Results 101-120 of 137.
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeological interpretation of current subsidence and uplift in the London area, UK, as shown by high precision satellite-based surveying
Aldiss, Don; Burke, Helen; Chacksfield, Barrie et al

in Proceedings of the Geologists' Association (2014), 125(1), 1-13

Abstract Long term planning for flood risk management in coastal areas requires timely and reliable information on changes in land and sea levels. A high resolution map of current changes in land levels ... [more ▼]

Abstract Long term planning for flood risk management in coastal areas requires timely and reliable information on changes in land and sea levels. A high resolution map of current changes in land levels in the London and Thames estuary area has been generated by satellite-based persistent scatterer interferometry (PSI), aligned to absolute gravity (AG) and global positioning system (GPS) measurements. This map has been qualitatively validated by geological interpretation, which demonstrates a variety of controlling influences on the rates of land level change, ranging from near-surface to deep-seated mechanisms and from less than a decade to more than 100,000 years’ duration. During the period 1997–2005, most of the region around the Thames estuary subsided between 0.9 and 1.5 mm a−1 on average, with subsidence of thick Holocene deposits being as fast as 2.1 mm a−1. By contrast, parts of west and north London on the Midlands Microcraton subsided by less than 0.7 mm a−1, and in places appear to have risen by about 0.3 mm a−1. These rates of subsidence are close to values determined previously by studies of Quaternary sequences, but the combined GPS, AG and PSI land level change data demonstrate a new level of local geological control that was not previously resolvable. [less ▲]

Detailed reference viewed: 181 (0 UL)
Full Text
Peer Reviewed
See detailA drifting GPS buoy for retrieving effective riverbed bathymetry
Hostache, R.; Matgen, P.; Giustarini, L. et al

in Journal of Hydrology (2014), (0), -

Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite ... [more ▼]

Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic ‘‘truth’’, exhibiting an RMSE of 27 cm. [less ▲]

Detailed reference viewed: 139 (2 UL)
Full Text
See detailComparative Analysis of Real-Time Precise Point Positioning Zenith Total Delay Estimates
Ahmed, Furqan UL; Vaclavovic, Pavel; Teferle, Felix Norman UL et al

Poster (2013, December 13)

The use of observations from Global Navigation Satellite Systems (GNSS) in operational meteorology is increasing worldwide due to the continuous evolution of GNSS. The assimilation of near real-time (NRT ... [more ▼]

The use of observations from Global Navigation Satellite Systems (GNSS) in operational meteorology is increasing worldwide due to the continuous evolution of GNSS. The assimilation of near real-time (NRT) GNSS-derived zenith total delay (ZTD) estimates into local, regional and global scale numerical weather prediction (NWP) models is now in operation at a number of meteorological institutions. The development of NWP models with high update cycles for nowcasting and monitoring of extreme weather events in recent years, requires the estimation of ZTD with minimal latencies, i.e. from 5 to 10 minutes, while maintaining an adequate level of accuracy for these. The availability of real-time (RT) observations and products from the IGS RT service and associated analysis centers make it possible to compute precise point positioning (PPP) solutions in RT, which provide ZTD along with position estimates. This study presents a comparison of the RT ZTD estimates from three different PPP software packages (G-Nut/Tefnut, BNC2.7 and PPP-Wizard) to the state-of-the-art IGS Final Troposphere Product employing PPP in the Bernese GPS Software. Overall, the ZTD time series obtained by the software packages agree fairly well with the estimates following the variations of the other solutions, but showing various biases with the reference. After correction of these the RMS differences are at the order of 0.01 m. The application of PPP ambiguity resolution in one solution or the use of different RT product streams shows little impact on the ZTD estimates. [less ▲]

Detailed reference viewed: 181 (10 UL)
Full Text
See detailA Comparison of Bayesian Monte Carlo Markov Chain and Maximum Likelihood Estimation Methods for the Statistical Analysis of Geodetic Time Series
Olivares Pulido, German UL; Teferle, Felix Norman UL

Scientific Conference (2013, December 10)

One of the objectives of TIGA is to compute precise station coordinates and velocities for GPS stations of interest. Consequently, a comprehensive knowledge of the stochastic features of the GPS time ... [more ▼]

