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Abstract

Excitons, bound electron-hole pairs, play a crucial role in governing light-matter interactions
in two-dimensional materials and wide-bandgap insulators such as hexagonal boron nitride.
To obtain the energies and eigenstates of excitons, the state-of-the-art method is to solve
the Bethe-Salpeter equation (BSE). Over the past two decades, many new approaches have
been developed to compute exciton dynamics, including their coupling with phonons. These
methods have been successful in determining properties such as exciton lifetimes and in un-
derstanding the optical spectra associated with them. Despite this progress, the symmetries
of excitons and the selection rules associated with them have been largely overlooked.

In this thesis, we demonstrate how excitonic states transform under the action of crystal
symmetry operations. In particular, we present a robust method for computing the represen-
tations of excitonic states. We apply this framework to analyze the selection rules govern-
ing exciton-photon and exciton-phonon interactions, which manifest themselves in spectro-
scopic techniques such as resonant Raman spectroscopy, absorption, and phonon-assisted
luminescence across a wide range of materials.

Furthermore, we explore a particularly intriguing phenomenon in two-dimensional het-
erostructures: interlayer exciton-phonon coupling. This phenomenon arises from the inter-
action between excitons and phonons across adjacent layers. Although this phenomenon
has been experimentally observed in various heterostructures of layered materials, its micro-
scopic origin and underlying selection rules have remained elusive. Using the WSe;@hBN
heterostructure as an example, we investigate the origin of interlayer exciton-phonon cou-
pling and its signatures in resonant Raman scattering through first-principles calculations.

With the methods developed in this thesis, we elucidate how crystal symmetries play a cen-
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tral role in governing interlayer exciton-phonon scattering processes, which are responsible
for the anomalous resonant Raman intensities of the in-plane and out-of-plane hBN phonon
modes. Moreover, we address the long-standing question regarding the underlying mecha-
nism of this coupling. In particular, we find that the deformation potential induced by the BN
phonon interacts with the hybridized hole density of WSes excitons near the hBN interface,
leading to interlayer exciton-phonon coupling.

Finally, we present three computational tools that enhance state-of-the-art exciton-phonon
calculations: (i) Let zE1PhC, (ii) Ydiago, and (iii) PhdScripts.

LetzE1PhC is a code for the calculation of electron-phonon and exciton-phonon coupling
matrix elements. The code utilizes full crystal symmetries, which now makes it possible to
perform exciton-phonon calculations using symmetries, drastically decreasing the computa-
tion time for these calculations. It resolves the long-standing phase issues that arise when
expanding the electron-phonon coupling matrix elements from the irreducible Brillouin zone
to the full Brillouin zone, which stem from the incompatibility between the electron-phonon
matrix elements and the excitonic wavefunctions. The code also computes the electronic
representation matrices as a byproduct, which enable us to compute the representations of
the excitonic states.

Ydiago is a diagonalization library for the YAMBO code, which significantly accelerates
the diagonalization of full or partial BSE matrices, achieving a tenfold improvement in both
speed and memory efficiency compared to existing implementations in the Yambo code.

PhdScripts are a set of Python scripts that allow us to compute the irreducible rep-
resentation labels for the excitonic states, exciton-phonon matrix elements with full crystal
symmetries, as well as resonant Raman intensities and phonon-assisted luminescence in-
tensities. Due to the use of symmetries, these scripts enable a more efficient computation

of exciton-phonon properties compared to existing implementations.
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Chapter 1

Introduction

Symmetry is a central concept in physics, offering both a profound theoretical framework
and practical tools for understanding complex systems. In essence, symmetry refers to the
invariance of a system under specific transformations, such as rotations, translations, or
reflections. These symmetries have far-reaching consequences in modern physics, often
leading to conservation laws, such as the conservation of momentum and angular momen-
tum [43]. Symmetries also play a crucial role in understanding many fundamental concepts,
including the spin of elementary particles [118], Bloch’s theorem [4], and more.

A direct consequence of these underlying symmetries is the existence of selection rules
that govern the allowed transitions between quantum states [119]. For example, consider
the hydrogen atom, which exhibits both full rotational and inversion symmetry. The solutions
to the Schrédinger equation for the hydrogen atom are the atomic orbitals 1s, 2s, 2p, 3s, .. ..
Electrons in the hydrogen atom can be excited or de-excited by absorbing or emitting a
photon with compatible energy. However, due to the symmetries of the system, not all
transitions are allowed. For example, the inversion symmetry of the hydrogen atom forbids
the transition from the 2s excited state to the 1s ground state via single-photon emission. On
the other hand, the transition from 2p — 1s is allowed by photon emission. This selection rule
plays a crucial role in the recombination of electrons and hydrogen ions in hot gases [119].
The 2s — 1s transition requires the emission of two photons [49], each with insufficient

energy to excite a neighboring hydrogen atom, and thus contributes to recombination. In



contrast, the 2p — 1s transition, which involves the emission of a single photon, can excite
nearby hydrogen atoms, which hardly influences the overall recombination dynamics.

These selection rules are not limited to hydrogen-like systems, but can also be extended
to more complex systems such as molecules and crystals [25]. Unlike the hydrogen atom,
these systems often lack full rotational symmetry and may or may not possess an inversion
symmetry. Additionally, the presence of multiple electrons introduces many-body effects
that must be taken into consideration to accurately describe electronic states. As a result,
understanding how light interacts with these systems requires a sophisticated framework
that accounts for these complexities.

Today, understanding light—matter interactions in crystals and molecules is at the fore-
front of materials science research. Using these interactions, one can manipulate light emis-
sion and absorption at the nanoscale, leading to practical applications in quantum comput-
ing [36], light-emitting diodes [77], solar cells [47], nonlinear optics [6], etc. Recent advances
in understanding light-matter interactions, particularly in two-dimensional materials, have
further expanded the ability to control and tailor optical properties, paving the way for a new
generation of optoelectronic devices [112]. Therefore, understanding light—-matter interac-
tions in these materials, especially in two-dimensional materials, is crucial and has gained
significant interest over the past two decades.

The central entities involved in light-matter interactions in two-dimensional materials are
“excitons", hydrogen-like bound states that form when an electron is excited from the valence
band to the conduction band, leaving behind a positively charged hole [31], as illustrated in
Fig. 1.1. In low-dimensional materials [112, 74], molecular systems, and wide-bandgap
materials such as hexagonal boron nitride (hBN) [117, 84], excitons play a dominant role
in determining optical properties due to reduced dielectric screening. Just as in hydrogen
atoms, the symmetries of excitons dictate which states can be excited or de-excited through
light absorption and emission. Therefore, a thorough understanding of excitonic symmetries
is essential to accurately describe and engineer the optical response of materials where
excitonic effects are significant.

An important aspect of excitons is their interaction with other quasiparticles, especially
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Figure 1.1: A cartoon depicting the formation of an electron-hole bound state, known as an
exciton, upon illumination with light.

phonons. Exciton-phonon interactions play a critical role in optical scattering processes
such as resonant Raman scattering [41, 95, 70], phonon-assisted luminescence [14, 85],
and absorption. For example, in bulk BN, one of the most widely used dielectric sub-
strates or spacers for two-dimensional materials, strong exciton-phonon coupling gives rise
to below-gap luminescence peaks [85]. Therefore, understanding excitonic dynamics and
their interactions with other quasiparticles, such as phonons [85, 95], is vital for exploring
the light-matter interactions in these materials.

Furthermore, exciton-phonon interactions significantly influence the lifetimes of excitonic
states, which, in turn, determine the optical properties of materials [15]. More generally,
controlling exciton lifetimes provides means to tailor optical emission properties. Since sym-
metry dictates the allowed scattering pathways in these processes, understanding the sym-
metries of excitons and their selection rules for scattering with other quasiparticles, such as
phonons, is crucial for designing and manipulating the optical properties of materials.

In order to accurately describe and understand the properties of excitons and exciton-
phonon interactions, it is essential to compute their energies and eigenstates. The standard

approach for obtaining these quantities is to solve the Bethe-Salpeter equation (BSE) for the
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Figure 1.2: Types of excitons: (i) Wannier-Mott exciton, which extends over many unit cells.
(i) Frenkel exciton, where the electron and hole are localized within a unit cell. Adapted
from Wikipedia

two-particle electron-hole correlation function [98, 67, 1, 83, 97]. This method is robust and
applicable to a wide range of systems, including those that significantly deviate from simple
models [84, 32, 123, 74]. Notably, physical observables obtained from BSE calculations
have been shown to closely match experimental results across various materials, making it
a powerful formalism for studying excitonic properties.

