Results 101-120 of 699.
Bookmark and Share    
Full Text
Peer Reviewed
See detailMono-static Automotive Joint Radar-Communications System
Dokhanchi, Sayed Hossein UL; Ottersten, Björn UL

Scientific Conference (2019, November 21)

Detailed reference viewed: 79 (3 UL)
Full Text
Peer Reviewed
See detailEnergy-efficient Trajectory Design for UAV-enabled Wireless Communications with Latency Constraints
Tran Dinh, Hieu UL; Vu, Thang Xuan UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, November 03)

This paper studies a new energy-efficient unmanned aerial vehicle (UAV)-enabled wireless communications, where the UAV acts as a flying base station (BS) to serve the ground users (GUs) within some ... [more ▼]

This paper studies a new energy-efficient unmanned aerial vehicle (UAV)-enabled wireless communications, where the UAV acts as a flying base station (BS) to serve the ground users (GUs) within some predetermined latency limitations, e.g., requested timeout (RT). Our goal is to design the UAV trajectory to minimize the total energy consumption while satisfying the RT requirement from every GU, which is accomplished via two consecutive subproblems: traveling time minimization and energy minimization problems. Firstly, we propose two exhaustive search and heuristic algorithms based on the traveling salesman problem with time window (TSPTW) in order to minimize the UAV’s traveling time without violating the GUs’ RT requirements. While the exhaustive algorithm achieves the best performance at a high computation cost, the heuristic algorithm achieves a trade-off between the performance and complexity. Secondly, we minimize the total energy consumption, for a given trajectory, via a joint optimization of the UAV’s velocity along subsequent hops. Finally, numerical results are presented to demonstrate the effectiveness of our proposed algorithms. In particular, it is shown that the proposed solutions outperform the reference in terms of both energy consumption and outage performance. [less ▲]

Detailed reference viewed: 86 (6 UL)
Full Text
Peer Reviewed
See detailOptimum Design for Sparse FDA-MIMO Automotive Radar
Sedighi, Saeid UL; Shankar, Bhavani UL; Mishra, Kumar Vijay et al

in Sedighi, Saeid; Shankar, Bhavani; Mishra, Kumar Vijay (Eds.) et al Optimum Design for Sparse FDA-MIMO Automotive Radar (2019, November 03)

Automotive radars usually employ multiple-input multiple-output (MIMO) antenna arrays to achieve high azimuthal resolution with fewer elements than a phased array. Despite this advantage, hardware costs ... [more ▼]

Automotive radars usually employ multiple-input multiple-output (MIMO) antenna arrays to achieve high azimuthal resolution with fewer elements than a phased array. Despite this advantage, hardware costs and desired radar size limits the usage of more antennas in the array. Similar trade-off is encountered while attempting to achieve high range resolution which is limited by the signal bandwidth. However, nowadays given the demand for spectrum from communications services, wide bandwidth is not readily available. To address these issues, we propose a sparse variant of Frequency Diverse Array MIMO (FDA-MIMO) radar which enjoys the benefits of both FDA and MIMO techniques, including fewer elements, decoupling, and efficient joint estimation of target parameters. We then employ the Cram\'{e}r-Rao bound for angle and range estimation as a performance metric to design the optimal antenna placement and carrier frequency offsets for the transmit waveforms. Numerical experiments suggest that the performance of sparse FDA-MIMO radar is very close to the conventional FDA-MIMO despite 50\% reduction in the bandwidth and antenna elements. [less ▲]

Detailed reference viewed: 90 (8 UL)
Full Text
Peer Reviewed
See detailActive Content Popularity Learning via Query-by-Committee for Edge Caching
Bommaraveni, Srikanth UL; Vu, Thang; Vuppala, Satyanarayana et al

Scientific Conference (2019, November 03)

Edge caching has received much attention as an effective solution to face the stringent latency requirements in 5G networks due to the proliferation of handset devices as well as data-hungry applications ... [more ▼]

Edge caching has received much attention as an effective solution to face the stringent latency requirements in 5G networks due to the proliferation of handset devices as well as data-hungry applications. One of the challenges in edge caching systems is to optimally cache strategic contents to maximize the percentage of total requests served by the edge caches. To enable the optimal caching strategy, we propose an Active Learning approach (AL) to learn and design an accurate content request prediction algorithm. Specifically, we use an AL based Query-by-committee (QBC) matrix completion algorithm with a strategy of querying the most informative missing entries of the content popularity matrix. The proposed AL framework leverage's the trade-off between exploration and exploitation of the network, and learn the user's preferences by posing queries or recommendations. Later, it exploits the known information to maximize the system performance. The effectiveness of proposed AL based QBC content learning algorithm is demonstrated via numerical results. [less ▲]

Detailed reference viewed: 52 (12 UL)
Full Text
Peer Reviewed
See detailHardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Maturo, Nicola UL et al

in Proceedings of the 37th International Communications Satellite Systems Conference (2019, November 01)

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic ... [more ▼]

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes. [less ▲]