One of the objectives of TIGA is to compute precise station coordinates and velocities for GPS stations of interest. Consequently, a comprehensive knowledge of the stochastic features of the GPS time series noise is crucial, as it affects the velocity estimation for each GPS station. For that, we present a Monte Carlo Markov Chain (MCMC) method to simultaneously estimate the velocities and the stochastic parameters of the noise in GPS time series. This method allows to get a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. We propose this method as an alternative to optimization methods, such as the Maximum Likelihood Estimator (MLE) method implemented in the widely used CATS software, whenever the likelihood and the parameters of the noise are to be estimated in order to obtain more robust uncertainties for all parameters involved. Furthermore, we assess the MCMC method through comparison with the widely used CATS software using daily height time series from the Jet Propulsion Laboratory. [less ▲]

Detailed reference viewed: 115 (6 UL)
Full Text
See detailThe King Edward Point Geodetic Observatory in Support of Sea Level Research
Teferle, Felix Norman UL; Hunegnaw, Addisu UL; Ahmed, Furqan UL et al

Poster (2013, October 28)

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Geor- gia, South Atlantic Ocean, through a University of Luxembourg funded research project and in ... [more ▼]

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Geor- gia, South Atlantic Ocean, through a University of Luxembourg funded research project and in collaboration with the United Kingdom’s National Oceanography Centre, British Antarctic Survey and Unavco, Inc. Due to its remote location in the South Atlantic Ocean, as well as, being one of few subaerial exposures of the Scotia plate, South Georgia Island has been a key location for a number of global monitoring networks, e.g. seismic, geomagnetic and oceanic. However, no geodetic monitoring station has been established, e.g. by the International Global Navigation Satellite System (GNSS) Service (IGS) community, despite the lack of such observations from this region. In this study we give details of the establishment of the KEP Geodetic Observatory, i.e. the installation of the continuous GNSS station KEPA on Brown Mountain and the estab- lishment of a new height datum for the tide gauge through a network of benchmarks at the KEP research station. We will present an evaluation of the GNSS positioning results for the period from February to August 2013 and of the survey/levelling work carried out for the height reference. We will discuss the installation in terms of its potential contributions to sea level observations using tide gauges and satellite altimetry, studies of tectonics, glacio-isostatic adjustment and atmospheric processes. [less ▲]

Detailed reference viewed: 119 (22 UL)
Full Text
See detailA Bayesian Monte Carlo Markov Chain Method for the Statistical Analysis of Geodetic Time Series
Olivares Pulido, German UL; Teferle, Felix Norman UL

Poster (2013, September 06)

Geodetic time series provide information which help to constrain theoretical models of geophysical processes. It is well established that such time series, for example from GPS or gravity measurements ... [more ▼]

Geodetic time series provide information which help to constrain theoretical models of geophysical processes. It is well established that such time series, for example from GPS or gravity measurements, contain time-correlated noise which is usually assumed to be a combination of a long-term stochastic process (characterized by a power-law spectrum) and random noise. Therefore, when fitting a model to geodetic time series it is essential to also estimate the stochastic parameters beside the deterministic ones. In many cases the stochastic parameters have included the power amplitudes of both time-correlated and random noise as well as the spectral index of the power-law process. To date the most widely used method for obtaining these model parameter estimates is based on maximum likelihood estimation (MLE). We present a new Bayesian Monte Carlo Markov Chain (MCMC) method to estimate the deterministic and stochastic model parameters of geodetic time series. This method provides a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. One advantage of this method over MLE is that the computation time required increases linearly with the number of parameters, hence being very suitable for dealing with a large number of parameters. Another advantage is that the properties of the estimator used by the MCMC method do not depend on the stationarity of the time series. We assess the MCMC method through comparison with MLE, using a data set of 300 synthetic GPS-like time series and the JPL daily position time series for 90 GPS stations (the IGS core network). [less ▲]

Detailed reference viewed: 129 (3 UL)
Full Text
See detailAntenna phase centre calibration effects on position time-series: preliminary results
Sidorov, Dmitry UL; Teferle, Felix Norman UL

Poster (2013, September 01)

Advances in GPS error modelling and the continued effort of re-processing have considerably decreased the scatter in position estimates over the last two decades. The associated reduction of noise in ... [more ▼]