Although the solutions of the BSE describe excitonic states very well, extracting the
symmetry information of excitons from them is not trivial. In some cases, hydrogen-like
models are employed to describe excitons and understand their symmetry properties [30].
Based on their spatial extent, excitons are classified into two main types: Wannier-Mott
excitons and Frenkel excitons as shown in Fig. 1.2. Wannier-Mott excitons are typically
found in materials with high dielectric constants, such as conventional semiconductors (e.g.,
silicon and GaAs). These excitons are spatially extended, with radii much larger than the
lattice constant, and can be effectively modeled as hydrogen-like systems within a quasi-
continuous dielectric environment. In contrast, Frenkel excitons are highly localized and are

typically found in molecular crystals and organic materials, where the exciton binding energy
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is significantly larger, making them unsuitable for hydrogen-like modeling.

One key advantage of the hydrogenic model is its ability to offer insights into the sym-
metries of excitons. A fundamental question in this context is: which excitonic states couple
to light, and why? The hydrogenic model provides a reasonable explanation in many cases.
In bulk semiconductors, where excitons originate from transitions near the band gap and
exhibit nearly circular symmetry, they are typically optically active (bright) [30].

Although the hydrogenic model provides valuable insight and works well for simple bulk
semiconductors that host Wannier-type excitons, it is often too simplistic for systems whose
excitonic character deviates from the Wannier type. Firstly, it is not applicable to Frenkel-type
excitons. Moreover, recent studies have revealed that excitonic spectra can significantly
deviate from hydrogen-like solutions, even in conventional semiconductors. For example,
excitons in hBN exhibit notable deviations from the hydrogenic model [32]. Furthermore,
the traditional classification of Wannier-Mott and Frenkel excitons becomes inadequate in
materials with strong excitonic effects. For example, excitons near the optical band gap of
hexagonal boron nitride (RBN) have been shown to fall outside both categories [123, 32].

Understanding the symmetries of excitonic states directly from the solutions of the Bethe-
Salpeter equation remains a significant challenge. Currently, there are no rigorous ab initio
methods for systematically analyzing excitonic symmetries. Although some attempts have
been made to manually inspect excitonic wavefunctions in specific systems [85, 32, 84, 12],
such as hexagonal boron nitride (hBN), these methods do not generalize easily to other
materials.

In addition to these challenges, several fundamental questions remain unanswered: Can
one assign symmetries to excitonic bands in a similar way to the symmetry assignments
in electronic band structures? How do symmetries act on the excitonic Hamiltonian? Can
symmetries be utilized to simplify the solution of the Bethe-Salpeter equation? Addressing
these questions requires a systematic, symmetry-based approach—an effort that constitutes

the central goal of this thesis.



1.1 Scope of this work

The primary goal of this thesis is to understand the symmetries of excitons. Over the past
two decades, the Bethe-Salpeter equation (BSE) has become the gold standard for com-
puting excitonic energies and eigenstates. Thanks to advances in computational power, it
is now possible to perform BSE calculations for systems significantly larger than was feasi-
ble 20 years ago. In addition, many new methods have been developed in the last decade
to study exciton dynamics, including techniques for computing and understanding exciton-
phonon interactions and exciton dispersions. Although these developments have enabled
an accurate reproduction of the experimental findings, the underlying symmetry principles
were often overlooked.

As mentioned above, currently, one often relies on hydrogenic models or “manual” anal-
ysis of excitonic wavefunctions in real space, by fixing the electron or hole position to deter-
mine how excitonic states transform under symmetry operations. However, such analyses
are nontrivial and can become cumbersome, even for relatively simple systems or when
dealing with degenerate states. Therefore, a more robust, ab initio approach is needed.
One of the main objectives of this thesis is to understand how excitons transform under the
action of symmetries. We compute the representations of excitonic states, thereby allowing
us to systematically understand their symmetry properties and selection rules. Furthermore,
we introduce the concept of total crystal angular momentum for excitons and phonons, which
is analogous to crystal momentum for translations and gives rise to the concept of “chirality”
for excitons and phonons.

Another important aspect of symmetries is their potential to significantly simplify first-
principles calculations. In density functional theory (DFT), nearly all well-established ab ini-
tio codes heavily employ symmetries to reduce computational cost. However, this is largely
not the case for BSE calculations, where symmetries are mostly neglected. Even today,
BSE is typically solved by explicitly breaking symmetries or by expanding wavefunctions
over the full Brillouin zone. Moreover, the use of symmetries in exciton-phonon calculations

has been largely avoided due to phase mismatch issues, which can lead to incorrect results



if not handled properly. As a result, exciton-phonon calculations are still performed without
symmetries. Given that BSE calculations are computationally expensive, neglecting sym-
metries severely limits their applicability to larger systems. In this thesis, we discuss how
symmetries can be leveraged to bypass the explicit computation of quantities such as exci-
ton wavefunctions at symmetry-rotated Q points. Furthermore, we show how the full BSE
Hamiltonian can be constructed by explicitly computing only a subset of the matrix elements,
with the remainder obtained through symmetry operations. We also address phase issues
that have plagued the exciton-phonon community over the past several years.

Of course, no theoretical method or implementation is complete without its application
to real systems. In the second half of this thesis, we apply the developed formalism to
understand the selection rules governing exciton-phonon interactions and their manifes-
tations in optical spectroscopic tools, such as resonant Raman spectroscopy, absorption
spectroscopy, and phonon-assisted luminescence. As will be demonstrated, symmetry prin-
ciples and selection rules manifest beautifully in these experiments, thereby allowing us to
understand the underlying exciton-phonon scattering pathways.

Finally, we conclude by showing how symmetries lead (although unintentionally) to the
discovery of interlayer exciton-phonon coupling, where excitons in one layer interact with
phonons in another. This fascinating phenomenon provides new insights into the coupling
mechanisms between excitons and phonons across different layers in van der Waals het-
erostructures [55]. Although numerous experimental works have demonstrated this phe-
nomenon in various heterostructures, the underlying mechanism has remained elusive. In
this thesis, we use the WSe,@hBN heterostructure to uncover the origin of this mecha-
nism. In particular, we apply our developed methods to explain the symmetry selection
rules in this heterostructure, which are responsible for the discovery of this effect: the out-
of-plane phonon mode of hBN, which is Raman inactive in pristine hBN, couples with the
first bright exciton of WSe,, whereas the in-plane Raman-active modes do not. This leads
to anomalous resonant Raman intensities for both modes. Furthermore, we systematically
analyze the microscopic processes responsible for this phenomenon and unveil the micro-

scopic mechanism for the first time.



1.2 Outline

This thesis is organized as follows.

In Chapter 2, we very briefly discuss the basic group theory and the Bethe-Salpeter
equation, which is the state-of-the-art method for obtaining excitonic energies and eigen-
states. This chapter primarily introduces the relevant equations and fundamental concepts
that will be used in later parts of the thesis.

In Chapter 3, we introduce the group-theoretical treatment of excitons. Specifically, we
examine how crystal symmetries act on excitonic states obtained from the Bethe-Salpeter
equation. We first demonstrate that the well-known concept of exciton dispersion naturally
arises as a consequence of the translational symmetry group. Furthermore, we show how
excitonic states and energies at different exciton momenta can be determined by applying
symmetry operations. In addition, we illustrate how symmetries can be exploited to reduce
computational complexity in exciton calculations.

Next, we rigorously derive explicit expressions for the representation matrices of excitonic
states, enabling the assignment of irreducible representation labels of the point group to
these states. Finally, we apply this formalism to a simple material, lithium fluoride (LiF), to
provide insights into the optical selection rules governing absorption spectroscopy.

In Chapter 4, we apply the techniques developed in Chapter 3 to analyze selection rules
in exciton-phonon coupling. A key result of this chapter is the introduction of tfotal crystal an-
gular momentum, which provides deeper insight into the selection rules governing these
interactions. We then apply these selection rules to two widely used spectroscopic tech-
niques: (1) resonant Raman spectroscopy and (2) phonon-assisted luminescence. Finally,
we demonstrate how these selection rules manifest in experimental observations, providing
a direct link between theory and experiment. In the end, we present explicit expressions
for rotating electron-phonon and exciton-phonon matrix elements using crystal symmetry
operations, ensuring efficient exciton-phonon workflows without any phase issues.

