Results 141-160 of 715.
Bookmark and Share    
Full Text
Peer Reviewed
See detailOn the Successful Delivery Probability of Full-Duplex-Enabled Mobile Edge Caching
Vu, Thang Xuan UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2019)

Detailed reference viewed: 70 (6 UL)
Full Text
Peer Reviewed
See detailUltrareliable SWIPT using Unscheduled Short Packet Transmissions
Kisseleff, Steven UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE International Conference on Communications (ICC), B5G-URLLC Workshop, Shanghai, May 2019 (2019, May 20)

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to the co-channel interference from simultaneous transmissions. In the recent time, this problem has been ... [more ▼]

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to the co-channel interference from simultaneous transmissions. In the recent time, this problem has been extensively studied in various contexts. Due to a potentially very long duty cycle, orthogonal multiple access techniques are not well suited for such schemes. Instead, random medium access (RMA) seems promising, since it guarantees a lower bound for the network throughput even in presence of an infinite number of simultaneous transmissions while reducing the average length of the duty cycle. Such an RMA scheme is based on transmission of short data packets with unknown scheduling. Of course, a reliable symbol detection for this type of communication is very challenging not only due to a large amount of interference from the adjacent nodes, but also because of the uncertainty related to the presence or absence of overlapping packets. Interestingly, with increasing number of network nodes also the amount of energy, which can be harvested from the received signal, increases. This is especially beneficial for powering of a relay device, which may utilize the energy for further information processing and retransmission. In this paper, we address the design of a simultaneous information and power transfer scheme based on unscheduled short packet transmissions for ultrareliable communication. [less ▲]

Detailed reference viewed: 68 (5 UL)
Full Text
Peer Reviewed
See detailParallel coordinate descent algorithms for sparse phase retrieval
Yang, Yang UL; Pesavento, Marius; Eldar, Yonina C. et al

in Proc. 2019 IEEE International Conference on Acoustics, Speech and Signal (ICASSP) (2019, May)

Detailed reference viewed: 248 (33 UL)
Full Text
Peer Reviewed
See detailVIEW-INVARIANT ACTION RECOGNITION FROM RGB DATA VIA 3D POSE ESTIMATION
Baptista, Renato UL; Ghorbel, Enjie UL; Papadopoulos, Konstantinos UL et al

in IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019 (2019, May)

In this paper, we propose a novel view-invariant action recognition method using a single monocular RGB camera. View-invariance remains a very challenging topic in 2D action recognition due to the lack of ... [more ▼]

In this paper, we propose a novel view-invariant action recognition method using a single monocular RGB camera. View-invariance remains a very challenging topic in 2D action recognition due to the lack of 3D information in RGB images. Most successful approaches make use of the concept of knowledge transfer by projecting 3D synthetic data to multiple viewpoints. Instead of relying on knowledge transfer, we propose to augment the RGB data by a third dimension by means of 3D skeleton estimation from 2D images using a CNN-based pose estimator. In order to ensure view-invariance, a pre-processing for alignment is applied followed by data expansion as a way for denoising. Finally, a Long-Short Term Memory (LSTM) architecture is used to model the temporal dependency between skeletons. The proposed network is trained to directly recognize actions from aligned 3D skeletons. The experiments performed on the challenging Northwestern-UCLA dataset show the superiority of our approach as compared to state-of-the-art ones. [less ▲]

Detailed reference viewed: 267 (32 UL)
Full Text
Peer Reviewed
See detailInexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization
Yang, Yang UL; Pesavento, Marius; Luo, Zhi-Quan et al

E-print/Working paper (2019)

In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by ... [more ▼]

In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by solving the original optimization problem with respect to that block variable inexactly. More precisely, a local approximation of the original optimization problem is solved. The proposed algorithm has several attractive features, namely, i) high flexibility, as the approximation function only needs to be strictly convex and it does not have to be a global upper bound of the original function; ii) fast convergence, as the approximation function can be designed to exploit the problem structure at hand and the stepsize is calculated by the line search; iii) low complexity, as the approximation subproblems are much easier to solve and the line search scheme is carried out over a properly constructed differentiable function; iv) guaranteed convergence to a stationary point, even when the objective function does not have a Lipschitz continuous gradient. Interestingly, when the approximation subproblem is solved by a descent algorithm, convergence to a stationary point is still guaranteed even if the approximation subproblem is solved inexactly by terminating the descent algorithm after a finite number of iterations. These features make the proposed algorithm suitable for large-scale problems where the dimension exceeds the memory and/or the processing capability of the existing hardware. These features are also illustrated by several applications in signal processing and machine learning, for instance, network anomaly detection and phase retrieval. [less ▲]

