Results 61-80 of 758.
Bookmark and Share    
Full Text
Peer Reviewed
See detailFeasible Point Pursuit and Successive Convex Approximation for Transmit Power Minimization in SWIPT-Multigroup Multicasting Systems
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2021)

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures ... [more ▼]

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of both EH group and single MC group. We formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under certain quality-of-service constraints. The problem may be adapted to the well-known semidefinite program and solved via relaxation of rank-1 constraint. However, this process leads to performance degradation in some cases, which increases with the rank of solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit successive convex approximation method in order to address the rank-related issue. The benefits of proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 122 (16 UL)
Full Text
Peer Reviewed
See detailCoverage Probability and Ergodic Capacity of Intelligent Reflecting Surface-Enhanced Communication Systems
Trinh, van Chien UL; Tu, Lam Thanh; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021), 25(1), 69-73

This paper studies the performance of a single-input single-output (SISO) system enhanced by the assistance of an intelligent reflecting surface (IRS), which is equipped with a finite number of elements ... [more ▼]

This paper studies the performance of a single-input single-output (SISO) system enhanced by the assistance of an intelligent reflecting surface (IRS), which is equipped with a finite number of elements under Rayleigh fading channels. From the instantaneous channel capacity, we compute a closed-form expression of the coverage probability as a function of statistical channel information only. A scaling law of the coverage probability and the number of phase shifts is further obtained. The ergodic capacity is derived, then a simple upper bound to simplify matters of utilizing the symbolic functions and can be applied for a long period of time. Numerical results manifest the tightness and effectiveness of our closed-form expressions compared with Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 136 (21 UL)
Full Text
Peer Reviewed
See detailNOMA-Enabled Multi-Beam Satellite Systems: Joint Optimization to Overcome Offered-Requested Data Mismatches
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2021), 70(1), 900-913

Non-orthogonal multiple access (NOMA) has potentials to improve the performance of multi-beam satellite systems. The performance optimization in satellite-NOMA systems could be different from that in ... [more ▼]

Non-orthogonal multiple access (NOMA) has potentials to improve the performance of multi-beam satellite systems. The performance optimization in satellite-NOMA systems could be different from that in terrestrial-NOMA systems, e.g., considering distinctive channel models, performance metrics, power constraints, and limited flexibility in resource management. In this paper, we adopt a metric, offered capacity to requested traffic ratio (OCTR), to measure the requested-offered data rate mismatch in multi-beam satellite systems. In the considered system, NOMA is applied to mitigate intra-beam interference while precoding is implemented to reduce inter-beam interference. We jointly optimize power, decoding orders, and terminal-timeslot assignment to improve the max-min fairness of OCTR. The problem is inherently difficult due to the presence of combinatorial and non-convex aspects. We first fix the terminal-timeslot assignment, and develop an optimal fast-convergence algorithmic framework based on Perron-Frobenius theory (PF) for the remaining joint power-allocation and decoding-order optimization problem. Under this framework, we propose a heuristic algorithm for the original problem, which iteratively updates the terminal-timeslot assignment and improves the overall OCTR performance. Numerical results show that the proposed algorithm improves the max-min OCTR by 40.2% over orthogonal multiple access (OMA) in average. [less ▲]

Detailed reference viewed: 268 (54 UL)
Full Text
Peer Reviewed
See detailSymbol-Level Precoding with Constellation Rotation in the Finite Block Length Regime
Kisseleff, Steven UL; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021)

This paper tackles the problem of optimizing the parameters of a symbol-level precoder for downlink multiantenna multi-user systems in the finite block length regime. Symbol-level precoding (SLP) is a non ... [more ▼]

This paper tackles the problem of optimizing the parameters of a symbol-level precoder for downlink multiantenna multi-user systems in the finite block length regime. Symbol-level precoding (SLP) is a non-linear technique for multiuser wireless networks, which exploits constructive interference among co-channel links. Current SLP designs, however, implicitly assume asymptotically infinite blocks, since they do not take into account that the design rules for finite and especially short blocks might significantly differ. This paper fills this gap by introducing a novel SLP design based on discrete constellation rotations. The rotations are the added degree of freedom that can be optimized for every block to be transmitted, for instance, to save transmit power. Numerical evaluations of the proposed method indicate substantial power savings, which might be over 99% compared to the traditional SLP, at the expense of a single additional pilot symbol per block for constellation de-rotation. [less ▲]

Detailed reference viewed: 87 (5 UL)
Full Text
Peer Reviewed
See detailData-driven Precoded MIMO Detection Robust to Channel Estimation Errors
Mayouche, Abderrahmane UL; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021)