In Chapter 5, we extend the methods developed earlier to study the phenomenon of

interlayer exciton-phonon interactions, where excitons in one layer couple with phonons in



a different layer. This chapter emphasizes the central role of symmetry and serves as an-
other example of how symmetries can lead to new discoveries, even if unintentionally. We
provide a detailed explanation of the microscopic mechanisms underlying this fascinating
phenomenon, which has remained an open question for the past decade despite a substan-
tial number of experimental measurements on various systems. In order to demonstrate the
mechanism, we use the WSe,@hBN heterostructure, and perform microscopic analysis of
interlayer exciton-phonon coupling, which unveils the underlying mechanism for interlayer
exciton-phonon coupling.

In the Appendix, we provide documentation for two newly developed codes:

* LetzE1PhC, a program for computing electron-phonon coupling matrix elements with

full symmetries.

* YDiago, a library designed to facilitate faster diagonalization in the Yambo code.
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Chapter 2

Methods

In this chapter, we very briefly discuss the methods that will be used in the rest of this thesis.

In the first section, we introduce the basic definitions of group theory that will be used
later in this thesis. In this work, we are concerned only with finite groups. This is by no means
a complete review of group theory. A more detailed discussion can be found in numerous
standard references, such as Refs. [29, 25, 107].

In the second section, we briefly review the current state-of-the-art methods used to
compute and understand excitonic states. The purpose of this chapter is mainly to introduce
definitions and define some expressions that will be used later in the thesis. The section on
excitons is adapted mainly from Ref. [93]. A more detailed description can be found in many

standard references [93, 98, 53, 1, 83, 67].

2.1 Group Theory

A group G is a set of elements with a binary operation o (also referred to as the group

multiplication) that satisfies four criteria:

» Closure: For all elements a,b € G,aob € G.

+ Associativity: For all elements a,b,c € G, (aob)oc=ao (boc).
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* Identity: There exists an identity element ¢ € G such that for every a € G: aoe =

eoa=a

* Inverse: For each element a € G, there exists an element b € G known as inverse of

a which is denoted by a~! such that: aob=boa=r¢

A group is said to be an Abelian group if its group multiplication is commutative, i.e., for
ala,b e G:

aob="boa.

Cardinal number: The number of elements in a set (if finite) is referred to as the cardinal
number of a set.
Order of an Element in a Group: Suppose g be an element of the group G, then the

smallest positive integer n for which ¢ = e, is called the order of g in G.

An important theorem in group theory to mention here is the Rearrangement Theorem
(for proof see Ref. [25]). Consider an element g € G and let G = {g1,92,...}. The set

obtained by multiplying g with each element of G regenerates G, i.e.,

{gog1,9092,...} ={g109,9209,...} =G.

This implies that every element in G is obtained only once when multiplying the entire

group with g.

2.1.1 Subgroups

A subgroup H of a group G is a subset of G that itself forms a group under the same
operation o. The subgroup H must contain the identity element of G to fulfill the necessary
group criteria. For the set of integers (Z), which form a group under addition, the set of even

integers forms a subgroup of Z.
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2.1.2 Cosets

Given a subgroup H of a group G, and an element g € G, we can define the left coset of H

in G as:

gH ={goh|heH}

Similarly, the right coset of H in G is defined as:

Hg={hog|heH}

It is important to highlight that the cosets do not necessarily form a subgroup of G.

If g also belongs to H, then the coset (left or right) is the same as H (due to the rear-
rangement theorem). It can also be shown that two cosets are either the same or do not
contain any elements in common (disjoint) [25, 107]. This implies that cosets can be used

to partition a group into disjoint sets, i.e.,

G=|JgH=]JHg, (2.1)
=1 =1

where n is known as the “index” of the subgroup H in G, which represents the number
of cosets, and g; are known as the “coset representatives”.

Moreover, the cardinal numbers of cosets are the same (due to the rearrangement theo-
rem), which is equal to the cardinal number of the subgroup H. This implies that the cardinal
number ny of a subgroup H divides the cardinal number ng of the group G. The number

~¢ is the same as the index of the subgroup n.
H

2.1.3 Conjugacy Classes

An element g € G is said to be conjugate to a € G if:

g=XoaoX tforX e G

13



The conjugacy class of an element g € G consists of all elements in G that are conjugate

tog,i.e.,

C(a) ={goaog™'|geG}.

Conjugacy classes give rise to the concept of an important class of subgroups called

EH

“normal”, “invariant”, or “self-conjugate”.

A subgroup H of G is said to be normal if forany g € G and a € H:
goaogteH

An important point to note is that for a normal subgroup, the left and right cosets are the

same.

2.1.4 Factor group

The normal subgroups lead to the concept of the factor group (or quotient group), which is
denoted as G/H. The set of cosets of a normal subgroup H in G forms a group known as
the factor group of G with H:

G/H ={g:H | gi € G}.

The group multiplication for the factor group is defined as the multiplication of elements of
two cosets, which gives rise to another coset. Factor groups are particularly important when
studying the representation of space groups, which will be discussed later in this thesis.
2.1.5 Group Representations

Group Homomorphism

A group homomorphism is a function that maps one group to another, i.e., ¢ : G — H, while

preserving the group operation. That is, for all elements a,b € G,

¢(aob) = ¢(a) o ¢(b).
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Group Isomorphism

A group isomorphism is a group homomorphism that is bijective. A group isomorphism
preserves the algebraic structure.

An automorphism is an isomorphism from a group to itselfi.e ¢ : G — G.

Group Representation

A representation or (linear representation) of a group G is a group homomorphism from G

to the group of automorphisms GL (V') of a vector space V (an automorphism of a vector

space V is a linear operator that is a bijective map from V" onto itself), i.e., p : G — GL(V).
If we also consider automorphisms that respect group multiplication up to a constant

factor ¢(g1, g2), i.e.,

p(g1 0 g2) = c(g1,92) p(g1) © p(g2),

then the representation is said to be a projective representation of G.

Matrix representation

Every n-dimensional vector space over a field F (F is R or C) is isomorphic to F" (See
Appendix Il of Ref. [107] which shows this for a complex field). The linear operations can
be chosen to be matrices acting on them. If the group of automorphisms is chosen to
be a group of n x n invertible matrices that act on a complex vector space C", then the
representation is called a matrix representation. Often, by default, a representation refers to
a matrix representation of a group. We use D instead of p for matrix representations. For
example, consider a cyclic group C3 = {E,a,a’} with a®> = E. The one dimentional matrix

represantion of Cj is given by

D(E) =1 (2.2)
D(a) = e (2.3)
D(a®) =€ (2.4)
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Similarly, a possible 2 x 2 matrix representation of the C's group is given by:

10

D(E) = (2.5)
0 1

play= M2 VA2 .6)
V3/2  —1/2

Da?) - -1/2  V/3/2 2.7)
—V/3/2 —1/2

Unitary representation:

A unitary representation is a representation in which the linear operators are unitary, i.e.,
UUT = I, where U is the adjoint of U. We almost always work with unitary representations
of a group.

If the linear operators are matrices and the basis of the vector space are orthogonal,
then UT is the Hermitian adjoint (conjugate transpose) of U, and I is the identity matrix.

Unitary representations are important in quantum mechanics as they preserve the in-
ner product. Since symmetries preserve probabilities or inner products on Hilbert spaces,
symmetries are represented by unitary or anti-unitary operators (for time-reversal symmetry)
acting on the Hilbert space. This is also known as the Wigner’s theorem, which is funda-

mental and serves as one of the founding theorem of quantum mechanics [120].

Invariant subspaces

A subset W of a vector space V' that forms a vector space by itself is known as a subspace.
The set consisting of only the zero vector or the entire space V' is known as a trivial subspace
of V.

If a subspace W is closed under the action of a linear operator T : V' — V (i.e., the action
of T on an element of W gives an element in W), then it is known as an invariant subspace

of T.
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A subspace W is said to be G-invariant if Vg € G and Vw € W, p(g)w € W.

Equivalent Representations

Two representations p; : G — GL(V1) and pa : G — GL(V2) are said to be equivalent if

there is an isomorphism A : V; — V5 such that

p2(9)A = Ap1(g) Vg eG.