Detailed reference viewed: 187 (34 UL)
Full Text
Peer Reviewed
See detailClosed Form Discrete Unimodular MIMO Waveform Design Using Block Circulant Decomposition
Hammes, Christian UL; Shankar, Bhavani UL; Ottersten, Björn UL

Poster (2019, April 22)

This paper deals with the waveform design under the constraint of discrete multiphase unimodular sequences. It relies on Block Circulant decomposition of the slow-time transmitted waveform. The presented ... [more ▼]

This paper deals with the waveform design under the constraint of discrete multiphase unimodular sequences. It relies on Block Circulant decomposition of the slow-time transmitted waveform. The presented closed-form solution is capable of designing orthogonal signals, such that the virtual MIMO paradigm is enabled leading to enhanced angular resolution. On the other hand, the proposed method is also capable of approximating any desired radiation pattern within the physical limits of the transmitted array size. Simulation results prove the effectiveness in terms computational complexity, orthogonal signal design and the transmit beam pattern design under constant modulus constraint. [less ▲]

Detailed reference viewed: 63 (4 UL)
Full Text
Peer Reviewed
See detailA Calibrated Learning Approach to Distributed Power Allocation in Small Cell Networks
Zhang, Xinruo; Nakhai; Zheng, Gan UL et al

in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019, April 17)

This paper studies the problem of max-min fairness power allocation in distributed small cell networks operated under the same frequency bandwidth. We introduce a calibrated learning enhanced time ... [more ▼]

This paper studies the problem of max-min fairness power allocation in distributed small cell networks operated under the same frequency bandwidth. We introduce a calibrated learning enhanced time division multiple access scheme to optimize the transmit power decisions at the small base stations (SBSs) and achieve max-min user fairness in the long run. Provided that the SBSs are autonomous decision makers, the aim of the proposed algorithm is to allow SBSs to gradually improve their forecast of the possible transmit power levels of the other SBSs and react with the best response based on the predicted results at individual time slots. Simulation results validate that in terms of achieving max-min signal-to-interference-plus-noise ratio, the proposed distributed design outperforms two benchmark schemes and achieves a similar performance as compared to the optimal centralized design. [less ▲]

Detailed reference viewed: 46 (0 UL)
Full Text
Peer Reviewed
See detailPricing Perspective for SWIPT in OFDM-based Multi-User Wireless Cooperative Systems
Gautam, Sumit UL; Lagunas, Eva UL; Vuppala, Satyanarayana UL et al

Scientific Conference (2019, April)

We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from ... [more ▼]

We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from a pricing perspective. Specifically, we consider that a transmit source communicates with multiple destinations using Orthogonal Frequency Division Multiplexing (OFDM) system within a dual-hop relay-assisted network, where the destination nodes are capable of jointly decoding information and harvesting energy from the same radio-frequency (RF) signal using either the time-switching (TS) or power-splitting (PS) based SWIPT receiver architectures. Computation of the optimal solution for the aforementioned problem is an extremely challenging task as joint optimization of several network resources introduce intractability at high numeric values of relays, destination nodes and OFDM sub-carriers. Therefore, we present a suitable algorithm with sub-optimal results and good performance to compute the performance of joint data processing and harvesting energy under fixed pricing methods by adjusting the respective weight factors, motivated by practical statistics. Furthermore, by exploiting the binary options of the weights, we show that the proposed formulation can be regulated purely as a sum-spectral efficiency maximization or solely as a sum-harvested energy maximization problem. Numerical results illustrate the benefits of the proposed design under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 132 (16 UL)
Full Text
Peer Reviewed
See detailRobust Precoding Techniques for Multibeam Mobile Satellite Systems
Joroughi, Vahid UL; Shankar, Bhavani UL; Maleki, Sina UL et al

in 2019 IEEE Wireless Communications and Networking Conference (WCNC) (2019, April)

This paper presents designing precoding technique at the gateway of a multibeam mobile satellite systems, enabling full frequency reuse pattern among the beams. Such a system brings in two critical ... [more ▼]

This paper presents designing precoding technique at the gateway of a multibeam mobile satellite systems, enabling full frequency reuse pattern among the beams. Such a system brings in two critical challenges to overcome. The inter-beam interference makes applying interference mitigation techniques necessary. Further, when the user terminals are mobile the Channel State Information (CSI) becomes time-varying which is another challenge to overcome. Therefore, the gateway has only access to an outdated CSI, which can eventually limit the precoding gains. In this way, employing a proper CSI estimation mechanism at the gateway can improve the performance of the precoding scheme. In this context, the objectives of this paper are two folds. First, we present different CSI feedback mechanisms which aim at preserving a lower CSI variations at the gateway. Then, we develop the corresponding precoding schemes which are adapted with the proposed CSI feedback mechanisms. To keep the complexity of the proposed precoding schemes affordable, we consider a maritime communication scenario so that the signals received by mobile user terminals suffer from a lower pathloss compared to the Land Mobile communication. Finally, we provide several simulations results in order to evaluate the performance of the proposed precoding techniques. [less ▲]

