Results 41-60 of 186.
Bookmark and Share    
Full Text
Peer Reviewed
See detailBorrowing your enemy's arrows: the case of code reuse in android via direct inter-app code invocation
Gao, Jun UL; li, li; Kong, Pingfan UL et al

in ESEC/FSE 2020: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (2020, November)

{The Android ecosystem offers different facilities to enable communication among app components and across apps to ensure that rich services can be composed through functionality reuse. At the heart of ... [more ▼]

{The Android ecosystem offers different facilities to enable communication among app components and across apps to ensure that rich services can be composed through functionality reuse. At the heart of this system is the Inter-component communication (ICC) scheme, which has been largely studied in the literature. Less known in the community is another powerful mechanism that allows for direct inter-app code invocation which opens up for different reuse scenarios, both legitimate or malicious. This paper exposes the general workflow for this mechanism, which beyond ICCs, enables app developers to access and invoke functionalities (either entire Java classes, methods or object fields) implemented in other apps using official Android APIs. We experimentally showcase how this reuse mechanism can be leveraged to â plagiarize" supposedly-protected functionalities. Typically, we were able to leverage this mechanism to bypass security guards that a popular video broadcaster has placed for preventing access to its video database from outside its provided app. We further contribute with a static analysis toolkit, named DICIDer, for detecting direct inter-app code invocations in apps. An empirical analysis of the usage prevalence of this reuse mechanism is then conducted. Finally, we discuss the usage contexts as well as the implications of this studied reuse mechanism [less ▲]

Detailed reference viewed: 75 (7 UL)
Full Text
Peer Reviewed
See detailData-driven simulation and optimization for covid-19 exit strategies
Ghamizi, Salah UL; Rwemalika, Renaud UL; Cordy, Maxime UL et al

in Ghamizi, Salah; Rwemalika, Renaud; Cordy, Maxime (Eds.) et al Data-driven simulation and optimization for covid-19 exit strategies (2020, August)

The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy. Chief among those measures is the massive ... [more ▼]

The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy. Chief among those measures is the massive lockdown of entire countries and cities, which beyond its global economic impact has created some deep social and psychological tensions within populations. While the adopted mitigation measures (including the lockdown) have generally proven useful, policymakers are now facing a critical question: how and when to lift the mitigation measures? A carefully-planned exit strategy is indeed necessary to recover from the pandemic without risking a new outbreak. Classically, exit strategies rely on mathematical modeling to predict the effect of public health interventions. Such models are unfortunately known to be sensitive to some key parameters, which are usually set based on rules-of-thumb.In this paper, we propose to augment epidemiological forecasting with actual data-driven models that will learn to fine-tune predictions for different contexts (e.g., per country). We have therefore built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease in order to predict the cases and deaths, and a genetic algorithm component searching for optimal trade-offs/policies between constraints and objectives set by decision-makers.Replaying pandemic evolution in various countries, we experimentally show that our approach yields predictions with much lower error rates than pure epidemiological models in 75% of the cases and achieves a 95% R² score when the learning is transferred and tested on unseen countries. When used for forecasting, this approach provides actionable insights into the impact of individual measures and strategies. [less ▲]

Detailed reference viewed: 165 (16 UL)
Full Text
Peer Reviewed
See detailChallenges Towards Production-Ready Explainable Machine Learning
Veiber, Lisa UL; Allix, Kevin UL; Arslan, Yusuf UL et al

in Veiber, Lisa; Allix, Kevin; Arslan, Yusuf (Eds.) et al Proceedings of the 2020 USENIX Conference on Operational Machine Learning (OpML 20) (2020, July)

Machine Learning (ML) is increasingly prominent in or- ganizations. While those algorithms can provide near perfect accuracy, their decision-making process remains opaque. In a context of accelerating ... [more ▼]

Machine Learning (ML) is increasingly prominent in or- ganizations. While those algorithms can provide near perfect accuracy, their decision-making process remains opaque. In a context of accelerating regulation in Artificial Intelligence (AI) and deepening user awareness, explainability has become a priority notably in critical healthcare and financial environ- ments. The various frameworks developed often overlook their integration into operational applications as discovered with our industrial partner. In this paper, explainability in ML and its relevance to our industrial partner is presented. We then dis- cuss the main challenges to the integration of ex- plainability frameworks in production we have faced. Finally, we provide recommendations given those challenges. [less ▲]

