Results 1-20 of 68.
((uid:50000565))

Bookmark and Share    
Full Text
Peer Reviewed
See detailMelt Instability Identification Using Unsupervised Machine Learning Algorithms
Gansen, Alex; Hennicker, Julian; Sill, Clemens et al

in Macromolecular Materials and Engineering (2023)

In industrial extrusion processes, increasing shear rates can lead to higher production rates. However, at high shear rates, extruded polymers and polymer compounds often exhibit melt instabilities ... [more ▼]

In industrial extrusion processes, increasing shear rates can lead to higher production rates. However, at high shear rates, extruded polymers and polymer compounds often exhibit melt instabilities ranging from stick-slip to sharkskin to gross melt fracture. These instabilities result in challenges to meet the specifications on the extrudate shape. Starting with an existing published data set on melt instabilities in polymer extrusion, we assess the suitability of clustering, unsupervised machine learning algorithms combined with feature selection, to extract and identify hidden and important features from this data set, and their possible relationship with melt instabilities. The data set consists of both intrinsic features of the polymer as well as extrinsic features controlled and measured during an extrusion experiment. Using a range of commonly available clustering algorithms, it is demonstrated that the features related to only the intrinsic properties of the data set can be reliably divided into two clusters, and that in turn, these two clusters may be associated with either the stick-slip or sharkskin instability. Furthermore, using a feature ranking on both the intrinsic and extrinsic features of the data set, it is shown that the intrinsic properties of molecular weight and polydispersity are the strongest indicators of clustering. [less ▲]

Detailed reference viewed: 49 (2 UL)
Full Text
Peer Reviewed
See detailExperimental separation of the onset of slip and sharkskin melt instabilities during the extrusion of silica‑filled, styrene–butadiene rubber compounds
Gansen, Alex UL; Řehoř, Martin; Sill, Clemens et al

in Rheologica Acta (2022)

The flow curves of polymers often reveal the onset of melt instabilities such as sharkskin, stick–slip, or gross melt fracture, in order of increasing shear rates. The focus of this work lies in the ... [more ▼]

The flow curves of polymers often reveal the onset of melt instabilities such as sharkskin, stick–slip, or gross melt fracture, in order of increasing shear rates. The focus of this work lies in the application of the Göttfert sharkskin option to the investigation of flow curves of styrene-butadiene rubber (SBR) compounds. The sharkskin option consists of highly sensitive pressure transducers located inside a slit die of a capillary rheometer. This tool allows the detection of in-situ pressure fluctuation characteristics of different melt instabilities. It is shown that the change of slope of the transition region in the flow curves is only linked to slip. Dynamic Mechanical Analysis (DMA) measurements furthermore show that the shear rate at which the change of slope can be observed shows the same temperature dependency as the viscous and elastic properties of the compounds. [less ▲]

Detailed reference viewed: 61 (19 UL)
Full Text
Peer Reviewed
See detailDetermination of the angle of repose of hard metal granules
Just, Marvin UL; Medina Peschiutta, Alexander UL; Hippe, Frankie et al

in Powder Technology (2022), 407

The angle of repose is a quantity that delivers direct information about the flowability of granular material. It is therefore desirable to have a reliable experimental method for its determination. Based ... [more ▼]

The angle of repose is a quantity that delivers direct information about the flowability of granular material. It is therefore desirable to have a reliable experimental method for its determination. Based on the well-established funnel method with continuous mass flow, an extension is introduced which allows increasing the precision and reproducibility of the angle of repose measurements. A modified experimental setup is presented which exploits asymmetries in the alignment of the mechanical setup to gain more precision in the determination of the angle of repose. This experimental setup is combined with an evaluation method based on automated image analysis. The first results for a set of metal powders are presented. [less ▲]

Detailed reference viewed: 52 (6 UL)
Full Text
Peer Reviewed
See detailA comparison of constitutive models for describing the flow of uncured styrene-butadiene rubber
Rehor, Martin UL; Gansen, Alex UL; Sill, Clemens et al

in Journal of Non-Newtonian Fluid Mechanics (2020), 286

Uncured styrene-butadiene rubber (SBR) can be modelled as a viscoelastic material with at least two different relaxation mechanisms. In this paper we compare multi-mode constitutive models combining two ... [more ▼]

Uncured styrene-butadiene rubber (SBR) can be modelled as a viscoelastic material with at least two different relaxation mechanisms. In this paper we compare multi-mode constitutive models combining two viscoelastic modes (linear and/or nonlinear) in three possible ways. Our particular choice of the two modes was inspired by models originally developed to describe the response of asphalt binders. We select the model that best fits the experimental data obtained from a modified stress relaxation experiment in the torsional configuration of the plate-plate rheometer. The optimisation of the five model parameters for each model is achieved by minimising the weighted least-squares distance between experimental observations and the computer model output using a tree-structured Parzen estimator algorithm to find an initial guess, followed by further optimisation using the Nelder-Mead simplex algorithm. The results show that the model combining the linear mode and the nonlinear mode is the most suitable variant to describe the observed behavior of SBR in the given regime. The predictive capabilities of the three models are further examined in changed experimental and numerical configurations. Full data and code to produce the figures in this article are included as supplementary material. [less ▲]

