Results 161-180 of 534.
Bookmark and Share    
Full Text
Peer Reviewed
See detailCache-aided full-duplex: Delivery time analysis and optimization
Vu, Thang Xuan UL; Trinh, Anh Vu; Chatzinotas, Symeon UL et al

in Wireless Networks (2020)

Edge caching has received much attention as a promising technique to overcome the stringent latency and data-hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD ... [more ▼]

Edge caching has received much attention as a promising technique to overcome the stringent latency and data-hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD) transmission can improve the spectral efficiency by allowing a node to receive and transmit on the same frequency band simultaneously. In this paper, we investigate the delivery time performance of a cache-aided FD system, in which an edge node, operates in FD mode, serves users via wireless channels and is equipped with a cache memory. Firstly, we derive a closed-form expression for the average delivery time by taking into account the uncertainties of both backhaul and access wireless channels. The derived analysis allows the examination of the impact of the key parameters, e.g., cache size and transmit power. Secondly, a power optimization problem is formulated to minimize the average delivery time. To deal with the non-convexity of the formulated problem, we propose an iterative optimization algorithm based on the bisection method. Finally, numerical results are presented to demonstrate the effectiveness of the proposed algorithm, which can significantly reduce the delivery time compared to the FD reference and the half-duplex counterpart. [less ▲]

Detailed reference viewed: 122 (10 UL)
Full Text
Peer Reviewed
See detailLearning-Assisted Eavesdropping and Symbol-Level Precoding Countermeasures for Downlink MU-MISO Systems
Mayouche, Abderrahmane UL; Spano, Danilo UL; Tsinos, Christos UL et al

in IEEE Open Journal of the Communications Society (2020), 1

In this work, we introduce a machine-learning (ML) based detection attack, where an eavesdropper (Eve) is able to learn the symbol detection function based on precoded pilots. With this ability, an Eve ... [more ▼]

In this work, we introduce a machine-learning (ML) based detection attack, where an eavesdropper (Eve) is able to learn the symbol detection function based on precoded pilots. With this ability, an Eve can correctly detect symbols with a high probability. To counteract this attack, we propose a novel symbol-level precoding (SLP) scheme that enhances physical-layer security (PLS) while guaranteeing a constructive interference effect at the intended users. Contrary to conventional SLP schemes, the proposed scheme is robust to the ML-based attack. In particular, the proposed scheme enhances security by designing Eve's received signal to lie at the boundaries of the detection regions. This distinct design causes Eve's detection decisions to be based almost purely on noise. The proposed countermeasure is then extended to account for multi-antennas at the Eve and also for multi-level modulation schemes. In the numerical results, we validate both the detection attack and the countermeasures and show that this gain in security can be achieved at the expense of only a small additional power consumption at the transmitter, and more importantly, these benefits are obtained without affecting the performance at the intended user. [less ▲]

Detailed reference viewed: 66 (4 UL)
Full Text
Peer Reviewed
See detailEnergy- and Cost-Efficient Physical Layer Security in the Era of IoT: The Role of Interference
Wei, Z.; Masouros, C.; Liu, F. et al

in IEEE Communications Magazine (2020), 58(4), 81-87

IoT is emerging as the future evolution of the Internet, aiming to provide connectivity for everyone and everything. Since IoT is expected to carry important and private information, a high level of PHY ... [more ▼]

IoT is emerging as the future evolution of the Internet, aiming to provide connectivity for everyone and everything. Since IoT is expected to carry important and private information, a high level of PHY security is critical for wireless communications in IoT, as a complement for traditional security techniques that are employed at high layers. In this overview, we examine the recent interest in energy-efficient and cost-efficient PHY solutions for securing downlink IoT transmission through interference exploitation. This exciting line of research departs from conventional interference cancellation, and judiciously employs the inherent interference as a useful element for LUs while obstructing the eavesdropping of information. We first discuss the concept of CI, and then elaborate the fundamental CI signal design that employs the traditionally undesired interference as a constructive element to LUs while ensuring they are destructive to potential Eves. Subsequently, we illustrate several low-hardware-cost techniques to inherit the advantage of CI in an energy- and cost-efficient manner, from the perspective of HBF and DM. This family of techniques brings a disruptive vision of interference management for securing wireless communications with an eye on low-cost and hardware-constrained devices tailored for IoT systems. [less ▲]