In matrix language, if we consider two matrix representations {D1(¢1), D1(g2), ...} and

{D2(g1), D2(g2), - - - }, they are said to be equivalent if there is a square matrix A such that

A™'Dy(9)A = Di(g) VgeG.

An important point to highlight is that for a representation D of a finite group, there is
always a unitary representation that is equivalent to D (known as the Weyl unitary trick).

This implies that it is enough to work only with unitary representations.

Irreducible Representation

A representation p : G — GL(V) is said to be irreducible if there is no nontrivial subspace
of V that is G-invariant. For example, consider the group of distance-preserving transforma-
tions of Euclidean space, denoted as SO(3). The set of 3 x 3 orthogonal matrices acting on
the vector space R? forms an irreducible representation of SO(3).

If a representation is not an irreducible representation, then it is said to be a “reducible”
representation. A reducible representation can be decomposed into a direct sum of irre-
ducible representations. This implies one can work with individual smaller irreducible repre-
sentations instead of larger representation.

In matrix language, a representation is said to be reducible if there is an equivalent
representation that can bring all the group elements to the same block-diagonal form. If not,

then it is said to be irreducible. In other words, a reducible representation is of the form (or

17



can be brought to this form by the same similarity transformation applied to all the elements

of the group)

D(g) = Diig) 0 Vg € G.

0 Dag)

Any reducible representation can be decomposed into a direct sum of irreducible repre-

sentations (Maschke’s Theorem).

2.1.6 Characters of Representations

The character y of a representation pis a map x : G — C which is defined as

x(g9) =Tr(p(g)) Vg € G,

where Tr denotes the trace of the linear operator. Since the trace is invariant under similarity
transformations, all the elements in a conjugacy class have the same trace, which implies
that the trace is a function of the conjugacy classes of the group. Moreover, the characters
for the equivalent representations are the same. This allows us to compactly tabulate the
characters of irreducible representations for the conjugacy classes in each group. These
tables are referred to as character tables. For example, the character table for the cyclic

group C3, which contains three elements and three classes, is given below:

where w = ¢2™/3 and A, E, and E* are the labels of irreducible representations of the group
Cs.
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2.1.7 Orthogonality relations

One of the most important applications of group theory in quantum mechanics is the deriva-
tion of selection rules for matrix elements of operators. Before discussing these selection
rules, we introduce two fundamental lemmas known as Schur’s lemmas, which are cen-
tral to the representation theory of finite groups. Using Schur’s lemmas, one can prove the
Great Orthogonality Theorem [21], which forms the foundation for applying group-theoretical
techniques to quantum mechanical problems.

From here on, the word representation implies matrix representation.
Schur’s lemma 1
Let D; : G — GL(V) and Dy : G — GL(W) be two irreducible representations of a finite
group G. Suppose that there exists a matrix X such that

XDi(g9) = D2(9)X Vg eG.

Then either X = 0, or X is an invertible square matrix (which implies W and V must be

isomorphic). In the latter case, the representations D, and D are equivalent [9].

Schur’s lemma 2

Let D : G — GL(V) be an irreducible representation of a finite group G on a vector space
V. Suppose that there exists a matrix X such that

XD(g)=D(g9)X VgeQq.

Then X = A\, «, for some scalar A\, where I,,«,, is the identity matrix. [9].

An important consequence of the second lemma is that all irreducible representations
of finite abelian groups are one-dimensional. This is because every element of an abelian
group commutes with every other element of the group, which implies that all representation

matrices commute with each other. By Schur’s lemma, this means that every element of the
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group can be represented by a scalar.

The great orthogonality theorem

With the two Schur lemmas, one can derive a very powerful result known as the “great
orthogonality theorem” (see Ref. [25] for proof). Let D; : G — GL(V) and Dy : G — GL(W)

be two irreducible unitary representations of a finite group G. If they are not equivalent, then

> Di(g 9w = 0. (2.8)
geqG
For each representation,
G
ZDI 9)ij DT ’d‘ 51[ 5]]{37 (29)

geCG
where |G| is the cardinal number of the group, and d is the dimension of the matrices in

the D, representation.

Orthogonality theorem for characters

From Egs. (2.8) and (2.9), we can show that

> xi9)xs chxl =G| b1z, (2.10)

geG

where the sum over ¢ runs over conjugacy classes, each containing n. elements, and 1 (c),
x2(c) are the characters corresponding to the class c.

Furthermore, we can rewrite Eq. (2.10) as

>\ 0@ g = e 2.11)

If we interpret the set of characters of each irreducible representation as a vector of
dimension N, then the number of linearly independent such vectors is N.. This implies that

there can be at most N, sets of characters satisfying Eq. (2.11), and hence the group has at
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most N, irreducible representations.

Another orthogonality relation is given by
o N\ (@) G
> () ¥ = D, 212)
a=1

where the sum runs over irreducible representations. Similar to Eq. (2.10), we can interpret
Eqg. (2.12) as the dot product of two vectors of dimension equal to the number of irreducible
representations. This now implies that the number of conjugacy classes must be at most
equal to the number of irreducible representations.

Therefore, the number of conjugacy classes is equal to the number of irreducible repre-

sentations. More details on orthogonality relations can be found in Ref. [25].

2.1.8 Decomposition of Reducible Representations

In this section we show how one can decompose a given representation into a direct sum of
irreducible representations using the orthogonality relations discussed previously.
Let D be a representation of a finite group G on V. Then D can be decomposed into

irreducible representations D' as

D(g) = @miDi(g) Vg € G, (2.13)

where m; are the multiplicities of the irreducible representations, which are given by
1 : *
m; = @ Z Ne X(D) (C) (XZ(C)) ) (2.14)

where x(p)(c) is the character of the representation D for class c, x'(c) is the character of

the irreducible representation D?, and n.. is the number of elements in class c.

2.1.9 Application to Quantum mechanics

We now briefly discuss the applications of group theory to quantum-mechanical problems.
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Consider the following eigenvalue problem:
HU = EV,

where H is the Hamiltonian and W is a wavefunction. The set of eigenvectors of H spans
the Hilbert space of the physical system. Moreover, the transformation of H by an operator
R is given by

H' = RHR™.

If H is invariant under the action of R, i.e., H' = H, then we say that R is a symmetry of
the system. The set of all such symmetry operations R forms a representation of a group G
acting on the Hilbert space.

Since R and H commute, we have
HRY = RHVY = ERV.

This shows that RV is also an eigenvector of H with the same eigenvalue as ¥. This im-
plies that the presence of symmetries gives rise to the concept of degeneracies in quantum
systems.

Suppose that we collect all the eigenvectors corresponding to the eigenvalue E; then this
vector space forms a G-invariant subspace of the Hilbert space, with dimension equal to the
degeneracy of the eigenvalue E. This implies that the representation R can be decomposed

into subrepresentations:
R = EB R,

where each R’ acts on a G-invariant subspace W containing the eigenvectors of H with
eigenvalue E. If R is irreducible, then the corresponding eigenstates can be labeled by the
irreducible representation. If R is not irreducible, it can be further decomposed into a direct

sum of irreducible representations using the procedures briefly described above.
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Selection Rules

Finally we conclude the section on Group theory by discussing the selection rules for matrix
elements.

Consider the following matrix element:
(U] O W) ,

where ¥, ., are eigenstates of the Hamiltonian H, and O is an operator which may not
possess the same symmetries as H.

Clearly, the matrix element is a linear operator (more precisely, a functional) that takes
a vector from a vector space V, where each element is composed of a set of three vectors
{|¥,,),0, (¥,|}, and maps them to a scalar, which must be invariant under the action of
any symmetry operation. This implies that the representation of the group G on V' must
be a trivial representation (or fully symmetric). Since V is a direct product of three vector
spaces {|¥,,)}, {0}, {(U,|}, it follows that the direct product representation of G on these
three vectors must either be trivial or contain a trivial representation for the matrix element
to be finite. In other words,

Dy C D, ®Do® Dy,

where D 4 is the trivial representation of G on V', and D,,, Do, and D,, are the representa-

tions of G on the vector spaces {|¥,,)}, {O}, and {(¥,,|}, respectively.