Detailed reference viewed: 142 (23 UL)
Full Text
Peer Reviewed
See detailOn the Efficiency of Test Suite based Program Repair: A Systematic Assessment of 16 Automated Repair Systems for Java Programs
Liu, Kui UL; Wang, Shangwen; Koyuncu, Anil UL et al

in 42nd ACM/IEEE International Conference on Software Engineering (ICSE) (2020, May)

Test-based automated program repair has been a prolific field of research in software engineering in the last decade. Many approaches have indeed been proposed, which leverage test suites as a weak, but ... [more ▼]

Test-based automated program repair has been a prolific field of research in software engineering in the last decade. Many approaches have indeed been proposed, which leverage test suites as a weak, but affordable, approximation to program specifications. Although the literature regularly sets new records on the number of benchmark bugs that can be fixed, several studies increasingly raise concerns about the limitations and biases of state-of-the-art approaches. For example, the correctness of generated patches has been questioned in a number of studies, while other researchers pointed out that evaluation schemes may be misleading with respect to the processing of fault localization results. Nevertheless, there is little work addressing the efficiency of patch generation, with regard to the practicality of program repair. In this paper, we fill this gap in the literature, by providing an extensive review on the efficiency of test suite based program repair. Our objective is to assess the number of generated patch candidates, since this information is correlated to (1) the strategy to traverse the search space efficiently in order to select sensical repair attempts, (2) the strategy to minimize the test effort for identifying a plausible patch, (3) as well as the strategy to prioritize the generation of a correct patch. To that end, we perform a large-scale empirical study on the efficiency, in terms of quantity of generated patch candidates of the 16 open-source repair tools for Java programs. The experiments are carefully conducted under the same fault localization configurations to limit biases. Eventually, among other findings, we note that: (1) many irrelevant patch candidates are generated by changing wrong code locations; (2) however, if the search space is carefully triaged, fault localization noise has little impact on patch generation efficiency; (3) yet, current template-based repair systems, which are known to be most effective in fixing a large number of bugs, are actually least efficient as they tend to generate majoritarily irrelevant patch candidates. [less ▲]

Detailed reference viewed: 242 (18 UL)
Full Text
Peer Reviewed
See detailMadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps
Liu, Tianming; Wang, Haoyu; Li, Li et al

in Proceedings of The Web Conference 2020 (2020, April)

Advertisement drives the economy of the mobile app ecosystem. As a key component in the mobile ad business model, mobile ad content has been overlooked by the research community, which poses a number of ... [more ▼]

Advertisement drives the economy of the mobile app ecosystem. As a key component in the mobile ad business model, mobile ad content has been overlooked by the research community, which poses a number of threats, e.g., propagating malware and undesirable contents. To understand the practice of these devious ad behaviors, we perform a large-scale study on the app contents harvested through automated app testing. In this work, we first provide a comprehensive categorization of devious ad contents, including five kinds of behaviors belonging to two categories: ad loading content and ad clicking content. Then, we propose MadDroid, a framework for automated detection of devious ad contents. MadDroid leverages an automated app testing framework with a sophisticated ad view exploration strategy for effectively collecting ad-related network traffic and subsequently extracting ad contents. We then integrate dedicated approaches into the framework to identify devious ad contents. We have applied MadDroid to 40,000 Android apps and found that roughly 6% of apps deliver devious ad contents, e.g., distributing malicious apps that cannot be downloaded via traditional app markets. Experiment results indicate that devious ad contents are prevalent, suggesting that our community should invest more effort into the detection and mitigation of devious ads towards building a trustworthy mobile advertising ecosystem. [less ▲]

Detailed reference viewed: 113 (0 UL)
Full Text
Peer Reviewed
See detailFixMiner: Mining relevant fix patterns for automated program repair
Koyuncu, Anil UL; Liu, Kui UL; Bissyande, Tegawendé François D Assise UL et al

in Empirical Software Engineering (2020)

Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across ... [more ▼]

Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the ASTlevel context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner’s generated plausible patches are correct. [less ▲]

Detailed reference viewed: 136 (7 UL)
Full Text
Peer Reviewed
See detailCDA: Characterising Deprecated Android APIs
li, li; Gao, Jun UL; Bissyande, Tegawendé François D Assise UL et al

in Empirical Software Engineering (2020), 24(118), 1-41

Because of functionality evolution, or security and performance-related changes, some APIs eventually become unnecessary in a software system and thus need to be cleaned to ensure proper maintainability ... [more ▼]