Detailed reference viewed: 147 (45 UL)
Full Text
Peer Reviewed
See detailCharacterization of the MSE Region under a Total Power Budget for Asynchronous Two-Way Relay Networks
Rahimi, Razgar; Shahbazpanahi, Shahram UL; Ottersten, Björn UL

in The Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 3-6 November 2019 (2019, November)

Detailed reference viewed: 115 (0 UL)
Full Text
Peer Reviewed
See detailEFFECTS OF MULTIPLE OSCILLATOR PHASE NOISE IN PRECODING PERFORMANCE
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2019, October)

Satellite Precoding is a promising technique to meet the target data rates of the future high throughput satellite systems and the costs per bit as required by 5G applications and networks, but it ... [more ▼]

Satellite Precoding is a promising technique to meet the target data rates of the future high throughput satellite systems and the costs per bit as required by 5G applications and networks, but it requires strict synchronization among the transmitted waveforms, in addition to accurate channel state information. Most of the published work about this topic consider ideal oscillators, but in practice, the output of an oscillator is not a single spectral line at the nominal frequency. This paper proposes a model for the oscillator phase noise and analyzes the resulting received signal to interference plus noise ratio (SNIR) in a satellite communication system using Precoding. Simulations of a communication satellite system with a two-beam transponder and two receivers were performed to compute the effective SNIR. This work uses a simulator which also considers practical impairments such as time misalignment, errors in the channel state information, interference, thermal noise and phase noise masks for satellite oscillators. The Precoding methods used for the analysis are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). The obtained results prove that there is a degradation in the performance due to the use of independent oscillators but this effect is compensated by the precoding matrix. [less ▲]

Detailed reference viewed: 201 (49 UL)
Full Text
Peer Reviewed
See detailA Joint Solution for Scheduling and Precoding in Multiuser MISO Downlink Channels
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

Detailed reference viewed: 225 (66 UL)
Full Text
Peer Reviewed
See detailBODYFITR: Robust Automatic 3D Human Body Fitting
Saint, Alexandre Fabian A UL; Shabayek, Abd El Rahman UL; Cherenkova, Kseniya UL et al

in Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP) (2019, September 22)

This paper proposes BODYFITR, a fully automatic method to fit a human body model to static 3D scans with complex poses. Automatic and reliable 3D human body fitting is necessary for many applications ... [more ▼]

This paper proposes BODYFITR, a fully automatic method to fit a human body model to static 3D scans with complex poses. Automatic and reliable 3D human body fitting is necessary for many applications related to healthcare, digital ergonomics, avatar creation and security, especially in industrial contexts for large-scale product design. Existing works either make prior assumptions on the pose, require manual annotation of the data or have difficulty handling complex poses. This work addresses these limitations by providing a novel automatic fitting pipeline with carefully integrated building blocks designed for a systematic and robust approach. It is validated on the 3DBodyTex dataset, with hundreds of high-quality 3D body scans, and shown to outperform prior works in static body pose and shape estimation, qualitatively and quantitatively. The method is also applied to the creation of realistic 3D avatars from the high-quality texture scans of 3DBodyTex, further demonstrating its capabilities. [less ▲]

Detailed reference viewed: 187 (25 UL)
Full Text
Peer Reviewed
See detailLearning-based Physical Layer Communications for Multiagent Collaboration
Mostaani, Arsham UL; Simeone, Osvaldo; Chatzinotas, Symeon UL et al

in Mostaani, Arsham; Simeone, Osvaldo; Chatzinotas, Symeon (Eds.) et al PIMRC 2019 Proceedings (2019, September 11)

Consider a collaborative task carried out by two autonomous agents that can communicate over a noisy channel. Each agent is only aware of its own state, while the accomplishment of the task depends on the ... [more ▼]

Consider a collaborative task carried out by two autonomous agents that can communicate over a noisy channel. Each agent is only aware of its own state, while the accomplishment of the task depends on the value of the joint state of both agents. As an example, both agents must simultaneously reach a certain location of the environment, while only being aware of their own positions. Assuming the presence of feedback in the form of a common reward to the agents, a conventional approach would apply separately: (\emph{i}) an off-the-shelf coding and decoding scheme in order to enhance the reliability of the communication of the state of one agent to the other; and (\emph{ii}) a standard multiagent reinforcement learning strategy to learn how to act in the resulting environment. In this work, it is argued that the performance of the collaborative task can be improved if the agents learn how to jointly communicate and act. In particular, numerical results for a baseline grid world example demonstrate that the jointly learned policy carries out compression and unequal error protection by leveraging information about the action policy. [less ▲]

Detailed reference viewed: 102 (16 UL)
Full Text
Peer Reviewed
See detailWireless Multi-group Multicast Precoding with Selective RF Energy Harvesting
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, September 05)

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys ... [more ▼]

