numerical model consists of a representation of the bi-material domain geometry with neo-hookean behaviors. The boundary conditions and loadings of the experimental extension test are imposed. The materials parameters have been identified by inverse method starting from a constrained cost function minimizing the difference between the calculated displacements field and experimental displacements field obtained by digital image correlation and taking into account the reaction force as a constraint. An analysis of the model sensitivity to material parameters is presented. [less ▲]

Detailed reference viewed: 18 (0 UL)
Full Text
Peer Reviewed
See detailFracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method
Mohtarami, Ehsan; Baghbanan, Alireza; Hashemolhosseini, Hamid et al

in Theoretical and Applied Fracture Mechanics (2019), 104

The vast majority of rock masses is anisotropic due to factors such as layering, unequal in-situ stresses, joint sets, and discontinuities. Meanwhile, given the frequently asymmetric distribution of pores ... [more ▼]

The vast majority of rock masses is anisotropic due to factors such as layering, unequal in-situ stresses, joint sets, and discontinuities. Meanwhile, given the frequently asymmetric distribution of pores, grain sizes or different mineralogical compounds in different locations, they are often classified as inhomogeneous materials. In such materials, stress intensity factors (SIFs) at the crack tip, which control the initiation of failure, strongly depend on mechanical properties of the material near that area. On the other hand, crack propagation trajectories highly depend on the orthotropic properties of the rock mass. In this study, the SIFs are calculated by means of anisotropic crack tip enrichments and an interaction integral are developed for inhomogeneous materials with the help of the extended finite element method (XFEM). We also use the T-stress within the crack tip fields to develop a new criterion to estimate the crack initiation angles and propagation in rock masses. To verify and validate the proposed approach, the results are compared with experimental test results and those reported in the literature. It is found that the ratio of elastic moduli, shear stiffnesses, and material orientation angles have a significant impact on the SIFs. However, the rate of change in material properties is found to have a moderate effect on these factors and a more pronounced effect on the failure force. The results highlight the potential of the proposed formulation in the estimation of SIFs and crack propagation paths in inhomogeneous anisotropic materials. [less ▲]

Detailed reference viewed: 52 (0 UL)
Peer Reviewed
See detailAdaptive equation-free multiscale modeling of metallic lattices with geometrical nonlinearity and variability
Chen, Li UL; Berke, Peter; Beex, Lars UL et al

Scientific Conference (2019, September 12)

An equation-free concurrent multiscale framework is proposed to model 3D metallic lattice structures. The proposed equation-free multiscale method (EFMM) is effectively a generalization of the ... [more ▼]

An equation-free concurrent multiscale framework is proposed to model 3D metallic lattice structures. The proposed equation-free multiscale method (EFMM) is effectively a generalization of the quasicontinuum method [2] and relies on the use of fully-resolved domains (FRD) in which all details of the lattice micro-structure are captured, and of coarse-grained domains (CGD) in which a model reduction is performed by interpolation and summation steps. The particularity of the lattice geometrical description is that cross section variations along the lattice struts (caused by the manufacturing process) are explicitly represented by their discretization in several beam finite elements, both in the FRDs and CGDs. The interpolation step of the EFMM refers to a kinematic approximation of the lattice deformation within CGDs based on the displacement of a reduced number of material points. One of the originalities of this work is the consideration of a separate interpolation of each type of kinematic variables within the CGDs, as a function of the connectivity of the lattice beam nodes (i.e. taking the location of different cross sections into account) and their kinematical pattern. This, together with accounting for geometric nonlinearity, by the development and implementation of a 3D co-rotational beam finite element [1], are innovative contributions. Choosing the appropriate sizes of the FRDs and the CGDs for a lattice to be simulated is a trade-off because larger FRDs prevail the accuracy but compromise the efficiency while larger CGDs do the opposite. Since the required sizes of the FRDs and CGDs are generally not known a priori for specific applications, an adaptive coarse-graining strategy is developed. To be specific, the whole lattice is initially considered as a CGD. Two kinds of error indicator are proposed (e.g. the Zienkiewicz-Zhu error indicator [4, 3] and the error indicator based on the discrepancy of strain energy). The error indicator guides on: 1) introducing more material points and rearranging the interpolation for the CGDs; 2) changing the localization-prone parts of the lattice into FRDs. The adaptive EFMM is applied to metallic BCC lattices with various sizes and loading conditions. By comparing to the results of those of the direct numerical simulation (DNS), it is shown that geometrical non-linearities can be captured at a fraction of the DNS cost. [less ▲]

Detailed reference viewed: 32 (2 UL)