Results 201-220 of 534.
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Joint Solution for Scheduling and Precoding in Multiuser MISO Downlink Channels
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

Detailed reference viewed: 261 (70 UL)
Full Text
Peer Reviewed
See detailLearning-based Physical Layer Communications for Multiagent Collaboration
Mostaani, Arsham UL; Simeone, Osvaldo; Chatzinotas, Symeon UL et al

in Mostaani, Arsham; Simeone, Osvaldo; Chatzinotas, Symeon (Eds.) et al PIMRC 2019 Proceedings (2019, September 11)

Consider a collaborative task carried out by two autonomous agents that can communicate over a noisy channel. Each agent is only aware of its own state, while the accomplishment of the task depends on the ... [more ▼]

Consider a collaborative task carried out by two autonomous agents that can communicate over a noisy channel. Each agent is only aware of its own state, while the accomplishment of the task depends on the value of the joint state of both agents. As an example, both agents must simultaneously reach a certain location of the environment, while only being aware of their own positions. Assuming the presence of feedback in the form of a common reward to the agents, a conventional approach would apply separately: (\emph{i}) an off-the-shelf coding and decoding scheme in order to enhance the reliability of the communication of the state of one agent to the other; and (\emph{ii}) a standard multiagent reinforcement learning strategy to learn how to act in the resulting environment. In this work, it is argued that the performance of the collaborative task can be improved if the agents learn how to jointly communicate and act. In particular, numerical results for a baseline grid world example demonstrate that the jointly learned policy carries out compression and unequal error protection by leveraging information about the action policy. [less ▲]

Detailed reference viewed: 124 (19 UL)
Full Text
Peer Reviewed
See detailWireless Multi-group Multicast Precoding with Selective RF Energy Harvesting
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, September 05)

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys ... [more ▼]

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys information and/or energy to the groups of corresponding receivers using more than one multicast streams. The information specific users have conventional receiver architectures to process data, energy harvesting users collect energy using the non-linear energy harvesting module and each of the joint information decoding and energy harvesting capable user is assumed to employ the separated architecture with disparate non-linear energy harvesting and conventional information decoding units. In this context, we formulate and analyze the problem of total transmit power minimization for optimal precoder design subjected to minimum signal-to-interference-and-noise ratio and harvested energy demands at the respective users under three different scenarios. This problem is solved via semi-definite relaxation and the advantages of employing separate information and energy precoders are shown over joint and per-user information and energy precoder designs. Simulation results illustrate the benefits of proposed framework under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 178 (20 UL)
Full Text
Peer Reviewed
See detailOn the Use of Vertex-Frequency Analysis for Anomaly Detection in Graph Signals
Lewenfus, Gabriela; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in Anais do XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2019) (2019, September)

Detailed reference viewed: 151 (27 UL)
Full Text
Peer Reviewed
See detailOptimal Resource Allocation for NOMA-Enabled Cache Replacement and Content Delivery
Lei, Lei UL; Vu, Thang Xuan UL; Xiang, Lin UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019) (2019, September)

Detailed reference viewed: 124 (11 UL)
Full Text
Peer Reviewed
See detailJoint User Grouping and Power Allocation for MISO Systems: Learning to Schedule
Yuan, Yaxiong; Vu, Thang Xuan UL; Lei, Lei UL et al

in IEEE European Signal Processing Conference 2019 (2019, September)

Detailed reference viewed: 99 (21 UL)
Full Text
Peer Reviewed
See detailLoad Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
Lei, Lei UL; You, Lei; Yang, Yang et al

in IEEE Transactions on Vehicular Technology (2019)

Detailed reference viewed: 172 (21 UL)
Full Text
Peer Reviewed
See detailOn Fairness Optimization for NOMA-Enabled Multi-Beam Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2019 (2019, September)

Detailed reference viewed: 148 (30 UL)
Full Text
Peer Reviewed
See detailLearning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems
Lei, Lei UL; You, Lei; He, Qing et al

in IEEE Transactions on Green Communications and Networking (2019)

Detailed reference viewed: 106 (10 UL)
Full Text
Peer Reviewed
See detailARCHITECTURES AND SYNCHRONIZATION TECHNIQUES FOR COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Camps, Adriano et al

in 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2019, August 31)

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field ... [more ▼]

Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios [less ▲]

Detailed reference viewed: 139 (16 UL)
Full Text
Peer Reviewed
See detailM-QAM Modulation Symbol-Level Precoding for Power Minimization: Closed-Form Solution
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, August)

In this paper, we derive a closed-form algorithm of the computationally efficient Symbol-Level Precoding (SLP) for power efficient communications when using M-QAM modulated waveforms. The channel state ... [more ▼]