Detailed reference viewed: 283 (29 UL)
Full Text
Peer Reviewed
See detailUltrafast scanning calorimetry of newly developed Au-Ga bulk metallic glasses
Neuber, Nico; Frey, Maximilian; Gross, Oliver et al

in Journal of Physics: Condensed Matter (2020), 32(32), 324001

The isothermal crystallization times and critical cooling rates of the liquid phase are determined for the two bulk metallic glass forming alloys Au49Ag5.5Pd2.3Cu26.9Si16.3 and Au51.6Ag5.8Pd2.4Cu20.2Ga6 ... [more ▼]

The isothermal crystallization times and critical cooling rates of the liquid phase are determined for the two bulk metallic glass forming alloys Au49Ag5.5Pd2.3Cu26.9Si16.3 and Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 by using fast differential scanning calorimetry, covering the whole timescale of the crystallization event of the metallic melt. In the case of Au49Ag5.5Pd2.3Cu26.9Si16.3, a typical crystallization nose was observed, whereas for the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3, a more complex crystallization behavior with two distinct crystallization noses was found. Even for the complex crystallization behavior of the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 alloy it is shown that the minimal isothermal nose time does allow for a quantification of the macroscopic critical thickness. It is discussed in contrast to the critical cooling rate, which is found to allow less exact calculations of the critical thickness and thus does not correlate well with the critical cooling rate from macroscopic experiments. Additionally the crystallization data of Au49Ag5.5Pd2.3Cu26.9Si16.3 was modeled using classical nucleation theory with the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, enabling a determination of the interfacial energy. [less ▲]

Detailed reference viewed: 216 (25 UL)
Full Text
Peer Reviewed
See detailInvestigation of the Sharkskin melt instability using optical Fourier analysis
Gansen, Alex UL; Rehor, Martin UL; Sill, Clemens et al

in Journal of Applied Polymer Science (2019), 137(24), 48806

An optical method allowing the characterization of melt flow instabilities typically occurring during an extrusion process of polymers and polymer compounds is presented. It is based on a camera‐acquired ... [more ▼]

An optical method allowing the characterization of melt flow instabilities typically occurring during an extrusion process of polymers and polymer compounds is presented. It is based on a camera‐acquired image of the extruded compound with a reference length scale. Application of image processing and transformation of the calibrated image to the frequency domain yields the magnitude spectrum of the instability. The effectiveness of the before mentioned approach is shown on Styrene‐butadiene rubber (SBR) compounds, covering a wide range of silica filler content, extruded through a Göttfert capillary rheometer. The results of the image‐based analysis are compared with the results from the sharkskin option, a series of highly sensitive pressure transducers installed inside the rheometer. A simplified version of the code used to produce the optical analysis results is included as supplementary material. [less ▲]

Detailed reference viewed: 193 (39 UL)
Full Text
Peer Reviewed
See detailIsotropic–isotropic phase separation and spinodal decomposition in liquid crystal–solvent mixtures
Reyes, Catherine UL; Baller, Jörg UL; Araki, Takeaki et al

in Soft Matter (2019), 15

Phase separation in mixtures forming liquid crystal (LC) phases is an important yet under- appreciated phenomenon that can drastically influence the behaviour of a multi-component LC. Here we demonstrate ... [more ▼]

Phase separation in mixtures forming liquid crystal (LC) phases is an important yet under- appreciated phenomenon that can drastically influence the behaviour of a multi-component LC. Here we demonstrate, using polarising microscopy with active cooling as well as differential scanning calorimetry, that the phase diagram for mixtures of the LC-forming compound 4’-n- pentylbiphenyl-4-carbonitrile (5CB) with ethanol is surprisingly complex. Binary mixtures reveal a broad miscibility gap that leads to phase separation between two distinct isotropic phases via spinodal decomposition or nucleation and growth. On further cooling the nematic phase enters on the 5CB-rich side, adding to the complexity. Significantly, water contamination dramatically raises the temperature range of the miscibility gap, bringing up the critical temperature for spinodal de- composition from ∼ 2◦C for the anhydrous case to > 50◦C if just 3 vol.% water is added to the ethanol. We support the experiments with a theoretical treatment that qualitatively reproduces the phase diagrams as well as the transition dynamics, with and without water. Our study highlights the impact of phase separation in LC-forming mixtures, spanning from equilibrium coexistence of multiple liquid phases to non-equilibrium effects due to persistent spatial concentration gradients. [less ▲]

Detailed reference viewed: 194 (30 UL)
Full Text
Peer Reviewed
See detailFractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation
Honorato Rios, Camila UL; Lehr, Claudius Moritz UL; Schütz, Christina UL et al

in NPG asia materials (2018)