Detailed reference viewed: 70 (4 UL)
Full Text
Peer Reviewed
See detailA RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA based 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE Access (2020)

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two ... [more ▼]

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations. [less ▲]

Detailed reference viewed: 219 (27 UL)
Full Text
Peer Reviewed
See detailTowards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions
Sharma, Shree Krishna UL; Woungang, Isaac; Anpalagan, Alagan et al

in IEEE Access (2020)

Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e ... [more ▼]

Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions. [less ▲]

Detailed reference viewed: 98 (14 UL)
Full Text
Peer Reviewed
See detailPerformance Analysis of Cell-Free Massive MIMO Systems: A Stochastic Geometry Approach
Papazafeiropoulos, Anastasios; Kourtessis, Pandelis; Di Renzo, Marco et al

in IEEE Transactions on Vehicular Technology (2020)

Cell-free (CF) massive multiple-input-multiple-output (MIMO) has emerged as an alternative deployment for conventional cellular massive MIMO networks. As revealed by its name, this topology considers no ... [more ▼]

Cell-free (CF) massive multiple-input-multiple-output (MIMO) has emerged as an alternative deployment for conventional cellular massive MIMO networks. As revealed by its name, this topology considers no cells, while a large number of multi-antenna access points (APs) serves simultaneously a smaller number of users over the same time/frequency resources through time-division duplex (TDD) operation. Prior works relied on the strong assumption (quite idealized) that the APs are uniformly distributed, and actually, this randomness was considered during the simulation and not in the analysis. However, in practice, ongoing and future networks become denser and increasingly irregular. Having this in mind, we consider that the AP locations are modeled by means of a Poisson point process (PPP) which is a more realistic model for the spatial randomness than a grid or uniform deployment. In particular, by virtue of stochastic geometry tools, we derive both the downlink coverage probability and achievable rate. Notably, this is the only work providing the coverage probability and shedding light on this aspect of CF massive MIMO systems. Focusing on the extraction of interesting insights, we consider small-cells (SCs) as a benchmark for comparison. Among the findings, CF massive MIMO systems achieve both higher coverage and rate with comparison to SCs due to the properties of favorable propagation, channel hardening, and interference suppression. Especially, we showed for both architectures that increasing the AP density results in a higher coverage which saturates after a certain value and increasing the number of users decreases the achievable rate but CF massive MIMO systems take advantage of the aforementioned properties, and thus, outperform SCs. In general, the performance gap between CF massive MIMO systems and SCs is enhanced by increasing the AP density. Another interesting observation concerns that a higher path-loss exponent decreases the rate while the users closer to the APs affect more the performance in terms of the rate. [less ▲]

Detailed reference viewed: 93 (5 UL)
Full Text
Peer Reviewed
See detailHybrid Analog-Digital Transceiver Designs for Multi-User MIMO mmWave Cognitive Radio Systems
Tsinos, Christos UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Transactions on Cognitive Communications and Networking (2020)

Detailed reference viewed: 103 (2 UL)
Full Text
Peer Reviewed
See detailReceive Beamforming for Ultrareliable Random Access based SWIPT
Kisseleff, Steven UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in Proceedings of IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (2020)

Ultrareliable uplink communication based on random access poses novel research challenges for the receiver design. Here, the uncertainty imposed by the random access and a large amount of interfering ... [more ▼]