Because of functionality evolution, or security and performance-related changes, some APIs eventually become unnecessary in a software system and thus need to be cleaned to ensure proper maintainability. Those APIs are typically marked first as deprecated APIs and, as recommended, follow through a deprecated-replace-remove cycle, giving an opportunity to client application developers to smoothly adapt their code in next updates. Such a mechanism is adopted in the Android framework development where thousands of reusable APIs are made available to Android app developers. In this work, we present a research-based prototype tool called CDA and apply it to different revisions (i.e., releases or tags) of the Android framework code for characterising deprecated APIs. Based on the data mined by CDA, we then perform an empirical study on API deprecation in the Android ecosystem and the associated challenges for maintaining quality apps. In particular, we investigate the prevalence of deprecated APIs, their annotations and documentation, their removal and consequences, their replacement messages, developer reactions to API deprecation, as well as the evolution of the usage of deprecated APIs. Experimental results reveal several findings that further provide promising insights related to deprecated Android APIs. Notably, by mining the source code of the Android framework base, we have identified three bugs related to deprecated APIs. These bugs have been quickly assigned and positively appreciated by the framework maintainers, who claim that these issues will be updated in future releases. [less ▲]

Detailed reference viewed: 68 (2 UL)
Full Text
Peer Reviewed
See detailUnderstanding the Evolution of Android App Vulnerabilities
Gao, Jun UL; li, li; Bissyande, Tegawendé François D Assise UL et al

in IEEE Transactions on Reliability (2020)

The Android ecosystem today is a growing universe of a few billion devices, hundreds of millions of users and millions of applications targeting a wide range of activities where sensitive information is ... [more ▼]

The Android ecosystem today is a growing universe of a few billion devices, hundreds of millions of users and millions of applications targeting a wide range of activities where sensitive information is collected and processed. Security of communication and privacy of data are thus of utmost importance in application development. Yet, regularly, there are reports of successful attacks targeting Android users. While some of those attacks exploit vulnerabilities in the Android OS, others directly concern application-level code written by a large pool of developers with varying experience. Recently, a number of studies have investigated this phenomenon, focusing however only on a specific vulnerability type appearing in apps, and based on only a snapshot of the situation at a given time. Thus, the community is still lacking comprehensive studies exploring how vulnerabilities have evolved over time, and how they evolve in a single app across developer updates. Our work fills this gap by leveraging a data stream of 5 million app packages to re-construct versioned lineages of Android apps and finally obtained 28;564 app lineages (i.e., successive releases of the same Android apps) with more than 10 app versions each, corresponding to a total of 465;037 apks. Based on these app lineages, we apply state-of- the-art vulnerability-finding tools and investigate systematically the reports produced by each tool. In particular, we study which types of vulnerabilities are found, how they are introduced in the app code, where they are located, and whether they foreshadow malware. We provide insights based on the quantitative data as reported by the tools, but we further discuss the potential false positives. Our findings and study artifacts constitute a tangible knowledge to the community. It could be leveraged by developers to focus verification tasks, and by researchers to drive vulnerability discovery and repair research efforts. [less ▲]

Detailed reference viewed: 191 (19 UL)
Full Text
Peer Reviewed
See detailEvaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair
Tian, Haoye UL; Liu, Kui UL; Kabore, Abdoul Kader UL et al

in Tian, Haoye (Ed.) 35th IEEE/ACM International Conference on Automated Software Engineering, September 21-25, 2020, Melbourne, Australia (2020)

A large body of the literature of automated program repair develops approaches where patches are generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect ... [more ▼]

A large body of the literature of automated program repair develops approaches where patches are generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect, the generated patches, although validated by the oracle, may actually be incorrect. While the state of the art explore research directions that require dynamic information or rely on manually-crafted heuristics, we study the benefit of learning code representations to learn deep features that may encode the properties of patch correctness. Our work mainly investigates different representation learning approaches for code changes to derive embeddings that are amenable to similarity computations. We report on findings based on embeddings produced by pre-trained and re-trained neural networks. Experimental results demonstrate the potential of embeddings to empower learning algorithms in reasoning about patch correctness: a machine learning predictor with BERT transformer-based embeddings... [less ▲]

Detailed reference viewed: 110 (33 UL)
Full Text
Peer Reviewed
See detailHandling duplicates in Dockerfiles families: Learning from experts
Oumaziz, Mohamed; Falleri, Jean-Rémy; Blanc, Xavier et al

in 35th IEEE International Conference on Software Maintenance and Evolution (ICSME) (2019, October)