Detailed reference viewed: 46 (6 UL)
Full Text
Peer Reviewed
See detailRelay Selection and Resource Allocation for SWIPT in Multi-User OFDMA Systems
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

We investigate the resource allocation and relay selection in a two-hop relay-assisted multi-user Orthogonal Frequency Division Multiple Access (OFDMA) network, where the end-nodes support Simultaneous ... [more ▼]

We investigate the resource allocation and relay selection in a two-hop relay-assisted multi-user Orthogonal Frequency Division Multiple Access (OFDMA) network, where the end-nodes support Simultaneous Wireless Information and Power Transfer (SWIPT) employing a Power Splitting (PS) technique. Our goal is to optimize the end-nodes’ power splitting ratios as well as the relay, carrier and power assignment so that the sum-rate of the system is maximized subject to harvested energy and transmitted power constraints. Such joint optimization with mixed integer non-linear programming structure is combinatorial in nature. Due to the complexity of this problem, we propose to solve its dual problem which guarantees asymptotic optimality and less execution time compared to a highly-complex exhaustive search approach. Furthermore, we also present a heuristic method to solve this problem with lower computational complexity. Simulation results reveal that the proposed algorithms provide significant performance gains compared to a semi-random resource allocation and relay selection approach and close to the optimal solution when the number of OFDMA sub-carriers is sufficiently large. [less ▲]

Detailed reference viewed: 249 (44 UL)
Full Text
Peer Reviewed
See detailRobust Design of Power Minimizing Symbol-Level Precoder under Channel Uncertainty
Haqiqatnejad, Alireza UL; Kayhan, Farbod UL; Ottersten, Björn UL

in IEEE Global Communications Conference (GLOBECOM), Abu Dhabi 9-13 December 2018 (2019, February 21)

In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the ... [more ▼]

In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP design problem, a general category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in a robust SLP design minimizing the total transmit power subject to individual quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, spherical (norm-bounded) and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastically known uncertainties, we derive a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches. [less ▲]

Detailed reference viewed: 174 (24 UL)
Full Text
Peer Reviewed
See detailSimultaneous Wireless Information and Power Transfer in UDN with Caching Architecture
Gautam, Sumit UL; Vu, Thang Xuan UL; Chatzinotas, Symeon UL et al

in Duong, Trung; Chu, Xiaoli; Suraweera, Himal (Eds.) Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications (2019)

In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the ... [more ▼]

In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the considered system, a relay which is equipped with both caching and energy harvesting capabilities helps a source to convey information to a destination. Based on the time-splitting mechanism, we analyze the effect of caching on the system performance in terms of stored energy at the relay and the relay-destination link throughput. In particular, two optimization problems are formulated to maximize the energy stored at the relay and the relay-destination throughput. By using KKT method, closed-form solution are obtained for both the problems. Finally, the performance of the proposed design under various operating conditions and parameter values is illustrated using numerical results. [less ▲]

Detailed reference viewed: 162 (33 UL)
Full Text
Peer Reviewed
See detailA View-invariant Framework for Fast Skeleton-based Action Recognition Using a Single RGB Camera
Ghorbel, Enjie UL; Papadopoulos, Konstantinos UL; Baptista, Renato UL et al

in 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, 25-27 February 2018 (2019, February)

View-invariant action recognition using a single RGB camera represents a very challenging topic due to the lack of 3D information in RGB images. Lately, the recent advances in deep learning made it ... [more ▼]

View-invariant action recognition using a single RGB camera represents a very challenging topic due to the lack of 3D information in RGB images. Lately, the recent advances in deep learning made it possible to extract a 3D skeleton from a single RGB image. Taking advantage of this impressive progress, we propose a simple framework for fast and view-invariant action recognition using a single RGB camera. The proposed pipeline can be seen as the association of two key steps. The first step is the estimation of a 3D skeleton from a single RGB image using a CNN-based pose estimator such as VNect. The second one aims at computing view-invariant skeleton-based features based on the estimated 3D skeletons. Experiments are conducted on two well-known benchmarks, namely, IXMAS and Northwestern-UCLA datasets. The obtained results prove the validity of our concept, which suggests a new way to address the challenge of RGB-based view-invariant action recognition. [less ▲]