Advances in GPS error modelling and the continued effort of re-processing have considerably decreased the scatter in position estimates over the last two decades. The associated reduction of noise in derived position time-series has revealed the presence of previously undetected periodic signals. It has been shown that these signals have frequencies related to the orbits of GPS satellites. A number of potential sources for these periodicities at the draconitic frequency and its harmonics have already been suggested in the literature and include, e.g. errors in the sub-daily tidal models, multipath and unresolved integer ambiguities. Due to the geometrical relationship between an observation point and an orbiting satellite, deficiencies in the modelling of electromagnetic phase centres of receiving antennas have the potential to also contribute to the discovered periodic signals. The change from relative to absolute type mean antenna/radome calibrations within the international GNSS service (IGS) lead to a significant improvement and the use of individual calibrations could add further refinements to computed solutions. However, at this stage providing individual calibrations for all IGS stations is not feasible. Furthermore, antenna near-field electromagnetic effects might out-weight the benefits of individual calibrations once an antenna is permanently installed. In this study we investigate the differences between position estimates obtained using individual and type mean antenna/radome calibrations as used by the IGS community. We employ position time-series derived from precise point positioning (PPP) as implemented in two scientific GNSS software packages. Our results suggest that the differences in the employed calibrations propagate directly into the position estimates, affecting both sub-daily and daily results and yielding periodic variations. The sub-daily variations have periods close to half a sidereal day and one sidereal day with amplitudes of up to 10 mm in all position components. The stacked power spectra of the daily difference time-series reveal peaks at the GPS draconitic frequency and its harmonics, having the associated amplitudes of up to 1 mm. Although these results are still preliminary, they confirm that small differences between individual and type mean antenna/radome calibrations propagate into position time series and may be partly responsible for the spurious signals with draconitic frequency and its harmonics. [less ▲]

Detailed reference viewed: 137 (22 UL)
Full Text
See detailPotential Contributions to Geoscience from GNSS Observations of the King Edward Point Geodetic Observatory, South Georgia, South Atlantic Ocean
Teferle, Felix Norman UL; Hunegnaw, Addisu UL; Ahmed, Furqan UL et al

Poster (2013, September 01)

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Georgia, South Atlantic Ocean, through a University of Luxembourg funded research project and in ... [more ▼]

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Georgia, South Atlantic Ocean, through a University of Luxembourg funded research project and in collaboration with the United Kingdom’s National Oceanography Centre, British Antarctic Survey and Unavco, Inc. Due to its remote location in the South Atlantic Ocean, as well as, being one of few subaerial exposures of the Scotia plate, South Georgia Island has been a key location for a number of global monitoring networks, e.g. seismic, geomagnetic and oceanic. However, no geodetic monitoring station has been established, e.g. by the International Global Navigation Satellite System (GNSS) Service (IGS) community, despite the lack of such observations from this region. In this study we will present an evaluation of the GNSS observations from the KEP Geodetic Observatory for the period from February to August 2013. We calculate multipath and positioning statistics and compare these to those from IGS stations. The on-site meteorological data is compared to those from the nearby KEP meteorological station and global numerical weather models, and the impact of these data sets on delay and integrated water vapour estimates will be evaluated. We will discuss the installation in terms of its potential contributions to sea level observations using tide gauges and satellite altimetry, studies of tectonics, glacio-isostatic adjustment and atmospheric processes. [less ▲]

Detailed reference viewed: 110 (14 UL)
Full Text
See detailAssessing the Status of GNSS Data Processing Systems to Estimate Integrated Water Vapour for Use in Numerical Weather Prediction models
Ahmed, Furqan UL; Teferle, Felix Norman UL; Bingley, Richard et al

Poster (2013, September)

Modern Numerical Weather Prediction (NWP) models make use of the GNSS derived Zenith Total Delay (ZTD) or Integrated Water Vapour (IWV) estimates to enhance the quality of their forecasts. Usually, the ... [more ▼]