Ultrareliable uplink communication based on random access poses novel research challenges for the receiver design. Here, the uncertainty imposed by the random access and a large amount of interfering transmissions is the limiting factor for the system performance. Recently, this type of communication has been addressed in context of simultaneous wireless information and power transfer (SWIPT). The need to adapt the power splitting to the signal states according to the underlying random access has been tackled by introducing a predictor, which determines the valid states of the received signal based on the long-term observation. Hence, the power splitting factor is scaled accordingly in order to guarantee ultrareliable communication and maximized harvested energy.In this work, we extend the considered SWIPT scenario by introducing multiple antennas at the receiver side. Through this, the received energy can be substantially increased, if the energy harvesting parameters and the spatial filter coefficients are jointly optimized. Hence, we propose an optimization procedure, which aims at maximizing the harvested energy under the ultrareliability constraint. The mentioned prediction method is then combined with the optimization solution and the resulting system performance is numerically evaluated. [less ▲]

Detailed reference viewed: 62 (1 UL)
Full Text
Peer Reviewed
See detailRandom Access based Reliable Uplink Communication and Power Transfer using Dynamic Power Splitting
Kisseleff, Steven UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Transactions on Wireless Communications (2020)

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to co-channel interference. One possibility to address this issue is the use of orthogonal multiple access (OMA ... [more ▼]

Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to co-channel interference. One possibility to address this issue is the use of orthogonal multiple access (OMA) techniques. However, due to a potentially very long duty cycle, OMA is not well suited for such schemes. Instead, random medium access (RMA) appears more promising. An RMA scheme is based on transmission of short data packets with random scheduling, which is typically unknown to the receiver. The received signal, which consists of the overlapping packets, can be used for energy harvesting and powering of a relay device. Such an energy harvesting relay may utilize the energy for further information processing and uplink transmission. In this paper, we address the design of a simultaneous information and power transfer scheme based on randomly scheduled packet transmissions and reliable symbol detection. We formulate a prediction problem with the goal to maximize the harvested power for an RMA scenario. In order to solve this problem, we propose a new prediction method, which shows a significant performance improvement compared to the straightforward baseline scheme. Furthermore, we investigate the complexity of the proposed method and its vulnerability to imperfect channel state information. [less ▲]

Detailed reference viewed: 66 (9 UL)
Peer Reviewed
See detailForeseeing Semi-Persistent Scheduling in Mode-4 for 5G enhanced V2X communication
Jubba Honnaiah, Puneeth UL; Maturo, Nicola; Chatzinotas, Symeon UL

Poster (2020)

One of the most dominant applications of Ultra Reliable Low Latency Communication of 5G-NR is V2X communication. For such latency-critical V2X communication, the distributed resource allocation using Semi ... [more ▼]

One of the most dominant applications of Ultra Reliable Low Latency Communication of 5G-NR is V2X communication. For such latency-critical V2X communication, the distributed resource allocation using Semi-Persistent Scheduling (SPS) algorithm designed for out-of-coverage (Mode-4) scenario leads to a high collision probability and requires profuse sensing processes. Therefore, a need for more efficient distributed resource allocation scheme is compelled. In this paper, we investigate the 3GPP proposed SPS scheduling algorithm for its performance and formulate the problem under partial sensing systems. Furthermore, we propose a Foreseeing Semi-Persistent Scheduling (F-SPS) algorithm as an enhancement to the existing methodology, and conclusively, simulations are presented to illustrate the improved performance of the proposed F-SPS scheme in terms of reduced collision probability with an optimised number of sensing processes. [less ▲]

Detailed reference viewed: 85 (8 UL)
Full Text
Peer Reviewed
See detailOnline Spatiotemporal Popularity Learning via Variational Bayes for Cooperative Caching
Mehrizi Rahmat Abadi, Sajad UL; Chaterjee, Saikat; Chatzinotas, Symeon UL et al

in IEEE Transactions on Communications (2020)