2.2 Excitons

Before discussing excitons, we first provide a brief overview of density functional theory
(DFT), and the single-particle Green’s function along with common approximations. These
serve as the foundation for the many-body formalism and play a crucial role in the subse-

quent discussion of the two-particle Green’s function.
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2.2.1 Density functional theory (DFT)

We start by writing the fully interacting time-independent many-body Hamiltonian of a crystal

without relativistic effects and ignoring the spin of the electron, which is given by [66]

H=T,+T+ Vee + Vi + Ver, (2.15)
where T, = — > %V? is the kinetic energy operator for electrons, with m. being the mass
of an electron; 77 = — Yoa %Vﬁ is the kinetic energy operator for nuclei, with M, being

the mass of the a-th nucleus; V.. = %Zi# ‘r%ﬂ describes the repulsive Coulomb poten-

ZaZﬁe2
B [ra—7g]
Zac? represents the attractive Coulomb potential

5,a [r;—Ta

tial energy between electrons; V;; = %Z accounts for the repulsive Coulomb

potential between nuclei; V. = — 3

between electrons and nuclei.

To simplify the problem given in Eqg. (2.15), one of the first and most widely used ap-
proximations is the Born-Oppenheimer approximation [8]. Since nuclei are much heavier
than electrons, their kinetic energy term, Ty, is initially neglected. This allows the Hamilto-
nian to be decoupled into electronic and nuclear parts, and we can approximate the total

wavefunction as

U(ry, ..t T1, - Tn) & Ye(T1, o T T, oo Tr)X(T1, - Th), (2.16)

where ¢, (ry,...ty; T1,...75) is the electronic wavefunction, and x(71,...7,) is the nuclear
wavefunction.

The electronic Hamiltonian is solved for fixed nuclear coordinates, i.e.,

ﬁewe(rl, il Ty Tn) = Eo(T)Ve(r1, oot T1, . Th)s (2.17)

where H, = T. + V.. + V,. is the electronic Hamiltonian. The nuclear Hamiltonian is then
given by
(Tn + Vin + Ee(’r)) X(T1,...Tn) = Ex(71,...Tn)- (2.18)
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Although the Born-Oppenheimer approximation greatly simplifies the problem, solving
the full many-body Hamiltonian within this approximation still remains impossible. This made
it necessary to seek alternative methods to tackle the many-body problem, which led to the
development of a revolutionary method by Hohenberg, Kohn, and Sham known as density
functional theory (DFT) [52, 56].

Today, DFT is the state-of-the-art method for computing and predicting the ground-state
properties of materials. DFT reformulates the many-body problem in terms of an auxiliary
non-interacting system that shares the same electron density as the fully interacting system

described by Eq. (2.17). The electron density of the interacting system is given by
p(r) = m/d3r2 e [Ty (g, ) 2 (2.19)

By working with an auxiliary non-interacting system, DFT drastically reduces computational
costs while still providing valuable physical insights.
DFT is founded on two theorems (referred to as the Hohenberg-Kohn theorems) [52],

which are stated as follows:

1. The ground-state electron density p(r) uniquely determines the external potential V,,(r)
and, consequently, all ground-state properties. The external potential in this case cor-

responds to the electron-ion interaction term, V., in Eq. (2.15).

2. The total energy functional E|p] satisfies the variational principle:

Ep = min E[p], (2.20)
o

where Ej is the ground-state energy.

The total energy functional E[p] is given by [52]:
Elp] = Ts[p] + Enlpl + Eaxclp] + Eeat[p], (2.21)

where T;|[p] is the kinetic energy of a system of non-interacting electrons, Ey[p] is the clas-

sical electrostatic (Hartree) energy, E..[p] is the exchange-correlation energy, and E.,..[p] is
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the interaction with the external potential. These terms are explicitly given as follows:

The Hartree energy is given by

Eylp) = ;/drdr'p(r)p(r/) (2.22)

r—r'|

The exchange-correlation energy is written as:

Evlp] = [ v plr)ese(p(r). (2.23)

where €,.(p) is the exchange-correlation energy per electron.

and the external potential energy is written as

Eetlp) = [ de pe)Viae (o) (2.24)

To construct E[p], Kohn and Sham introduced an auxiliary system of non-interacting

electrons whose density is expressed as
p(r) = |oi(r), (2.25)

where ¢;(r) are the single-particle states, also referred to as Kohn-Sham states (or basis).
Applying the minimization procedure with the constraint that the single-particle states
¢;(r) are normalized leads to an independent set of equations known as the Kohn-Sham
equations, which are given by
h2
— 2V 4 Ve (r) + Vir(r) + Vae(r) | 6(x) = eii(r), (2.26)

2m

where ¢; are the Kohn-Sham eigenvalues, the Hartree potential is Vi (r) = [ dr’ ) the

[r—r’|?
exchange-correlation potential is V,.(r) = 5?;(;[5}, and the external potential is V..(r) =
‘5?;7“(5155”] = Vion(r). In practice, one solves Eq. (2.26) self-consistently within the Local Den-

sity Approximation [56] (LDA) or the Generalized Gradient Approximation [86] (GGA) for the

exchange-correlation functional to obtain the ground-state density. A more detailed descrip-
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tion can be found in Ref. [66].

Although Kohn-Sham DFT accurately describes ground state properties in most cases,
it fails to adequately capture excited-state phenomena such as band gaps [88] and exci-
tons [67]. Therefore, the Green function approach, which is discussed in the remainder of

this chapter, is employed to address these limitations.

2.2.2 Single particle Green’s function

The single-particle Green’s function describes the probability that an electron propagates
from the space-time position (ri,¢;) to (re,t2). It enables us to calculate the ground-state
expectation values for any one-particle operators. The single-particle Green’s function is

defined as

G(2,1) = —i(0|T{(2)¢' (1)}]0), (2.27)

where T is the time-ordering operator, the numbers represent the space-time coordinates
(for example, 1 — (r1,%;)), and the operator (1) denotes the electron field operator in the

Heisenberg picture, which is given by
() = e+iﬁt1ﬂm(r)6_iﬁt. (2.28)

where H is the electronic Hamiltonian for the equilibrium structure with |0) representing its
ground state. The field operator ¢)(r) can be expressed in terms of a complete set of single-

particle states and is given as

P(r) =D dnlr)én, (2.29)

where the set {¢,,(r)} are the one-particle wave functions and the operator ¢, is the fermionic

annihilation operator of state n, which obeys the fermionic anti-commutation relations, i.e.,

(en,él } = bpp, {En,éw} ={&, ¢} =0. (2.30)
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Within time-dependent perturbation theory [101, 118], the electronic Hamiltonian H can
be divided into two components:
H = Hy+V(t), (2.31)

where |0)) is a non-degenerate ground state of Hy, and V (¢) is treated as a perturbation. In
many cases, a reasonable approximation for Hj is the Kohn-Sham DFT Hamiltonian, which

is given by
o = Fixs({r")) = [ @ 1) (— T Vg {ﬁ-“})) b, (232)

where Vge(r; {Tg")}) is the self-consistent potential, which is the sum of the external poten—
tial, Hartree potential, and exchange-correlation potential as given in Eqg. (2.26) and 7- ) are
equilibrium positions of the atoms.

In the interaction picture, the field operators are then defined as [101, 118]
PP (1) = etiflots D (pp)eiflots, (2.33)
The corresponding non-interacting Green’s function is expressed as
Go(2,1) = —i(O|T{$r(2)0}(1)}10). (2.34)

This allows us to write the Green’s functions involving two Heisenberg picture field oper-
ators given in Eq. (2.27) as [101, 118]

O {120 (1) exp (~i [, dt Hi (1)) } 10)

(OIT{4(2)9"(1)}0) = : (2.35)
O {exp (=i /2, dt () H0)
where the perturbative Hamiltonian in the interaction picture is given by

Substituting Eq. (2.29) into Eq. (2.34) (here ¢y ,,(r) are the one-particle Kohn-Sham basis
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functions), the non-interacting Green’s function, which is diagonal is written as
Gol(2.1) = Y dien (£2) S (r1) (DO T {escn 1 (£2)e4, 4 (1) }10), (2.:37)
k,n

where ¢y ,, 1 are ¢y, operators in interacting picture.