Colloids of electrically charged nanorods can spontaneously develop a fluid yet ordered liquid crystal phase, but this ordering competes with a tendency to form a gel of percolating rods. The threshold ... [more ▼]

Colloids of electrically charged nanorods can spontaneously develop a fluid yet ordered liquid crystal phase, but this ordering competes with a tendency to form a gel of percolating rods. The threshold for ordering is reduced by increasing the rod aspect ratio, but the percolation threshold is also reduced with this change; hence, prediction of the outcome is nontrivial. Here, we show that by establishing the phase behavior of suspensions of cellulose nanocrystals(CNCs) fractionated according to length, an increased aspect ratio can strongly favor liquid crystallinity without necessarily influencing gelation. Gelation is instead triggered by increasing the counterion concentration until theCNCs lose colloidal stability, triggering linear aggregation, which promotes percolation regardless of the original rod aspect ratio. Our results shine new light on the competition between liquid crystal formation and gelation in nanoparticle suspensions and provide a path for enhanced control of CNC self-organization for applications in photonic crystal paper or advanced composites. [less ▲]

Detailed reference viewed: 305 (18 UL)
See detailFractionation of cellulose nanocrystals enhances liquid crystal ordering without promoting gelation
Honorato, C.; Lehr, Claudius Moritz UL; Schutz, C. et al

in Abstracts of Papers of the American Chemical Society (2018), 256

Detailed reference viewed: 57 (5 UL)
Full Text
Peer Reviewed
See detailDetermination of the rheological properties of Matrigel for optimum seeding conditions in microfluidic cell cultures
Kane, K. I. W.; Moreno, E. Lucumi; Lehr, Claudius Moritz UL et al

in AIP ADVANCES (2018), 8(12),

Hydrogels are increasingly used as a surrogate extracellular matrix in three-dimensional cell culture systems, including microfluidic cell culture. Matrigel is a hydrogel of natural origin widely used in ... [more ▼]

Hydrogels are increasingly used as a surrogate extracellular matrix in three-dimensional cell culture systems, including microfluidic cell culture. Matrigel is a hydrogel of natural origin widely used in cell culture, particularly in the culture of stem cell-derived cell lines. The use of Matrigel as a surrogate extracellular matrix in microfluidic systems is challenging due to its biochemical, biophysical, and biomechanical properties. Therefore, understanding and characterising these properties is a prerequisite for optimal use of Matrigel in microfluidic systems. We used rheological measurements and particle image velocimetry to characterise the fluid flow dynamics of liquefied Matrigel during loading into a three-dimensional microfluidic cell culture device. Using fluorescence microscopy and fluorescent beads for particle image velocimetry measurements (velocity profiles) in combination with classical rheological measurements of Matrigel (viscosity versus shear rate), we characterised the shear rates experienced by cells in a microfluidic device for three-dimensional cell culture. This study provides a better understanding of the mechanical stress experienced by cells, during seeding of a mixture of hydrogel and cells, into three-dimensional microfluidic cell culture devices. (C) 2018 Author(s). [less ▲]

Detailed reference viewed: 119 (3 UL)
Full Text
Peer Reviewed
See detailInfluence of suspension viscosity on Brownian relaxation of filler particles
Dannert, R.; Winter, H. H.; Sanctuary, Roland UL et al

in Rheologica Acta (2017), 56(7-8), 615-622

Brownian relaxation caused by Brownian movement of particles in suspensions can macroscopically be probed by small-amplitude oscillatory shear experiments. Phenomenological considerations suggest a direct ... [more ▼]

Brownian relaxation caused by Brownian movement of particles in suspensions can macroscopically be probed by small-amplitude oscillatory shear experiments. Phenomenological considerations suggest a direct proportionality between suspension viscosity and Brownian relaxation times. To verify this relation experimentally, a set of nanocomposite suspensions with viscosities varying over five decades is presented. The suspensions are chosen in a way to ensure that particle-particle interactions and average particle-particle distances are identical so that they can be used as a model system to study the mere influence of suspension viscosity on Brownian relaxation. The suggested linear relationship between suspension viscosity and Brownian relaxation time can be confirmed. Moreover, a verification of a recently introduced characteristic timescale for Brownian relaxation is presented. [less ▲]

Detailed reference viewed: 73 (2 UL)
Full Text
Peer Reviewed
See detailRelaxations in the metastable rotator phase of n-eicosane
Di Giambattista, Carlo UL; Sanctuary, Roland UL; Perigo, Elio Alberto UL et al

in Journal of Chemical Physics (2015), 143

Detailed reference viewed: 197 (12 UL)
See detailSlow dynamics in sheared DGEBA/SiO2 suspensions
Dannert, Rick UL; Sanctuary, Roland UL; Baller, Jörg UL

Presentation (2015, March)

Detailed reference viewed: 80 (0 UL)
See detailUnexpected flow and relaxation behaviour of a low molecular weight glass former
Baller, Jörg UL

Presentation (2015, January 22)

Detailed reference viewed: 78 (6 UL)