Detailed reference viewed: 130 (7 UL)
Full Text
Peer Reviewed
See detailJoint Power and Resource Block Allocation for Mixed-Numerology-Based 5G Downlink Under Imperfect CSI
Korrai, Praveenkumar UL; Lagunas, Eva UL; Bandi, Ashok UL et al

in IEEE Open Journal of the Communications Society (2020), 1

Fifth-generation (5G) of wireless networks are expected to accommodate different services with contrasting quality of service (QoS) requirements within a common physical infrastructure in an efficient way ... [more ▼]

Fifth-generation (5G) of wireless networks are expected to accommodate different services with contrasting quality of service (QoS) requirements within a common physical infrastructure in an efficient way. In this article, we address the radio access network (RAN) slicing problem and focus on the three 5G primary services, namely, enhanced mobile broadband (eMBB), ultra-reliable and lowlatency communications (URLLC) and massive machine-type communications (mMTC). In particular, we formulate the joint allocation of power and resource blocks to the heterogeneous users in the downlink targeting the transmit power minimization and by considering mixed numerology-based frame structures. Most importantly, the proposed scheme does not only consider the heterogeneous QoS requirements of each service, but also the queue status of each user during the scheduling of resource blocks. In addition, imperfect Channel State Information (CSI) is considered by including an outage probabilistic constraint into the formulation. The resulting non-convex problem is converted to a more tractable problem by exploiting Big-M formulation, probabilistic to non-probabilistic transformation, binary relaxation and successive convex approximation (SCA). The proposed solution is evaluated for different mixed-numerology resource grids within the context of strict slice-isolation and slice-aware radio resource management schemes via extensive numerical simulations. [less ▲]

Detailed reference viewed: 162 (32 UL)
Full Text
Peer Reviewed
See detailJoint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning
Lewenfus, Gabriela; Alves Martins, Wallace UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Signal and Information Processing over Networks (2020)

We tackle the problem of forecasting network-signal snapshots using past signal measurements acquired by a subset of network nodes. This task can be seen as a combination of multivariate time-series ... [more ▼]

We tackle the problem of forecasting network-signal snapshots using past signal measurements acquired by a subset of network nodes. This task can be seen as a combination of multivariate time-series forecasting (temporal prediction) and graph signal interpolation (spatial prediction). This is a fundamental problem for many applications wherein deploying a high granularity network is impractical. Our solution combines recurrent neural networks with frequency-analysis tools from graph signal processing, and assumes that data is sufficiently smooth with respect to the underlying graph. The proposed learning model outperforms state-of-the-art deep learning techniques, especially when predictions are made using a small subset of network nodes, considering two distinct real world datasets: temperatures in the US and speed flow in Seattle. The results also indicate that our method can handle noisy signals and missing data, making it suitable to many practical applications. [less ▲]

Detailed reference viewed: 60 (4 UL)
Full Text
Peer Reviewed
See detailJoint Power Allocation and Access Point Selection for Cell-free Massive MIMO
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; ShahbazPanahi, Shahram et al

in IEEE International Conference on Communications (2020)

Cell-free massive multiple-input multiple-output (CF-MIMO) is a promising technological enabler for fifth generation (5G) networks in which a large number of access points (APs) jointly serve the users ... [more ▼]

Cell-free massive multiple-input multiple-output (CF-MIMO) is a promising technological enabler for fifth generation (5G) networks in which a large number of access points (APs) jointly serve the users. Each AP applies conjugate beamforming to precode data, which is based only on the AP's local channel state information. However, by having the nature of a (very) large number of APs, the operation of CF-MIMO can be energy-inefficient. In this paper, we investigate the energy efficiency performance of CF-MIMO by considering a practical energy consumption model which includes both the signal transmit energy as well as the static energy consumed by hardware components. In particular, a joint power allocation and AP selection design is proposed to minimize the total energy consumption subject to given quality of service (QoS) constraints. In order to deal with the combinatorial complexity of the formulated problem, we employ norm $l_{2,1}$-based block-sparsity and successive convex optimization to leverage the AP selection process. Numerical results show significant energy savings obtained by the proposed design, compared to all-active APs scheme and the large-scale based AP selection. [less ▲]