The Fourier transform G(2, 1) can be defined as

dw

Go(2,1) = dun(r2) i, (r1) / ge_iw(tz_tl)éo;k,n (w). (2.38)
k,n

where we employed time-translational invariance to reduce the two frequency coordinates

to one. The Fourier-transform of the Green’s function Go;y. ,, (w) is given by

éO;k,n (w) = (—1) /_OO at’ <®|T{ék,n,[(t/)é;n71(0)}eiwt’|®>

fk,n + 1*fk,n
w_in_fk,n w+7;77_6k,n7

(2.39)

where fx ,, denotes the occupation of the state |k, n) in the KS ground state |0), and n — 0.
On the other hand, the exact one-particle Green’s function defined in Eq. (2.27) is, in

general, off-diagonal in the KS basis, and is written as

G2.1) = Y brm(r2) b, (01) (=)0 T {em(t2)ef , (t1) }0), (2.40)

k,m,n

The Fourier transform of the exact Green’s function is defined as

G = Y dm(ra)din(r) [ G2e 0 (o), @41)
k,m,n
where
Ciemn () = / dt €54 (=) O {erem (1)L, (0)}0). (2.42)

It should be noted that due to the translational invariance, Eq. (2.42) and (2.41), we only

have one k.
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Finally, the interaction Hamiltonian V' (¢) is given as

e2

V() ==ty = 5 [ d [ i) i)

(2.43)
—/d3r7ﬂ(r) (Vxe(pks, ) + Vi(pks, 1)) ¥(x),

where pgs is the ground-state charge density of the KS Hamiltonian.
Substituting Eq. (2.43) into the right-hand side of Eq. (2.35) and performing a diagram-

matic expansion as done in Ref. [93], one can show that it leads to the Dyson equation.

G(2,1) = Go(2,1) + Go(2,3)2(3, D)G(, 1), (2.44)

where a bar above a variable denotes that integration is performed over that specific variable.
The irreducible self-energy, ¥(2,1), is given by i times the sum of all connected Feynman
diagrams that remain intact when a single electron line is cut [93, 105].

Similar to the single-particle Green’s function, the irreducible self-energy can also be

expressed in the single-particle KS basis, and its Fourier transform ¥y ,,, . (w) is defined as:

R R ) (2.45)

m
km,n

where, similar to the Green’s function, we only have one k variable dependence due to
translational symmetry and one frequency dependence due to time-translational invariance.
The Dyson equation in Fourier domain, in the single-particle KS basis, takes the form of

a matrix equation given by
Grap(w) = { Z éO;k,a(w)ik,a,c(w)ék,c,b(u})} + 60,0Gok,a(w). (2.46)
Substituting Eqg. (2.39) into Eq. (2.46) and setting » = 0, we obtain

— Gt (@) = (1ca — @)0ap + Crcap (). (2.47)
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From Eq. (2.47), we see that to obtain the exact single-particle Green’s function in the
KS basis, we need to know the irreducible self-energy in the KS basis. Since the irreducible
self-energy is a function of the exact single-particle Green’s function [105], we need to solve
Eq. (2.47) self-consistently. However, computing the irreducible self-energy self-consistently
is highly non-trivial, and therefore one makes a popular approximation known as the “GW"
approximation [105, 53]. Within the GW approximation, the irreducible self-energy is given
by [105, 93]

2(2,1) ~ —6(2,1)o#*)(2) —i5(2,1)v(2,3)G(3,3T) +iG(2,1)W(2,1), (2.48)

where v(H79)(2) represents the sum of the Hartree potential and the exchange-correlation
potential, i.e., Vi (pks, )+ Vxc(pks, T), and v(2, 3) and W (2, 1) denote the bare and screened
Coulomb interactions, respectively. Additionally, 3* = (rs,¢3) with ¢ infinitesimally greater
than t3 to ensure correct ordering of operators in time-ordered correlation functions.

The screened Coulomb interaction W (2, 1) = W (1, 2) within the random phase approxi-
mation (RPA) [105] obeys a Dyson-like equation given by:

W(2,1) = v(2,1) + v(2,3)P(3, )W (4,1). (2.49)

Here, the irreducible polarizability P(2, 1), which is analogous to the irreducible self-energy,
is written within the RPA as [93]

P(2,1) ~ Py(2,1) = —iG(2,1)G(L,2). (2.50)

Even within the GIW and RPA approximations, one must solve Eqgs. (2.46), (2.48), (2.49),
and (2.50) self-consistently. However, in this thesis, we always used the implementations (we
used the YAMBO code to perform the calculations) where it is solved non-self-consistently,

referred to as the GoW, approximation, which is given by [53, 65]

P(2,1) = Py(2,1) = —iGo(2,1)Go(1,2), (2.51)
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W(2,1) =~ Wy(2,1) = v(2,1) + v(2,3) Po(3,4) Wo(4, 1), (2.52)
2(2,1) & 0(2,1) = —6(2, 1)v®) (1) 4+ iGo(2, 1) Wp(2, 1), (2.53)
G(2,1) = Go(2,1) + Go(2,3)%0(3,4)G(4, 1), (2.54)

Moreover, we also employ the quasi-particle approximation (QPA) for the exact Green’s

function, which is approximated as [53, 65, 93]

) Z(@P)
Gk,m,n(w) ~ 5m,n o @p) * (255)
w — el((?np) + i'yk‘;

Here, the quasi-particle weight Zfﬁp), energy el({?np), and decay width 71({%3) are given by [93]
OStemm(w) !
(QP) _ k,n,n\W
Z =[1-—— o
k7n [ 6(4) ‘w:ek n] ’ ( 56)
ng)) = ex, + Re [Zl((%P)ikynm(w)‘ } , (2.57)
W=€k,n
71((%1”) = —2Im [Zﬁ?rlp)ik7n,n(w)‘ ] (2.58)
W=E€k n

In the QPA, the exact Green’s function can be written as

dw _. ZIEQP)
G(2,1)apa & Y drn(r2)dic , (r1) / geﬂ“(“_“) N TR (2.59)
k,n w —61(572”]3) +Z’yk’T"

The QPA is commonly employed when solving the Bethe-Salpeter equation, which will
be discussed in the next section.

In practice, to obtain the quasiparticle energies given in Eq. (2.57), we first compute the
polarizability P(2, 1) within the Random Phase Approximation (RPA), as defined in Eq. (2.51).

The explicit expression is written as

Po(r,v';w) = Z (fn — fm)wii(r)wm(F)Wn(r')%(r') (2.60)

w—(em —en) +1in

n,m
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Once P, is obtained, we compute the inverse dielectric function, which is given by
e (e, r;w) =6(r — 1) + /dr”v(r, )Py (v v’ w), (2.61)

where v(r,r’) = ﬁ is the bare Coulomb interaction.

Using the inverse dielectric function, we can then construct the screened Coulomb inter-

action, which is given by [53]
Wo(r,r';w) = /dr”g_l(r, o)’ r). (2.62)
With the screening coloub interaction, the self-energy can be computed as [53]

Y(r,r;w) = QL /dw’ Go(r,r’;w +w’)Wo(r,r';w’)eiO+”/. (2.63)

™

It should be noted that in Eq. (2.63), we need to evaluate 1 over a range of frequencies,
which makes the computation very expensive. To mitigate this, an analytical approximation
for e 1(r,r’;w) in Eq. (2.61) is used, known as the plasmon-pole model [40]. Once the self
energy is obtained, we can then compute the quasi-particle corrections to the DFT quasi-
particle energies.

With this discussion on the single-particle Green’s function, we will now look into the
two-particle correlation function in the next section. A more detailed discussion on GW

approximation can be found in Refs. [53, 67, 83].

2.2.3 Two-particle correlation function

In order to describe excitons, we need to consider the two-particle Green’s function, which
describes the correlated movement of two charges. The two-particle Green’s function is

defined as
GP(1,2;3,4) = (—i)X(01T{w(1)y(4)! (2)¥"(3)}0). (2.64)

Similar to Eq. (2.35), one can expand the two-particle Green’s function given in Eq. (2.64)
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in terms of four Heisenberg time evolution operators. The exact two-particle Green’s function

in the interaction picture is given by

O { (b1 (D] 200 3) exp (=i [13 d (1)) }10)
O { exp (=i [7 de fy () }10)

OIT {191 (2)97(3)}0) =

(2.65)
where we use the same definitions as in Eq. (2.35). Similar to Eq. (2.34), one can define

the independent two-particle Green'’s function as [93, 105]
GP(1,2:3,4) = G(1,3)G(4,2) — G(1,2)G(4,3), (2.66)

where G(1,2) and others are single-particle Green’s functions (the exact one’s). We then

define two-particle correlation function L(1,2;3,4) as
L(1,2:3,4) = G?(1,2;3,4) + G(1,2)G(4,3). (2.67)

From Eq. (2.67) and (2.66), the independent two-particle correlation function Ly(1,2;3,4)

is given by
Lo(1,2;3,4) = G(1,3)G(4,2). (2.68)
Combining Eq. (2.65) and (2.67) and performing a diagrammatic expansion as done

in Ref. [93], one arrives at a Dyson-like equation for the two-particle correlation function

L(1,2;3,4), very similar to the one-particle Green’s function case:

L(17 27 374) = LO(L 27 374) + LO(la 27 57 G)K(gv ;7

02¢]]
S~—
~
—~
ool

.3,4), (2.69)

where K (5,6;7,8) is known as the two-particle interaction kernel, which is analogous to the
irreducible self-energy in the single-particle Green’s function case.
Equation (2.69) is widely referred to as the "Bethe-Salpeter Equation” (BSE), and one

typically solves this under certain approximations to obtain the excitonic energies and eigen-
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states. The BSE is currently the state-of-the-art method for computing the properties of
excitons.