We study the problem of symbol detection in downlink coded multiple-input multiple-output (MIMO) systems with precoding and without the explicit knowledge of the channel-state information (CSI) at the ... [more ▼]

We study the problem of symbol detection in downlink coded multiple-input multiple-output (MIMO) systems with precoding and without the explicit knowledge of the channel-state information (CSI) at the receiver. In this context, we investigate the impact of imperfect CSI at the transmitter (CSIT) on the detection performance. We first model the CSIT degradation based on channel estimation errors to investigate its impact on the detection performance at the receiver. To mitigate the effect of CSIT deterioration at the latter, we propose learning based techniques for hard and soft detection that use downlink precoded pilot symbols as training data. We note that these pilots are originally intended for signal-to-interference-plus-noise ratio (SINR) estimation. We validate the approach by proposing a lightweight implementation that is suitable for online training using several state-of-the-art classifiers. We compare the bit error rate (BER) and the runtime complexity of the proposed approaches where we achieve superior detection performance in harsh channel conditions while maintaining low computational requirements. Specifically, numerical results show that severe CSIT degradation impedes the correct detection when a conventional detector is used. However, the proposed learning-based detectors can achieve good detection performance even under severe CSIT deterioration, and can yield 4-8 dB power gain for BER values lower than 10-4 when compared to the classic linear minimum mean square error (MMSE) detector. [less ▲]

Detailed reference viewed: 79 (9 UL)
Full Text
Peer Reviewed
See detailPrecoding for Satellite Communications: Why, How and What next?
Mysore Rama Rao, Bhavani Shankar UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021)

Detailed reference viewed: 120 (16 UL)
Full Text
Peer Reviewed
See detailSatellite Broadband Capacity-on-Demand: Dynamic Beam Illumination with Selective Precoding
Chen, Lin UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), Dublin, Ireland, Aug. 2021 (2021)

Efficient satellite resource utilization is one of the key challenges in next generation high-throughput satellite communication system. In this context, dynamic coverage scheduling based on traffic ... [more ▼]

Efficient satellite resource utilization is one of the key challenges in next generation high-throughput satellite communication system. In this context, dynamic coverage scheduling based on traffic demand has emerged as a promising solution, focusing system capacity into geographical areas where it is needed. Conventional Beam Hopping (BH) satellite system exploit the time-domain flexibility, which provides all available spectrum to a selected set of beams as long as they are not adjacent to each other. However, large geographical areas involving more than one adjacent beam may require full access to the available spectrum during particular instances of time. In this paper, we address this problem by proposing a dynamic beam illumination scheme combined with selective precoding, where only sub-sets of beams that are subject to strong inter-beam interference are precoded. With selective precoding, complexity at the groundsegment is reduced and only considered when needed. Supporting results based on numerical simulations show that the proposed scheme outperforms the relevant benchmarks in terms of demand matching performance. [less ▲]

Detailed reference viewed: 233 (110 UL)
Full Text
Peer Reviewed
See detailDynamic Bandwidth Allocation and Precoding Design for Highly-Loaded Multiuser MISO in Beyond 5G Networks
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Transactions on Wireless Communications (2021)

Multiuser techniques play a central role in the fifth-generation (5G) and beyond 5G (B5G) wireless networks that exploit spatial diversity to serve multiple users simultaneously in the same frequency ... [more ▼]

Multiuser techniques play a central role in the fifth-generation (5G) and beyond 5G (B5G) wireless networks that exploit spatial diversity to serve multiple users simultaneously in the same frequency resource. It is well known that a multi-antenna base station (BS) can efficiently serve a number of users not exceeding the number of antennas at the BS via precoding design. However, when there are more users than the number of antennas at the BS, conventional precoding design methods perform poorly because inter-user interference cannot be efficiently eliminated. In this paper, we investigate the performance of a highly-loaded multiuser system in which a BS simultaneously serves a number of users that is larger than the number of antennas. We propose a dynamic bandwidth allocation and precoding design framework and apply it to two important problems in multiuser systems: i) User fairness maximization and ii) Transmit power minimization, both subject to predefined quality of service (QoS) requirements. The premise of the proposed framework is to dynamically assign orthogonal frequency channels to different user groups and carefully design the precoding vectors within every user group. Since the formulated problems are non-convex, we propose two iterative algorithms based on successive convex approximations (SCA), whose convergence is theoretically guaranteed. Furthermore, we propose a low-complexity user grouping policy based on the singular value decomposition (SVD) to further improve the system performance. Finally, we demonstrate via numerical results that the proposed framework significantly outperforms existing designs in the literature. [less ▲]