Modern Numerical Weather Prediction (NWP) models make use of the GNSS derived Zenith Total Delay (ZTD) or Integrated Water Vapour (IWV) estimates to enhance the quality of their forecasts. Usually, the ZTD is assimilated into the NWP models on hourly intervals but with the advancement of NWP models towards higher update rates, it has become necessary to estimate the ZTD on sub-hourly intervals. In turn, this imposes requirements related to the timeliness and accuracy of the ZTD estimates and has lead to a development of various strategies to process GNSS observations to obtain ZTD with different latencies and accuracies. Using present GNSS products and tools, ZTD can be estimated in real-time (RT), near real-time (NRT) and post-processing (PP) modes. The aim of this study is to provide an overview and accuracy assessment of various RT, NRT, and PP IWV estimation systems and comparing their achieved accuracy with the user requirements for GNSS meteorology. The NRT and PP systems are based on the Bernese GNSS Software v5.2 using a double-difference network and Precise Point Positioning (PPP) strategy, and the RT systems are based on BKG Ntrip Client 2.7 and PPP-Wizard both using PPP. One of the RT systems allows integer ambiguity resolution with PPP and therefore the effect of fixing integer ambiguities on ZTD estimates will also be presented. [less ▲]

Detailed reference viewed: 182 (11 UL)
Full Text
See detailInstallation and First Evaluation of the King Edward Point Geodetic Observatory, South Georgia
Teferle, Felix Norman UL; White, Seth Warren; Foden, Peter R. et al

Poster (2013, May)

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Georgia through a University of Luxembourg funded research project in collaboration with the National ... [more ▼]

During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Georgia through a University of Luxembourg funded research project in collaboration with the National Oceanography Centre and the British Antarctic Survey. Due to its remote location in the South Atlantic Ocean as well as being one of few subaerial exposures of the Scotia plate, South Georgia has been a key location for a number of global monitoring networks, e.g. seismic, magnetic and oceanic. However, no geodetic monitoring station had been established previously despite the global network of Global Navigation Satellite System (GNSS) stations is lacking observations from this region. In this presentation we will present a first evaluation of the observations from the KEP Geodetic Observatory for the period from 14 February to 14 April 2013. We calculate multipath characteristics and positioning statistics from precise point positioning (PPP) and discuss the installation in terms of benefits for studies of tectonics and glacio-isostatic adjustment processes. The meteorological data is evaluated by comparison to the data from the existing KEP meteorological station and a widely used numerical weather model. [less ▲]

Detailed reference viewed: 107 (16 UL)
Full Text
See detailA Bayesian Monte Carlo Markov Chain Method for the Analysis of GPS Position Time Series
Olivares Pulido, German UL; Teferle, Felix Norman UL

Poster (2013, April 12)

Position time series from continuous GPS are an essential tool in many areas of the geosciences and are, for example, used to quantify long-term movements due to processes such as plate tectonics or ... [more ▼]

Position time series from continuous GPS are an essential tool in many areas of the geosciences and are, for example, used to quantify long-term movements due to processes such as plate tectonics or glacial isostatic adjustment. It is now widely established that the stochastic properties of the time series do not follow a random behavior and this affects parameter estimates and associated uncertainties. Consequently, a comprehensive knowledge of the stochastic character of the position time series is crucial in order to obtain realistic error bounds and for this a number of methods have already been applied successfully. We present a new Bayesian Monte Carlo Markov Chain (MCMC) method to simultaneously estimate the model and the stochastic parameters of the noise in GPS position time series. This method provides a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. One advantage of the MCMC method is that the computational time increases linearly with the number of parameters, hence being very suitable for dealing with a high number of parameters. A second advantage is that the properties of the estimator used in this method do not depend on the stationarity of the time series. At least on a theoretical level, no other estimator has been shown to have this feature. Furthermore, the MCMC method provides a means to detect multi-modality of the parameter estimates. We present an evaluation of the new MCMC method through comparison with widely used optimization and empirical methods for the analysis of GPS position time series. [less ▲]

Detailed reference viewed: 108 (1 UL)
Full Text
See detailAn Evaluation of the Accuracy of Real-Time Zenith Total Delay Estimates
Ahmed, Furqan UL; Teferle, Felix Norman UL; Bingley, Richard et al

Scientific Conference (2013, April 12)

The continuous evolution of Global Navigation Satellite Systems (GNSS) meteorology has lead to an increased use of associated observations for operational meteorology worldwide. In order to enhance short ... [more ▼]