The interaction kernel appearing in Eq. (2.69) can be written as a functional derivative of
the self-energy {%(5,6) + 6(5,6)v(rac)(5)} with respect to the Green’s function G(7,8) and

is written as [105]
3{2(5,6) + 5(5,6)vEc(5)}
d0G(7,8) ’

K(5,6;7,8) = (2.70)

where X(5,6) and vg..(5) are the self-energy and the Hartree potential, respectively, and
G(7,8) is the single-particle Green’s function.

Within the GW approximation for the one-particle self-energy as given in Eq. (2.48), along

SW (5,6)
5G(7,8)

as the sum of the attractive screened Coulomb interaction and the repulsive bare exchange

with the assumption that ~ 0, the interaction kernel K(5,6;7,8) can be expressed

interaction. It is then given by [53]:

K (5,6;7,8) = iW (5,6)5(5,7)5(6,8) 271
—w(5,7)5(5,6)(7,8),

where v(5,7) and W (5, 6) are the bare and screened Coulomb potentials as shown in previ-
ous section, respectively.

The BSE given in Eq. (2.69) is solved in the Fourier domain, similar to the Green’s func-
tion or self-energy as shown in Eq. (2.45). The Fourier transform F of the four-point function

F(1,2;3,4), where F'is either K or L in the single-particle KS basis, is defined as

. . dw [ dw' [ dw"
FU23.0= Y bualm)bam)di,(mdi, ) [ 55 [ 55 [ 5
ki,ko,ks,ka
a,b,c,d (272)
% e*’iw//(tl7t2)67iw(t17t3)67iw/(t47t2)ﬁ1k1a ka(W, w/’ w//) )

ksckid

In Eq. (2.72), we used time translational symmetry to reduce the dependence of F from
four to three variables. Moreover, due to translational symmetry, which will be demonstrated

in the next chapter, the number of wavevectors can be reduced from four to three. The
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wavevectors in Eqg. (2.72) should satisfy the following relation (Eq. (3.19)):
ks—ki=ki—ke+G=Q. (2.73)

Where Q is the wavevector corresponding to the transfer momentum. Using Eq. (3.19), we

can write Eq. (2.72) as

FL2:3,4)= ) b.a(r)d-Qua(ra)dk, qp(r)di, o(r /dw/ /dw

k 7k 9
S (2.74)

.y . ~
—w (t4—t2)e—zw(t1 _tS)Fkla’kl_Qb(w7 w/7 w//)e
ksc,ks—Qd

—7 " —
X e W (t1 t2)

The Fourier transform of the independent-particle correlation function Ly has only two-

frequencies and is defined as:

Lo(1,2;3,4) = Z Pky,a(r1) Py —Q,d(Ta) Py —qp(Tr2) Pi, o(T3)

k 7Q
abred (2.75)
/ /dwo —iw(t1—t3 Lklaklin(w’w/)efiw’(tzlftg)

K1k —Qd

In Eq. (2.75), we used the fact that the independent two-particle correlation function is the
product of two one-particle Green’s functions. This implies that we can write the Fourier

transform of Lg as

Eo Kyaty—Qb(@, W) = Giy ac(W) G, —quan (W) (2.76)
kic,k;1 —Qd

Furthermore, from Eq. (2.71), we can express the BSE kernel in Fourier space in the KS

basis as

r ! 1 T ! .~ r i
Kiyak —qb(w,w'sw”) = iWi ok, —Qb(w") = 0k ak - Qb = Kiak—Qo(w”). (2.77)
k3c,k3—Qd k3c,k3—Qd k3c,k3—Qd k3c,k3—Qd

In practice, it is common to assume that the BSE kernel is static [93], which implies

that we can neglect its frequency dependence. Under this approximation, the kernel can be
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written as

Kkla,kl—Qb(W”) ~ iWkla,kI—Qb(W” = 0) — i6k1a7k1—Qb . (2.78)
k3c,k3—Qd k3c k3 —Qd ksc,ks—Qd

The matrix elements Wkla,erb(w” = 0) are commonly referred to as the direct term,
and Uk, 4k, —qQp, KNOwn as thkegcél;(gc?h%dnge term.
kac,k3—Qd
With these approximations and additional simplifications as shown in Ref. [93], the BSE
given in Eq. (2.69) in the Fourier domain can be written as (see Ref. [93] for a detailed
derivation)
r—1

~_q -
Lkla,kl—Qb(W) = 5k17k3L0 k3a,k3_Qb(w) - Kkm,klbe . (2.79)
k3c,k3—Qd ke, kz—Qd kscks—Qd

One further employs the QPA given in Eq. (2.59), neglecting the quasiparticle decay rate
by setting 785 ~ 0 and assuming the quasiparticle weight factors are Zlgap ~ 1. Under these

approximations, we obtain

J1 ~ 7 fks,c - fkng,d
LO kga,kgg—Qb(w) ~ /L(sa,céb,dw

'k3c,k3—Qd — (Ckac — Fka-Qua)’

(2.80)

where fy, . and fx,_q,q are the occupation factors, while ey, . and e, —q 4 denote the single-
particle energies for states (ks, ¢) and (ks — Q, d), respectively.

This implies that Eq. (2.79) can be written as

~ i(fis,e — fra—Q,d)
L _qy(w) = v~ fo-Qa) (2.81)
k3c7k3_Qd w — Hkla,kl—Qb
ksc,ks—Qd
with
Higya)-Qb = Ga,e0,d0ky ks (ks e — Eks—Qu) + 1 (ficge — fies—Qua) Kicya - - (2.82)
ksc,ks—Qd ksc,ks—Qd

Here, ﬁl((?j K, —qp epresents the excitonic Hamiltonian for the transferred momentum Q. In
ksc,ks—Qd
general, Hﬁ?a) K, —qp IS Not Hermitian. From the eigenvalues and the left and right eigenvec-
kacks—Qd
tors of the excitonic Hamiltonian, one can obtain the two-particle correlation function given
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in Eq. (2.81).
The occupation factors fy , in Eq. (2.82) are given by fx , = 1 if a belongs to the valence
band and fx, = 0 if a belongs to the conduction band. This implies that we can write the

BSE Hamiltonian given in Eq. (2.82) as a 2 x 2 block matrix, given by

Hy), = ( RoC ) (2.83)
-t =D

where R and D are known as the resonant and anti-resonant blocks, respectively, while C
is referred to as the coupling block. Let ¢, ¢ belong to conduction bands and @, ¢’ belong to

valence bands. Then, the resonant block is Hermitian and is given by

Ry, & x,—Qit = 02,8050k ks (Eks,e — €ks—Q,5) — 1k, & ki —Qi'- (2.84)
ksé ks —Qo k3 ks—Qib

The anti-resonant block is Hermitian and is given by
Dy sy —Qe = 020 600,50k ks (—Eks 6 + 15— Q.8) — 1K1y 11— Qe (2.85)
k37,k3—Qé k3,k3—Qé
The coupling block C is given by
Crn 31 Qi = 1K, 1, — Qi (2.86)
k39,ks—Qé k39,ks—Qé

One often sets the coupling block C' = 0, which is commonly referred to as the Tamm-
Dancoff Approximation. Throughout this thesis, we employ this approximation, as it makes
the excitonic Hamiltonian Hermitian and greatly simplifies the expressions when computing
observables.