Detailed reference viewed: 44 (4 UL)
Full Text
Peer Reviewed
See detailVertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition
Papadopoulos, Konstantinos UL; Ghorbel, Enjie UL; Aouada, Djamila UL et al

in International Conference on Pattern Recognition, Milan 10-15 January 2021 (2021)

Detailed reference viewed: 139 (26 UL)
Full Text
Peer Reviewed
See detailOn the Performance of One-Bit DoA Estimation via Sparse Linear Arrays
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE Transactions on Signal Processing (2021)

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in ... [more ▼]

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in resolving uncorrelated source signals. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has emerged as an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. In this paper, we study the problem of DoA estimation from one-bit measurements received by an SLA. Specifically, we first investigate the identifiability conditions for the DoA estimation problem from one-bit SLA data and establish an equivalency with the case when DoAs are estimated from infinite-bit unquantized measurements. Towards determining the performance limits of DoA estimation from one-bit quantized data, we derive a pessimistic approximation of the corresponding Cram\'{e}r-Rao Bound (CRB). This pessimistic CRB is then used as a benchmark for assessing the performance of one-bit DoA estimators. We also propose a new algorithm for estimating DoAs from one-bit quantized data. We investigate the analytical performance of the proposed method through deriving a closed-form expression for the covariance matrix of the asymptotic distribution of the DoA estimation errors and show that it outperforms the existing algorithms in the literature. Numerical simulations are provided to validate the analytical derivations and corroborate the resulting performance improvement. [less ▲]

Detailed reference viewed: 86 (5 UL)
Full Text
Peer Reviewed
See detailDoA Estimation Using Low-Resolution Multi-BitSparse Array Measurements
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE Signal Processing Letters (2021)

This letter studies the problem of Direction of Arrival (DoA) estimation from low-resolution few-bit quantized data collected by Sparse Linear Array (SLA). In such cases, contrary to the one-bit ... [more ▼]

This letter studies the problem of Direction of Arrival (DoA) estimation from low-resolution few-bit quantized data collected by Sparse Linear Array (SLA). In such cases, contrary to the one-bit quantization case, the well known arcsine law cannot be employed to estimate the covaraince matrix of unquantized array data. Instead, we develop a novel optimization-based framework for retrieving the covaraince matrix of unquantized array data from low-resolution few-bit measurements. The MUSIC algorithm is then applied to an augmented version of the recovered covariance matrix to find the source DoAs. The simulation results show that increasing the sampling resolution to $2$ or $4$ bits per samples could significantly increase the DoA estimation performance compared to the one-bit sampling regime while the power consumption and implementation costs is still much lower in comparison to the high-resolution sampling implementations. [less ▲]

Detailed reference viewed: 69 (3 UL)
Full Text
Peer Reviewed
See detailOn the Asymptotic Performance of One-Bit Co-Array-Based Music
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021)

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees ... [more ▼]

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation form one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. [less ▲]

Detailed reference viewed: 42 (2 UL)
Full Text
Peer Reviewed
See detailSystem Modelling and Design Aspects of Next Generation High Throughput Satellites
Sharma, Shree Krishna UL; Querol, Jorge UL; Maturo, Nicola UL et al

in IEEE Communications Letters (2021), 69

As compared to terrestrial systems, the design of Satellite Communication (SatCom) systems require a different approach due to differences in terms of wave propagation, operating frequency, antenna ... [more ▼]

As compared to terrestrial systems, the design of Satellite Communication (SatCom) systems require a different approach due to differences in terms of wave propagation, operating frequency, antenna structures, interfering sources, limitations of onboard processing, power limitations and transceiver impairments. In this regard, this letter aims to identify and discuss important modeling and design aspects of the next generation High Throughput Satellite (HTS) systems. First, communication models of HTSs including the ones for multibeam and multicarrier satellites, multiple antenna techniques, and for SatCom payloads and antennas are highlighted and discussed. Subsequently, various design aspects of SatCom transceivers including impairments related to the transceiver, payload and channel, and traffic-based coverage adaptation are presented. Finally, some open topics for the design of next generation HTSs are identified and discussed. [less ▲]

Detailed reference viewed: 112 (11 UL)
Full Text
Peer Reviewed
See detailA Novel Learning-based Hard Decoding Scheme and Symbol-Level Precoding Countermeasures
Mayouche, Abderrahmane UL; Alves Martins, Wallace UL; Tsinos, Christos G. et al

in IEEE Wireless Communications and Networking Conference (WCNC), Najing 29 March to 01 April 2021 (2021)