Detailed reference viewed: 388 (23 UL)
Full Text
Peer Reviewed
See detailPower and Flow Assignment for 5G Integrated Terrestrial-Satellite Backhaul Networks
Lagunas, Eva UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in IEEE Wireless Communications and Networking Conference, Marrakech, Morocco, April 2019 (2019)

Detailed reference viewed: 150 (26 UL)
Full Text
Peer Reviewed
See detailSatellite Links Integrated in 5G SDN-enabled Backhaul Networks: An Iterative Joint Power and Flow Assignment
Lagunas, Eva UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sept. 2019 (2019)

Detailed reference viewed: 130 (18 UL)
Full Text
Peer Reviewed
See detailAn Asymptotically Efficient Weighted Least Squares Estimator for Co-Array-Based DoA Estimation
Sedighi, Saeid UL; Shankar, Bhavani UL; Ottersten, Björn UL

in IEEE Transactions on Signal Processing (2019)

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees ... [more ▼]

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees of freedom. Although the literature presents a variety of estimators in this context, none of them are proven to be statistically efficient. This work introduces a novel estimator for the co-array-based DoA estimation employing the Weighted Least Squares (WLS) method. An analytical expression for the large sample performance of the proposed estimator is derived. Then, an optimal weighting is obtained so that the asymptotic performance of the proposed WLS estimator coincides with the Cram\'{e}r-Rao Bound (CRB), thereby ensuring asymptotic statistical efficiency of resulting WLS estimator. This implies that the proposed WLS estimator has a significantly better performance compared to existing methods. Numerical simulations are provided to validate the analytical derivations and corroborate the improved performance. [less ▲]

Detailed reference viewed: 258 (14 UL)
Full Text
Peer Reviewed
See detailDesigning MPSK Sequences and Doppler Filter Bank in Cognitive Radar Systems
Raei, Ehsan UL; Alaeekerahroodi, Mohammad UL; Shankar, Bhavani UL et al

in International Radar Conference, france, Toulon 23-27 September, 2019 (2019)

In this paper, we propose an attractive method to jointly design discrete phase radar sequence and receive filter bank with the aim of enhancing Signal to Interference and Noise Ratio (SINR) in a ... [more ▼]

In this paper, we propose an attractive method to jointly design discrete phase radar sequence and receive filter bank with the aim of enhancing Signal to Interference and Noise Ratio (SINR) in a cognitive radar system. Towards this, we consider maximizing the worst case SINR at the output of the filter bank when transmitting M-ary Phase Shift Keying (MPSK) sequences, an exercise hitherto not considered. This maximization results in a max-min optimization problem that is multi-variable and non-convex, where we propose an efficient algorithm based on the Coordinate Descent (CD) framework to address it. The gains demonstrated by the proposed algorithm over the state of the art as well as its discrete phase property render the designed sequences attractive for hardware implementation while enabling efficient utilization of transmit power. [less ▲]

Detailed reference viewed: 166 (9 UL)
Full Text
Peer Reviewed
See detailSymbol-Level Precoding for Low Complexity Transmitter Architectures in Large-Scale Antenna Array Systems
Domouchtsidis, Stavros UL; Tsinos, Christos UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

In this paper, we consider three transmitter designs for symbol-level-precoding (SLP), a technique that mitigates multiuser interference (MUI) in multiuser systems by designing the transmitted signals ... [more ▼]

In this paper, we consider three transmitter designs for symbol-level-precoding (SLP), a technique that mitigates multiuser interference (MUI) in multiuser systems by designing the transmitted signals using the channel state information and the information-bearing symbols. The considered systems tackle the high hardware complexity and power consumption of existing SLP techniques by reducing or completely eliminating fully digital radio frequency (RF) chains. The first proposed architecture referred to as, Antenna Selection SLP, minimizes the MUI by activating a subset of the available antennas and thus, reducing the number of required RF chains to the number of active antennas. In the other two architectures, which we refer to as RF domain SLP, the processing happens entirely in the RF domain, thus eliminating the need for multiple fully digital RF chains altogether. Instead, the analog phase shifters directly modulate the signals on the transmit antennas. The precoding design for all the considered cases is formulated as a constrained least squares problem and efficient algorithmic solutions are developed via the Coordinate Descent method. Simulations provide insights into the power efficiency of the proposed schemes and the improvements over the fully digital counterparts. [less ▲]

Detailed reference viewed: 21 (1 UL)
Full Text
Peer Reviewed
See detailSlicing based Resource Allocation for Multiplexing of eMBB and URLLC Services in 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in Slicing based Resource Allocation for Multiplexing of eMBB and URLLC Services in 5G Wireless Networks (2019)

Detailed reference viewed: 152 (23 UL)