In this paper, we derive a closed-form algorithm of the computationally efficient Symbol-Level Precoding (SLP) for power efficient communications when using M-QAM modulated waveforms. The channel state information (CSI) based and data-aided SLP technique optimizes power efficiency by solving a non-negative convex quadratic optimization problem per time frame of transmitted symbols. The optimization combines constructive inter-user interference to minimize the sum power of precoded symbols at the transmitter side under constraints for minimum SNR at the receiver side. The SLP implementation incurs extra computational complexity of the transmitter. We propose a convex quadratic optimization problem for M-QAM constellations and derive a closed-form algorithm with a fixed number of iterations to solve the problem. [less ▲]

Detailed reference viewed: 141 (21 UL)
Full Text
Peer Reviewed
See detailDynamic RF Chain Selection for Energy Efficient and Low Complexity Hybrid Beamforming in Millimeter Wave MIMO Systems
Kaushik, Aryan; Thompson, John; Vlachos, Evangelos et al

in IEEE Transactions on Green Communications and Networking (2019)

This paper proposes a novel architecture with a framework that dynamically activates the optimal number of radio frequency (RF) chains used to implement hybrid beamforming in a millimeter wave (mmWave ... [more ▼]

This paper proposes a novel architecture with a framework that dynamically activates the optimal number of radio frequency (RF) chains used to implement hybrid beamforming in a millimeter wave (mmWave) multiple-input and multiple-output (MIMO) system. We use fractional programming to solve an energy efficiency maximization problem and exploit the Dinkelbach method (DM)-based framework to optimize the number of active RF chains and data streams. This solution is updated dynamically based on the current channel conditions, where the analog/digital (A/D) hybrid precoder and combiner matrices at the transmitter and the receiver, respectively, are designed using a codebook-based fast approximation solution called gradient pursuit (GP). The GP algorithm shows less run time and complexity while compared to the state-of-the-art orthogonal matching pursuit (OMP) solution. The energy and spectral efficiency performance of the proposed framework is compared with the existing state-of-the-art solutions, such as the brute force (BF), the digital beamformer, and the analog beamformer. The codebook-free approaches to design the precoders and combiners, such as alternating direction method of multipliers (ADMMs) and singular value decomposition (SVD)-based solution are also shown to be incorporated into the proposed framework to achieve better energy efficiency performance. [less ▲]

Detailed reference viewed: 63 (1 UL)
Full Text
Peer Reviewed
See detailLearning-Based Resource Allocation: Efficient Content Delivery Enabled by Convolutional Neural Network
Lei, Lei UL; Yaxiong, Yuan UL; Vu, Thang Xuan UL et al

in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2019 (2019, July)

Detailed reference viewed: 101 (29 UL)
Full Text
Peer Reviewed
See detailMachine Learning based Antenna Selection and Power Allocation in Multi-user MISO Systems
Vu, Thang Xuan UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in 2019 IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2019, June)

Detailed reference viewed: 94 (16 UL)
Full Text
Peer Reviewed
See detailOn the Successful Delivery Probability of Full-Duplex-Enabled Mobile Edge Caching
Vu, Thang Xuan UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2019)

Detailed reference viewed: 80 (6 UL)
Full Text
Peer Reviewed
See detailUltrareliable SWIPT using Unscheduled Short Packet Transmissions
Kisseleff, Steven UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE International Conference on Communications (ICC), B5G-URLLC Workshop, Shanghai, May 2019 (2019, May 20)

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to the co-channel interference from simultaneous transmissions. In the recent time, this problem has been ... [more ▼]

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to the co-channel interference from simultaneous transmissions. In the recent time, this problem has been extensively studied in various contexts. Due to a potentially very long duty cycle, orthogonal multiple access techniques are not well suited for such schemes. Instead, random medium access (RMA) seems promising, since it guarantees a lower bound for the network throughput even in presence of an infinite number of simultaneous transmissions while reducing the average length of the duty cycle. Such an RMA scheme is based on transmission of short data packets with unknown scheduling. Of course, a reliable symbol detection for this type of communication is very challenging not only due to a large amount of interference from the adjacent nodes, but also because of the uncertainty related to the presence or absence of overlapping packets. Interestingly, with increasing number of network nodes also the amount of energy, which can be harvested from the received signal, increases. This is especially beneficial for powering of a relay device, which may utilize the energy for further information processing and retransmission. In this paper, we address the design of a simultaneous information and power transfer scheme based on unscheduled short packet transmissions for ultrareliable communication. [less ▲]

Detailed reference viewed: 80 (7 UL)
Full Text
Peer Reviewed
See detailThe Application of Power-Domain Non-Orthogonal Multiple Access in Satellite Communication Networks
Yan, Xiaojuan; An, Kang; Liang, Tao et al

in IEEE Access (2019), 7

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable ... [more ▼]