In this work, we consider an eavesdropping scenario in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve). In ... [more ▼]

In this work, we consider an eavesdropping scenario in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve). In this setting, we exploit machine learning (ML) tools to design a hard decoding scheme by using precoded pilot symbols as training data. Within this, we propose an ML framework for a multi-antenna hard decoder that allows an Eve to decode the transmitted message with decent accuracy. We show that MU-MISO systems are vulnerable to such an attack when conventional block-level precoding is used. To counteract this attack, we propose a novel symbol-level precoding scheme that increases the bit-error rate at Eve by obstructing the learning process. Simulation results validate both the ML-based attack as well as the countermeasure, and show that the gain in security is achieved without affecting the performance at the intended users. [less ▲]

Detailed reference viewed: 105 (1 UL)
Full Text
See detailPrecoding-Aided Bandwidth Optimization for High Throughput Satellite Systems
Abdu, Tedros Salih UL; Lei, Lei UL; Kisseleff, Steven UL et al

Scientific Conference (2021)

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand ... [more ▼]

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand. This bandwidth utilization is not efficient since the user demand permanently varies. Hence, demand-aware bandwidth allocation with linear precoding is promising. In this paper, we exploited the synergy of linear precoding and flexible bandwidth allocation for geostationary (GEO) high throughput satellite systems. We formulate an optimization problem with the goal to satisfy the demand by taking into account that multiple precoded user groups can share the different bandwidth chunks. Hence, optimal beam groups are selected with minimum bandwidth requirement to match the per beam demand. The simulation results show that the proposed method of combining bandwidth allocation and linear precoding has better bandwidth efficiency and demand satisfaction than benchmark schemes. [less ▲]

Detailed reference viewed: 89 (27 UL)
Full Text
Peer Reviewed
See detailLocalization Performance of 1-Bit Passive Radars in NB-IoT Applications using Multivariate Polynomial Optimization
Sedighi, Saeid UL; Mishra, Kumar Vijay; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Signal Processing (2021), 69

Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the ... [more ▼]

Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the recently proposed narrowband IoT (NB-IoT) standard, which trades off bandwidth to gain wide coverage, the location estimation is compounded by the low sampling rate receivers and limited-capacity links. We address both of these NB-IoT drawbacks in the framework of passive sensing devices that receive signals from the target-of-interest. We consider the limiting case where each node receiver employs one-bit analog-to-digital-converters and propose a novel low-complexity nodal delay estimation method using constrained-weighted least squares minimization. To support the low-capacity links to the fusion center (FC), the range estimates obtained at individual sensors are then converted to one-bit data. At the FC, we propose target localization with the aggregated one-bit range vector using both optimal and sub-optimal techniques. The computationally expensive former approach is based on Lasserre's method for multivariate polynomial optimization while the latter employs our less complex iterative joint r\textit{an}ge-\textit{tar}get location \textit{es}timation (ANTARES) algorithm. Our overall one-bit framework not only complements the low NB-IoT bandwidth but also supports the design goal of inexpensive NB-IoT location sensing. Numerical experiments demonstrate feasibility of the proposed one-bit approach with a 0.6\% increase in the normalized localization error for the small set of 20-60 nodes over the full-precision case. When the number of nodes is sufficiently large (>80), the one-bit methods yield the same performance as the full precision. [less ▲]

Detailed reference viewed: 77 (3 UL)
Full Text
Peer Reviewed
See detailAnalog Beamforming with Antenna Selection for Large-Scale Antenna Arrays
Arora, Aakash UL; Tsinos, Christos; Mysore Rama Rao, Bhavani Shankar UL et al

in Proc. 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2021)

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power ... [more ▼]

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power consumption and hardware complexity. In this work, we propose a joint design of analog beamforming with antenna selection (AS) or antenna placement (AP) for an analog beamforming system. We approach this problem from a beampattern matching perspective and formulate a sparse unit-modulus least-squares (SULS) problem, which is a nonconvex problem due to the unit-modulus and the sparsity constraints. To that end, we propose an efficient and scalable algorithm based on the majorization-minimization (MM) framework for solving the SULS problem. We show that the sequence of iterates generated by the algorithm converges to a stationary point of the problem. Numerical results demonstrate that the proposed joint design of analog beamforming with AS outperforms conventional array architectures with fixed inter-antenna element spacing. [less ▲]

Detailed reference viewed: 88 (16 UL)