Results 41-45 of 45.
![]() ; ; et al in Physical Review. B (2014), 90(5), We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy ... [more ▼] We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy. In all cases, a phase transition was evidenced by the disappearance of the Raman signal at a critical pressure that depends on the A cation. For the compounds with A = Pr, Sm, and Dy, XRD confirms the presence of a corresponding structural transition to a noncubic phase, so that the disappearance of the Raman spectrum can be interpreted as an insulator-to-metal transition. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the ac plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smaller A cations considered in this study (Dy and Tb), the compression is nearly isotropic in the ac plane, with only small evolutions of the tilt angles and cooperative Jahn-Teller distortion. As the radius of the A cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced tilting of octahedra chains becomes conversely less pronounced. We finally discuss our results in light of the notion of chemical pressure and show that the analogy with hydrostatic pressure works quite well for manganites with the smaller A cations considered in this paper but can be misleading with large A cations. [less ▲] Detailed reference viewed: 133 (2 UL)![]() ; ; et al in Inorganic Chemistry (2013), 52 A new mixed rare-earth orthochromite series, LaxSm1−xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by ... [more ▼] A new mixed rare-earth orthochromite series, LaxSm1−xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by the hydrothermal treatment of amorphous mixed-metal hydroxides at 370 °C for 48 h. Transmission electron microscopy (TEM) reveals the formation of highly crystalline particles with dendritic-like morphologies. Rietveld refinements against high-resolution powder X-ray diffraction (PXRD) data show that the distorted perovskite structures are described by the orthorhombic space group Pnma over the full composition range. Unit cell volumes and Cr−O−Cr bond angles decrease monotonically with increasing samarium content, consistent with the presence of the smaller lanthanide in the structure. Raman spectroscopy confirms the formation of solid solutions, the degree of their structural distortion. With the aid of shell-model calculations the complex mixing of Raman modes below 250 cm−1 is clarified. Magnetometry as a function of temperature reveals the onset of low-temperature antiferromagnetic ordering of Cr3+ spins with weak ferromagnetic component at Néel temperatures (TN) that scale linearly with unit cell volume and structural distortion. Coupling effects between Cr3+ and Sm3+ ions are examined with enhanced susceptibilities below TN due to polarization of Sm3+ moments. At low temperatures the Cr3+ sublattice is shown to undergo a second-order spin reorientation observed as a rapid decrease of susceptibility. [less ▲] Detailed reference viewed: 136 (1 UL)![]() ; ; et al in APPLIED PHYSICS LETTERS (2013), 102(9), The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder ... [more ▼] The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder diffraction. Contrary to previous reports of an unusual rhombohedral-tetragonal phase transition in this system, we have observed an intermediate orthorhombic phase, isostructural to that present in the parent phase, BaTiO3, and we identify the previously assigned T-R transition as a T-O transition. We also observe the O-R transition coalescing with the previously observed triple point, forming a phase convergence region. The implication of the orthorhombic phase in reconciling the exceptional piezoelectric properties with the surrounding phase diagram is discussed. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793400] [less ▲] Detailed reference viewed: 59 (0 UL)![]() ; ; et al in ADVANCED FUNCTIONAL MATERIALS (2013), 23(2), 185-190 ABO3 perovskite-type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure strain ... [more ▼] ABO3 perovskite-type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure strain, electric, or magnetic fields. Some solid solutions show remarkably enhanced physical properties including colossal magnetoresistance or giant piezoelectricity. It has been recognized that structural distortions, competing on the local level, are key to understanding and tuning these remarkable properties, yet, it remains a challenge to experimentally observe such local structural details. Here from neutron pair-distribution analysis, a temperature-dependent 3D atomic-level model of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 (NBT) is reported. The statistical analysis of this model shows how local distortions compete, how this competition develops with temperature, and, in particular, how different polar displacements of Bi3+ cations coexist as a bifurcated polarization, highlighting the interest of Bi-based materials in the search for new lead-free piezoelectrics. [less ▲] Detailed reference viewed: 148 (0 UL)![]() ; Kreisel, Jens ![]() in Physical Review. B (2012), 85(5), We report a systematic investigation of orthorhombic perovskite-type RCrO3 powder samples by Raman scattering for nine different rare earth Y, La, Pr, Sm, Gd, Dy, Ho, Yb, and Lu). The room-temperature ... [more ▼] We report a systematic investigation of orthorhombic perovskite-type RCrO3 powder samples by Raman scattering for nine different rare earth Y, La, Pr, Sm, Gd, Dy, Ho, Yb, and Lu). The room-temperature Raman spectra and the associated phonon mode assignment provide reference data for structural investigation of the whole series of RCrO3 orthochromites and phonon ab-initio calculations. The assignment of the chromite spectra and comparison with Raman data on other orthorhombic perovskites allows correlating the phonon modes with the structural distortions in the RCrO3 series. In particular, two A(g) modes are identified as octahedra rotation soft modes, as their positions scale linearly with the octahedra tilt angle of the CrO6 octahedra. [less ▲] Detailed reference viewed: 52 (1 UL) |
||