Detailed reference viewed: 67 (0 UL)
Full Text
Peer Reviewed
See detailiFixR: bug report driven program repair
Koyuncu, Anil UL; Liu, Kui UL; Bissyande, Tegawendé François D Assise UL et al

in ESEC/FSE 2019 Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (2019, August)

Issue tracking systems are commonly used in modern software development for collecting feedback from users and developers. An ultimate automation target of software maintenance is then the systematization ... [more ▼]

Issue tracking systems are commonly used in modern software development for collecting feedback from users and developers. An ultimate automation target of software maintenance is then the systematization of patch generation for user-reported bugs. Although this ambition is aligned with the momentum of automated program repair, the literature has, so far, mostly focused on generate-and- validate setups where fault localization and patch generation are driven by a well-defined test suite. On the one hand, however, the common (yet strong) assumption on the existence of relevant test cases does not hold in practice for most development settings: many bugs are reported without the available test suite being able to reveal them. On the other hand, for many projects, the number of bug reports generally outstrips the resources available to triage them. Towards increasing the adoption of patch generation tools by practitioners, we investigate a new repair pipeline, iFixR, driven by bug reports: (1) bug reports are fed to an IR-based fault localizer; (2) patches are generated from fix patterns and validated via regression testing; (3) a prioritized list of generated patches is proposed to developers. We evaluate iFixR on the Defects4J dataset, which we enriched (i.e., faults are linked to bug reports) and carefully-reorganized (i.e., the timeline of test-cases is naturally split). iFixR generates genuine/plausible patches for 21/44 Defects4J faults with its IR-based fault localizer. iFixR accurately places a genuine/plausible patch among its top-5 recommendation for 8/13 of these faults (without using future test cases in generation-and-validation). [less ▲]

Detailed reference viewed: 182 (19 UL)
Full Text
Peer Reviewed
See detailRevisiting the impact of common libraries for android-related investigations
Li, Li; Riom, Timothée UL; Bissyande, Tegawendé François D Assise UL et al

in Journal of Systems and Software (2019), 154

Detailed reference viewed: 95 (1 UL)
Full Text
Peer Reviewed
See detailMining Android Crash Fixes in the Absence of Issue- and Change-Tracking Systems
Kong, Pingfan UL; li, li; Gao, Jun et al

Scientific Conference (2019, July 15)

Android apps are prone to crash. This often arises from the misuse of Android framework APIs, making it harder to debug since official Android documentation does not discuss thoroughly potential ... [more ▼]

Android apps are prone to crash. This often arises from the misuse of Android framework APIs, making it harder to debug since official Android documentation does not discuss thoroughly potential exceptions.Recently, the program repair community has also started to investigate the possibility to fix crashes automatically. Current results, however, apply to limited example cases. In both scenarios of repair, the main issue is the need for more example data to drive the fix processes due to the high cost in time and effort needed to collect and identify fix examples. We propose in this work a scalable approach, CraftDroid, to mine crash fixes by leveraging a set of 28 thousand carefully reconstructed app lineages from app markets, without the need for the app source code or issue reports. We developed a replicative testing approach that locates fixes among app versions which output different runtime logs with the exact same test inputs. Overall, we have mined 104 relevant crash fixes, further abstracted 17 fine-grained fix templates that are demonstrated to be effective for patching crashed apks. Finally, we release ReCBench, a benchmark consisting of 200 crashed apks and the crash replication scripts, which the community can explore for evaluating generated crash-inducing bug patches. [less ▲]

Detailed reference viewed: 113 (11 UL)
Full Text
Peer Reviewed
See detailYou Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems
Liu, Kui UL; Koyuncu, Anil UL; Bissyande, Tegawendé François D Assise UL et al

in The 12th IEEE International Conference on Software Testing, Verification and Validation (ICST-2019) (2019, April 24)

Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure ... [more ▼]

Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by "tweaking'' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems. [less ▲]

Detailed reference viewed: 247 (18 UL)
Full Text
Peer Reviewed
See detailOn Identifying and Explaining Similarities in Android Apps
Li, Li; Bissyande, Tegawendé François D Assise UL; Wang, Haoyu et al

in Journal of Computer Science and Technology (2019), 34(2), 437-455

Detailed reference viewed: 59 (1 UL)
Full Text
Peer Reviewed
See detailRebooting Research on Detecting Repackaged Android Apps: Literature Review and Benchmark
Li, Li; Bissyande, Tegawendé François D Assise UL; Klein, Jacques UL

in IEEE Transactions on Software Engineering (2019)