Detailed reference viewed: 157 (10 UL)
Full Text
Peer Reviewed
See detailCarrier and Power Assignment for Flexible Broadband GEO Satellite Communications System
Abdu, Tedros Salih UL; Lagunas, Eva UL; Kisseleff, Steven et al

in PIMRC 2020 Proceedings (2020)

Current multi-beam GEO satellite systems operate under a limited frequency reuse configuration and considering uniform power assignment across beams. The latter has been shown to be inefficient in ... [more ▼]

Current multi-beam GEO satellite systems operate under a limited frequency reuse configuration and considering uniform power assignment across beams. The latter has been shown to be inefficient in matching the geographic distribution of the traffic demand. In this context, next generation of broadband GEO satellite systems will be equipped with more flexible and reconfigurable payloads, facilitating on-demand resource allocation. In this paper, we consider both carrier and power assignment to match the requested beam demands while minimizing the total transmit power and the total utilized bandwidth. A novel optimization problem is formulated and, given its non-convex structure, we divide the problem into two tractable sub-problems. First, we estimate the number of adjacent frequency carriers required for each beam to satisfy its demand and, subsequently, we optimize the power allocation based on the previously assigned carriers. We validate the proposed method with extensive numerical results, which demonstrate its efficiency with respect to benchmark strategies. [less ▲]

Detailed reference viewed: 394 (126 UL)
Full Text
Peer Reviewed
See detailReconfigurable Intelligent Surfaces for Smart Cities: Research Challenges and Opportunities
Kisseleff, Steven UL; Alves Martins, Wallace UL; Al-Hraishawi, Hayder UL et al

in IEEE Open Journal of the Communications Society (2020)

The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully ... [more ▼]

The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastructure and utilization of resources. Recently, the idea of 'smart' environment, which takes advantage of the infrastructure in order to enable better performance of wireless networks, has been proposed. This idea is aligned with the recent advances in design of reconfigurable intelligent surfaces (RISs), which are planar structures with the capability to reflect impinging electromagnetic waves toward preferred directions. Thus, RISs are expected to provide the necessary flexibility for the design of the ‘smart’ communication environment, which can be optimally shaped to enable cost- and energy-efficient signal transmissions where needed. Upon deployment of RISs, the ecosystem of the Smart Cities would become even more controllable and adaptable, which would subsequently ease the implementation of future communication networks in urban areas and boost the interconnection among private households and public services. In this article, we provide our vision on RIS integration into future Smart Cities by pointing out some forward looking new application scenarios and use cases and by highlighting the potential advantages of RIS deployment. To this end, we identify the most promising research directions and opportunities. The respective design problems are formulated mathematically. Moreover, we focus the discussion on the key enabling aspects for RIS-assisted Smart Cities, which require substantial research efforts such as pilot decontamination, precoding for large multiuser networks, distributed operation and control of RISs. These contributions pave the road to a systematic design of RIS-assisted communication networks for Smart Cities in the years to come. [less ▲]

Detailed reference viewed: 186 (37 UL)
Full Text
Peer Reviewed
See detailHybrid Transceivers Design for Large-Scale Antenna Arrays Using Majorization-Minimization Algorithms
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in IEEE Transactions on Signal Processing (2020), 68

Detailed reference viewed: 361 (122 UL)
Full Text
Peer Reviewed
See detailLink Adaptation and SINR errors in Practical Multicast Multibeam Satellite Systems with Linear Precoding
Tato, Anxo; Andrenacci, Stefano UL; Lagunas, Eva UL et al

in International Journal of Satellite Communications and Networking (2020)

Detailed reference viewed: 110 (28 UL)