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys information and/or energy to the groups of corresponding receivers using more than one multicast streams. The information specific users have conventional receiver architectures to process data, energy harvesting users collect energy using the non-linear energy harvesting module and each of the joint information decoding and energy harvesting capable user is assumed to employ the separated architecture with disparate non-linear energy harvesting and conventional information decoding units. In this context, we formulate and analyze the problem of total transmit power minimization for optimal precoder design subjected to minimum signal-to-interference-and-noise ratio and harvested energy demands at the respective users under three different scenarios. This problem is solved via semi-definite relaxation and the advantages of employing separate information and energy precoders are shown over joint and per-user information and energy precoder designs. Simulation results illustrate the benefits of proposed framework under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 155 (20 UL)
Full Text
Peer Reviewed
See detailOn the Use of Vertex-Frequency Analysis for Anomaly Detection in Graph Signals
Lewenfus, Gabriela; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in Anais do XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2019) (2019, September)

Detailed reference viewed: 129 (27 UL)
Full Text
Peer Reviewed
See detailOptimal Resource Allocation for NOMA-Enabled Cache Replacement and Content Delivery
Lei, Lei UL; Vu, Thang Xuan UL; Xiang, Lin UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019) (2019, September)

Detailed reference viewed: 88 (11 UL)
Full Text
Peer Reviewed
See detailJoint User Grouping and Power Allocation for MISO Systems: Learning to Schedule
Yuan, Yaxiong; Vu, Thang Xuan UL; Lei, Lei UL et al

in IEEE European Signal Processing Conference 2019 (2019, September)

Detailed reference viewed: 77 (21 UL)
Full Text
Peer Reviewed
See detailToward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective
Mishra, Kumar Vijay; Shankar, Bhavani UL; Koivunen, Visa et al

in IEEE Signal Processing Magazine (2019), 36(5), 100-114

Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency (RF) spectrum. Such a joint ... [more ▼]

Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency (RF) spectrum. Such a joint radar communications (JRC) model has advantages of low cost, compact size, less power consumption, spectrum sharing, improved performance, and safety due to enhanced information sharing. Today, millimeter-wave (mmwave) communications have emerged as the preferred technology for short distance wireless links because they provide transmission bandwidth that is several gigahertz wide. This band is also promising for short-range radar applications, which benefit from the high-range resolution arising from large transmit signal bandwidths. Signal processing techniques are critical to the implementation of mm-wave JRC systems. Major challenges are joint waveform design and performance criteria that would optimally trade off between communications and radar functionalities. Novel multiple-input, multiple-output (MIMO) signal processing techniques are required because mm-wave JRC systems employ large antenna arrays. There are opportunities to exploit recent advances in cognition, compressed sensing, and machine learning to reduce required resources and dynamically allocate them with low overheads. This article provides a signal processing perspective of mm-wave JRC systems with an emphasis on waveform design. [less ▲]

Detailed reference viewed: 113 (4 UL)
Full Text
Peer Reviewed
See detailLoad Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
Lei, Lei UL; You, Lei; Yang, Yang et al

in IEEE Transactions on Vehicular Technology (2019)

Detailed reference viewed: 150 (21 UL)
Full Text
Peer Reviewed
See detailOn Fairness Optimization for NOMA-Enabled Multi-Beam Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2019 (2019, September)

Detailed reference viewed: 120 (25 UL)
Full Text
Peer Reviewed
See detailLearning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems
Lei, Lei UL; You, Lei; He, Qing et al

in IEEE Transactions on Green Communications and Networking (2019)

Detailed reference viewed: 86 (9 UL)
Full Text
Peer Reviewed
See detailARCHITECTURES AND SYNCHRONIZATION TECHNIQUES FOR COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Camps, Adriano et al

in 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2019, August 31)

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field ... [more ▼]

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios [less ▲]

Detailed reference viewed: 108 (13 UL)
Full Text
Peer Reviewed
See detailCalibrated Learning for Online Distributed Power Allocation in Small-Cell Networks
Zhang, Xinruo; Nakhai, Mohammad Reza; Zheng, Gan UL et al

in IEEE Transactions on Communications (2019), 67(11), 8124-8136

This paper introduces a combined calibrated learning and bandit approach to online distributed power control in small cell networks operated under the same frequency bandwidth. Each small base station ... [more ▼]

This paper introduces a combined calibrated learning and bandit approach to online distributed power control in small cell networks operated under the same frequency bandwidth. Each small base station (SBS) is modelled as an intelligent agent who autonomously decides on its instantaneous transmit power level by predicting the transmitting policies of the other SBSs, namely the opponent SBSs, in the network, in real-time. The decision making process is based jointly on the past observations and the calibrated forecasts of the upcoming power allocation decisions of the opponent SBSs who inflict the dominant interferences on the agent. Furthermore, we integrate the proposed calibrated forecast process with a bandit policy to account for the wireless channel conditions unknown a priori , and develop an autonomous power allocation algorithm that is executable at individual SBSs to enhance the accuracy of the autonomous decision making. We evaluate the performance of the proposed algorithm in cases of maximizing the long-term sum-rate, the overall energy efficiency and the average minimum achievable data rate. Numerical simulation results demonstrate that the proposed design outperforms the benchmark scheme with limited amount of information exchange and rapidly approaches towards the optimal centralized solution for all case studies. [less ▲]

Detailed reference viewed: 51 (2 UL)