The continuous evolution of Global Navigation Satellite Systems (GNSS) meteorology has lead to an increased use of associated observations for operational meteorology worldwide. In order to enhance short-term weather forecasts meteorological institutions use modern low-latency Numerical Weather Prediction (NWP) models which assimilate GNSS-derived Zenith Total Delay (ZTD) estimates. For such NWP models a number of GNSS processing strategies allow the provision of these ZTDs with the required accuracy (up to a few millimetres) and latency (hourly). However, meteorological now-casting applications, e.g. for storm tracking, require higher update rates for the ZTDs of 10 or even 5 min, which can be achieved, but only at a loss in accuracy. Using the IGS Real-Time Service orbit and clock products together with an appropriate GNSS software, it is possible to estimate the ZTDs in real-time. Available software packages either use GNSS processing strategies based on differenced or un-differenced observations, such as Precise Point Positioning (PPP). While PPP has clear advantages for efficiently processing data streams from large GNSS networks this strategy is more affected by inaccuracies in the real-time products than when using differenced observations. On the other hand, recent advances in PPP integer ambiguity resolution nowadays provide this strategy with the benefits of ambiguity-fixed solutions. In this study, we present an evaluation of the accuracy of real-time ZTD estimates obtained from several GNSS processing systems through comparison to those obtained from a near real-time and a post-processing system. [less ▲]

Detailed reference viewed: 122 (22 UL)
Full Text
Peer Reviewed
See detailDetecting offsets in GPS time series: First results from the detection of offsets in GPS experiment
Gazeaux, Julien; Williams, Simon; King, Matt et al

in Journal of Geophysical Research. Solid Earth (2013), 118

The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. If these are not detected and adjusted correctly they bias velocities, and hence geophysical estimates ... [more ▼]

The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. If these are not detected and adjusted correctly they bias velocities, and hence geophysical estimates, and degrade the terrestrial reference frame. They also alter apparent time series noise characteristics as undetected offsets resemble a random walk process. As such, offsets are a substantial problem. A number of offset detection methods have been developed across a range of fields, and some of these are now being tested in geodetic time series. The DOGEx (Detection of Offsets in GPS Experiment) project aims to test the effectiveness of automated and manual offset detection approaches and the subsequent effect on GPS-derived velocities. To do this, simulated time series were first generated that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. We focus on offset detection and together with velocity biases induced by incorrect offset detection. We show that, at present, manual methods (where offsets are hand -picked by GPS time series experts) almost always give better results than automated or semi-automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the 5th percentile ranges (5% to 95%) in velocity bias for automated approaches is equal to 4.2mm/year,whereas it is equal to 1.8mm/yr for the manual solutions. However the True Positive detection rate of automated solutions is significantly higher than those for the manual solutions, being around 37% for the best automated, and 42% for the best manual solution. The amplitude of offsets detectable by automated solutions is greater than for hand picked solutions, with the smallest detectable offset for the two best manual solutions equal to 5mm and 7mm and to 8mm and 10mm for the two best automated solutions. The best manual solutions yielded velocity biases from the truth commonly in the range ±0.2mm/yr, whereas the best automated solutions produced biases no better than double this range. Assuming the simulated time series noise levels continue to be representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than these levels is therefore not robust. Further work is required before we can routinely interpret sub-mm/yr velocities for single GPS stations. [less ▲]

Detailed reference viewed: 204 (6 UL)
Full Text
See detailThe King Edward Point Geodetic Observatory
Teferle, Felix Norman UL

Report (2013)

During the period from 7th until 14th February 2013 Norman Teferle (University of Luxembourg) and Seth White (Unavco Inc.) visited King Edward Point (KEP) research station, South Georgia, to establish the ... [more ▼]

During the period from 7th until 14th February 2013 Norman Teferle (University of Luxembourg) and Seth White (Unavco Inc.) visited King Edward Point (KEP) research station, South Georgia, to establish the KEP Geodetic Observatory (KEPGO). The observatory consists of an autonomous, continuous Global Navigation Satellite System (GNSS) station with auxiliary equipment on Brown Mountain, as well as, benchmarks on Brown Mountain and at KEP research station. The primary objective of the observatory is to measure vertical land movements in order to study sea level changes using the KEP tide gauge record or satellite altimeter data. Therefore, the existing tide gauge was connected to the observatory through precise levelling and campaign GNSS observations. The levelling was carried out over the tide gauge itself, two existing United Kingdom Hydrographic Office (UKHO) and four newly established KEPGO tide gauge benchmarks (TGBMs). The GNSS observations were carried out on two benchmarks and their coordinates were computed with respect to the continuous GNSS station on Brown Mountain. Taking the UKHO height information together with the levelling and GNSS results it is suggested that the UKHO TGBM on the jetty may have settled by a few centimetres over the period from 2003 to 2013 and that the UKHO height datum requires a shift of by about -1 m in order to bring it closer to a globally consistent vertical reference system. This technical report details the installation work and analysis carried out during and after the visit. [less ▲]