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable connection for areas where are economically unviable and/or difficult to deploy terrestrial infrastructures. Meanwhile, the power-domain non-orthogonal multiple access (NOMA), which can serve multiple users simultaneously within the same time/frequency block, has been viewed as another promising strategy used in the 5G network to provide high spectral efficiency and resource utilization. In this paper, we introduce a general overview of the application of the NOMA to various satellite architectures for the benefits of meeting the availability, coverage, and efficiency requirements targeted by the 5G. The fundamental and ubiquitous features of satellite link budget are first reviewed. Then, the advantage and benefit of introducing the NOMA scheme in various satellite architectures, such as conventional downlink/uplink satellite networks, cognitive satellite terrestrial networks, and cooperative satellite networks with satellite/terrestrial relays, are provided, along with the motivation and research methodology for each scenario. Finally, this paper reviews the potential directions for future research. [less ▲]

Detailed reference viewed: 65 (0 UL)
Full Text
Peer Reviewed
See detailNon-Intrusive Cognitive Measurement for the Amplitude Response of Wideband Transponders
Mazalli, N.; Andrenacci, Stefano UL; Chatzinotas, Symeon UL

in International Conference on Communications (2019, May)

In this paper we propose a new measurement procedure for the amplitude response of a wideband transponder in an in-orbit testing (IOT) context. The proposed procedure resorts to a direct sequence spread ... [more ▼]

In this paper we propose a new measurement procedure for the amplitude response of a wideband transponder in an in-orbit testing (IOT) context. The proposed procedure resorts to a direct sequence spread spectrum (DSSS) technique in order to limit the interference caused by the measurement signals to the traffic. Further, an adaptive approach exploiting the knowledge of the inband traffic power has been introduced. Such knowledge, acquired either a priori or by sensing the channel, allows to easily design measurement signals satisfying multiple performance requirements (i.e., accuracy, resolution, interference, duration, and complexity). The proposed procedure can be used as a design tool to optimize the dimensioning of the IOT system parameters, and to flexibly trade off a performance indicator against another. [less ▲]

Detailed reference viewed: 39 (14 UL)
Full Text
Peer Reviewed
See detailOutage Performance of Integrated Satellite-Terrestrial Relay Networks with Opportunistic Scheduling
Huang, Qingquan; Zhu, Wei-Ping; Chatzinotas, Symeon UL et al

in ICC 2019 - 2019 IEEE International Conference on Communications (ICC) (2019, May)

In this paper, we investigate the outage performance of a multiuser threshold-based decode-and-forward integrated satellite-terrestrial relay network (ISTRN) with opportunistic user scheduling, where the ... [more ▼]

In this paper, we investigate the outage performance of a multiuser threshold-based decode-and-forward integrated satellite-terrestrial relay network (ISTRN) with opportunistic user scheduling, where the satellite link and terrestrial links undergo Shadowed-Rician (SR) fading and correlated Rayleigh fading, respectively. First, we propose a new probability density function (PDF) to statistically characterize the square sum of independent and identically distributed SR random variables, which is more accurate and concise than existing expressions. Next, based on the new PDF, we derive an analytical expression of outage probability (OP) of the considered network. Furthermore, the asymptotic OP expression is developed at high signal-to-noise ratio to reveal the achievable diversity order of the considered ISTRN. Finally, computer simulation is conducted to validate the analytical results, and show the impact of various parameters on the outage performance. [less ▲]

Detailed reference viewed: 33 (0 UL)
Full Text
Peer Reviewed
See detailPricing Perspective for SWIPT in OFDM-based Multi-User Wireless Cooperative Systems
Gautam, Sumit UL; Lagunas, Eva UL; Vuppala, Satyanarayana UL et al

Scientific Conference (2019, April)

We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from ... [more ▼]

We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from a pricing perspective. Specifically, we consider that a transmit source communicates with multiple destinations using Orthogonal Frequency Division Multiplexing (OFDM) system within a dual-hop relay-assisted network, where the destination nodes are capable of jointly decoding information and harvesting energy from the same radio-frequency (RF) signal using either the time-switching (TS) or power-splitting (PS) based SWIPT receiver architectures. Computation of the optimal solution for the aforementioned problem is an extremely challenging task as joint optimization of several network resources introduce intractability at high numeric values of relays, destination nodes and OFDM sub-carriers. Therefore, we present a suitable algorithm with sub-optimal results and good performance to compute the performance of joint data processing and harvesting energy under fixed pricing methods by adjusting the respective weight factors, motivated by practical statistics. Furthermore, by exploiting the binary options of the weights, we show that the proposed formulation can be regulated purely as a sum-spectral efficiency maximization or solely as a sum-harvested energy maximization problem. Numerical results illustrate the benefits of the proposed design under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 144 (16 UL)