Detailed reference viewed: 80 (2 UL)
Full Text
Peer Reviewed
See detailShould You Consider Adware as Malware in Your Study?
Gao, Jun UL; Li, Li; Kong, Pingfan UL et al

in 26th edition of the IEEE International Conference on Software Analysis, Evolution and Reengineering (2019, February 24)

Empirical validations of research approaches eventually require a curated ground truth. In studies related to Android malware, such a ground truth is built by leveraging Anti-Virus (AV) scanning reports ... [more ▼]

Empirical validations of research approaches eventually require a curated ground truth. In studies related to Android malware, such a ground truth is built by leveraging Anti-Virus (AV) scanning reports which are often provided free through online services such as VirusTotal. Unfortunately, these reports do not offer precise information for appropriately and uniquely assigning classes to samples in app datasets: AV engines indeed do not have a consensus on specifying information in labels. Furthermore, labels often mix information related to families, types, etc. In particular, the notion of “adware” is currently blurry when it comes to maliciousness. There is thus a need to thoroughly investigate cases where adware samples can actually be associated with malware (e.g., because they are tagged as adware but could be considered as malware as well). In this work, we present a large-scale analytical study of Android adware samples to quantify to what extent “adware should be considered as malware”. Our analysis is based on the Androzoo repository of 5 million apps with associated AV labels and leverages a state-of-the-art label harmonization tool to infer the malicious type of apps before confronting it against the ad families that each adware app is associated with. We found that all adware families include samples that are actually known to implement specific malicious behavior types. Up to 50% of samples in an ad family could be flagged as malicious. Overall the study demonstrates that adware is not necessarily benign. [less ▲]

Detailed reference viewed: 216 (18 UL)
Peer Reviewed
See detailDésérialisation Java : Une brève introduction au ROP de haut niveau
Bartel, Alexandre UL; Klein, Jacques UL; Le Traon, Yves UL

Article for general public (2019)

Detailed reference viewed: 205 (22 UL)
Full Text
Peer Reviewed
See detailOn the Evolution of Mobile App Complexity
Gao, Jun UL; Li, ; Bissyande, Tegawendé François D Assise UL et al

in Proceedings of 2019 24th International Conference on Engineering of Complex Computer Systems (2019)

Android developers are known to frequently update their apps for fixing bugs and addressing vulnerabilities, but more commonly for introducing new features. This process leads a trail in the ecosystem ... [more ▼]

Android developers are known to frequently update their apps for fixing bugs and addressing vulnerabilities, but more commonly for introducing new features. This process leads a trail in the ecosystem with multiple successive app versions which record historical evolutions of a variety of apps. While the literature includes various works related to such evolutions, little attention has been paid to the research question on how quality evolves, in particular with regards to maintainability and code complexity. In this work, we fill this gap by presenting a largescale empirical study: we leverage the AndroZoo dataset to obtain a significant number of app lineages (i.e., successive releases of the same Android apps), and rely on six well-established, maintainability-related complexity metrics commonly accepted in the literature on app quality, maintainability etc. Our empirical investigation eventually reveals that, overall, while Android apps become bigger in terms of code size as time goes by, the apps themselves appear to be increasingly maintainable and thus decreasingly complex [less ▲]

Detailed reference viewed: 60 (14 UL)
Full Text
Peer Reviewed
See detailMUSTI: Dynamic Prevention of Invalid Object Initialization Attacks
Bartel, Alexandre UL; Klein, Jacques UL; Le Traon, Yves UL

in IEEE Transactions on Information Forensics and Security (2019)

Invalid object initialization vulnerabilities have been identified since the 1990’s by a research group at Princeton University. These vulnerabilities are critical since they can be used to totally ... [more ▼]

Invalid object initialization vulnerabilities have been identified since the 1990’s by a research group at Princeton University. These vulnerabilities are critical since they can be used to totally compromise the security of a Java virtual machine.Recently, such a vulnerability identified as CVE-2017-3289 has been found again in the bytecode verifier of the JVM and affects more than 40 versions of the JVM. In this paper, we present a runtime solution called MUSTIto detect and prevent attacks leveraging this kind of critical vulnerabilities. We optimize MUSTI to have a runtime overhead below 0.5% and a memory overhead below 0.42%. Compared to state-of-the-art, MUSTI is completely automated and does not require to manually annotate the code. [less ▲]

Detailed reference viewed: 181 (1 UL)