Detailed reference viewed: 157 (18 UL)
Full Text
Peer Reviewed
See detailA Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
Olivares Pulido, German UL; Teferle, Felix Norman UL

in IEEE Transactions on Signal Processing (2013), 61(9), 2405-2412

We present a Bayesian Monte Carlo Markov Chain method to simultaneously estimate the spectral index and power amplitude of a fractional differenced Gaussian process at low frequency, in presence of white ... [more ▼]

We present a Bayesian Monte Carlo Markov Chain method to simultaneously estimate the spectral index and power amplitude of a fractional differenced Gaussian process at low frequency, in presence of white noise, and a linear trend and periodic signals. This method provides a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. We test this method with simulated and real Global Positioning System height time series and propose it as an alternative to optimization methods currently in use. Furthermore, without any mathematical proof, the results from the simulations suggest that this method is unaffected by the stationary regime and hence, can be used to check whether or not a time series is stationary. [less ▲]

Detailed reference viewed: 186 (15 UL)
Full Text
Peer Reviewed
See detailStatus of TIGA activities at the British Isles continuous GNSS Facility and the University of Luxembourg
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Bingley, Richard et al

Scientific Conference (2013)

In 2013 the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Working Group started their reprocessing campaign which proposes to re-analyse all relevant GPS observations from 1995 ... [more ▼]

In 2013 the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Working Group started their reprocessing campaign which proposes to re-analyse all relevant GPS observations from 1995 to the end of 2012 in order to provide high quality estimates of vertical land motion for monitoring of sea level changes. The TIGA Working Group will also produce a combined solution from the individual TIGA Analysis Centres (TAC) contributions. The consortium of British Isles continuous GNSS Facility (BIGF) and the University of Luxembourg TAC (BLT) will contribute weekly minimally constrained SINEX solutions from its reprocessing using the Bernese GNSS Software (BSW) version 5.2 and the University of Luxembourg will also act as a TIGA Combination Centre (TCC). The BLT will generate two solutions, one based on BSW5.2 using a network double difference (DD) strategy and a second one based on BSW5.2 using a Precise Point Positioning (PPP) strategy. In the DD strategy we have included all IGb08 core stations in order to achieve a consistent reference frame implementation. As an initial test for the TIGA combination, all TACs agreed to provide weekly SINEX solutions for a four-week period in December 2011. Taking these individual TAC solutions the TCC has computed a first combination using two independent combination software packages: CATREF and GLOBK. In this study we will present preliminary results from the BLT reprocessing and from the combination tests. [less ▲]

Detailed reference viewed: 119 (14 UL)
Full Text
See detailAn Evaluation of Real-Time Zenith Total Delay Estimates
Ahmed, Furqan UL; Teferle, Felix Norman UL; Bingley, Richard

Poster (2012, December)

Detailed reference viewed: 72 (3 UL)
Full Text
See detailGNSS Meteorology in Luxembourg
Ahmed, Furqan UL; Teferle, Felix Norman UL; Bingley, Richard et al

in Cahier Scientifique - Revue Technique Luxembourgeoise (2012), (1), 16-22

Atmospheric water vapour is a primary greenhouse gas and plays an important role in weather forecasting and climate monitoring. Global Navigation Satellite System (GNSS) signals experience a propagation ... [more ▼]

Atmospheric water vapour is a primary greenhouse gas and plays an important role in weather forecasting and climate monitoring. Global Navigation Satellite System (GNSS) signals experience a propagation delay, which is related to the amount of water vapour in the lower atmosphere. Hence GNSS observations can be processed to estimate this delay with millimetre-level accuracy and together with meteorological data can be used to compute the amount of atmospheric water vapour on various temporal and spatial scales. [less ▲]

Detailed reference viewed: 294 (24 UL)