By diagonalizing the matrix given in Eq. (2.83), we obtain the excitonic energies and

eigenstates and is written as

RQ) Q) AQ) AQ)
T =@ , (2.87)
_ (C(Q)) —_DQ B(Q B(Q
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AQ)
where X = @ is the right excitonic wavefunction in the electron-hole basis, often
B

referred to as the envelope wavefunction. Eq. (2.87) is explicitly written as

e s,
> {56',556',65k1,k3 (€ksc — Eks—Q.3) — ZKk16’,k1—Qﬁ’}Ak3(,?f;) +

k3,&f} k36,k3—Qﬁ
S5,(Q S
Z {ka k1 —Qo’ - }B 3(,cv) (Q)A 1(031
k3,é0 k3v,k3—Q¢é
8z 20 50 —Ekq 5) — Ky, 5 2\ poQ
¢ ,c0v' v kl,ks( €ks,v +€k3*ch) U 3 k) —QE k3,cv+
k3,6'l7 k31~),k3—QE
5,(Q) _ (Q)
—1 Z {dev k3— Qc '}Akg,év (Q)Bkl o'

k3,60 ki1¢ k1—

(2.88)
In order to compute the kernel matrix elements in Eq. (2.88), we need to evaluate the
bare-exchange term and the screened Coulomb term, which are explicitly written as:

Vi — / dr dr’ b, (r)%, (r)

ns5,n6

1 / /
m%(r )ne (r'),

Whnine(w) = /dr dr’ dr” ¢, (r) oy, (x')

e, r";w)

¢n5 ( )(bns (I‘/),

n5,n6 v —1/|

where n; = (k;, m;), with m; being the band index.
Once we obtain the exciton wavefunctions in electron-hole basis, the exciton wavefunc-

tion in the position basis is then given by

VR rern) = > ASY due(re) dh_qulrn) + > Byl duu(re) d_qelrn).  (2.89)
kcv kcv

When the Tamm-Dancoff Approximation (TDA) is employed, the diagonalization is re-
stricted to the resonant block to obtain the positive eigenspectrum, i.e.,
RQ AQ _ [(Q 4@ (2.90)

After the diagonalization, one can obtain the two-particle coorealtion given in Eq. (2.81)
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as

i(fis,c — frs—Qud) ++5,Q 5.Q .
Lijagq-qu(w) = ) == —"E==2 X0  qiVioma—aqv) (2.91)
k3c,ks—Qd S w — SS

where Y° are the left eigenvectors, chosen such that the overlap matrix with the right eigen-
vectors is the identity matrix.

Once we have obtained the exciton energies and eigenstates, we can then compute
properties including excitonic effects. For example, within TDA, we can obtain the imagi-
nary part of the 2D polarizability tensor, which represents the absorption spectrum of a 2S

material and is given by tensor [98]:

Im{ogp (@)} = 4 Z |3 AScdoket| o) 5w — <), (2.92)
vck
where A, is the unit cell area, v* is the velocity operator component along p, Avck are
exciton expansion coefficients, and g is the exciton energy.

Before concluding this brief review of the BSE formalism, we present an application of
the GW-BSE method to compute the absorption spectrum of a new class of 2D materials
with an indirect gap. These materials have the general formula MX,, where M represents a
pnictogen and X represents a chalcogen, as shown in Fig. 2.1. This work is adapted from
Ref. [71].

2.2.4 Optical Properties and Many-Body Effects of MX,; monolayer

Fig 2.2 shows the electronic band structures of all r-MXs monolayers calculated using the
GoWy [7, 99, 65] (solid lines) and PBE [87] (dashed lines) methods, including spin-orbit
coupling (SOC) effects. We observe that the overall band dispersion does not change sig-
nificantly with the choice of the exchange-correlation (XC) functional. However, the bandgap
varies considerably depending on the XC functional employed (see Table 2.1).

While SOC effects are negligible for lighter elements, they become substantial for heavier
constituent elements, particularly in the BiX; series. Notably, there is no SOC-induced spin

splitting of bands due to the centrosymmetric structure of r-MX, monolayers.
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r-MXs PBE PBE HSE0O6 HSE06 GyW,
mono- +S0OC +S0C +S0C
layer

AsS, 1.25 1.17 1.92 1.91 2.01
AsSes 0.96 0.88 1.54 1.51 2.06
AsTes 0.52 0.48 0.98 0.83 1.38
SbS, 1.42 1.35 2.12 2.08 2.24
SbSe, 1.09 1.03 1.69 1.62 2.23
SbTe, 0.65 0.63 1.10 1.00 1.57
BiS, 1.47 1.04 2.20 1.87 1.84
BiSes 1.17 0.76 1.81 1.45 1.82
BiTes 0.70 0.26 1.19 0.73 0.83

Table 2.1: Bandgaps (in eV) of r-MX, monolayers calculated using PBE, PBE+SOC, HSEO06,

HSE06+SOC, and GyW,+SOC.

To obtain the absorption spectrum, including electron-hole interactions, we solve the
Bethe-Salpeter equation (BSE) [98] on top of the GyW,, calculations within the Tamm-Dancoff
approximation [7], using the YAMBO code [99].

The optical spectra reveal strongly bound excitons dominating absorption for all r-MXs
monolayers. A significant shift in the absorption onset upon including excitonic effects in-

dicates large exciton binding energies, similar to MoS, and other transition metal dichalco-

genides [75, 113].

First bright exciton energies of MX, monolayers (in eV)
MXy H S Se ‘ Te

As 1.97 1.91 1.07

Sb 2.00 2.01 1.34

Bi 1.20 1.26 0.45

Table 2.2:  First bright exciton energies of MXy m

BSE+GOW0+SOC.

The dielectric screening increases with heavier chalcogens, resulting in a redshift of the

absorption onset. However, no clear trend is observed with pnictogen elements, with Sb-

onolayers calculated using

based compounds exhibiting the highest bandgaps and exciton energies.




Figure 2.1: a) Top and b) side views of the studied r-MXs monolayer. The conventional (blue)
and primitive (red) unit cells are illustrated in panel (a).

E-Er (eV)

E-Ef (eV)

E-Ef (eV)

Figure 2.2: Electronic band structure of r-MX, monolayers calculated using GoW, (solid
lines) and PBE (dashed lines), including spin-orbit coupling effects. The Fermi energy (Er)
is set at the valence band maximum.
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Figure 2.3: Optical absorption spectra for different r-MX, monolayers. The solid and dashed
lines correspond to calculations with and without electron-hole interactions. The red and
blue lines represent absorption along x and y polarization directions, respectively.

Finally, we analyze the anisotropic absorption of these materials. Unlike BP, where exci-
tons exhibit distinct x/y coupling due to Dy, symmetry, r-MX; monolayers (Coj) show excitons
coupling to both x and y polarizations, though with different intensities. The greater oscillator

strength along the y-direction results from the crystal’s in-plane anisotropy.

Calculation details:

All DFT calculations were performed using the QUANTUM ESPRESSO (QE) package [37]
with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC) functional [87]. We used
fully relativistic norm-conserving pseudopotentials from the PSEUDODOJO project [108] for
the QE calculations. Spin-orbit coupling (SOC) was included in all the calculations unless
specified otherwise.

Next for the GW calculations, we first obtained the Kohn-Sham energies and wave func-
tions on a uniform 9 x 9 x 1 k-point grid by performing a non self-consistent calculation with
a plane wave cutoff of 80 Ry using the QE code. In order to construct the microscopic

dielectric tensor, we used a plane wave cutoff of 8 Ry and performed the summation with
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1000 Kohn-Sham states. The frequency dependence of the dielectric tensor was described
within a plasmon-pole approximation [40]. A 2D Coulomb cutoff along the out-of-plane was
employed to remove the interactions with periodic images. In order to speed up the conver-
gence of GoW, calculations with respect to bands and k-points, we used a G-terminator [10]
and RIM-W [44] technique, respectively.

To obtain well-converged absorption spectra, we used a uniform I'-centred 30 x 30 x 1
k-point grid for all r-MXy monolayers. A total of 250 bands and a cut-off of 4 Ry were used
to build the static dielectric tensor. We included the top eight valence and the bottom eight
conduction bands to construct the BSE interaction kernel. A plane-wave cutoff of 60 Ry
and 4 Ry was used in the construction of bare exchange and screened Coulomb blocks,
respectively.

In the next chapters, we will use the formalism introduced here to explore excitonic sym-

metries and exciton-phonon coupling phenomena.
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Chapter 3

Symmetries of Excitons

In the previous chapter, we briefly presented some basic concepts of group theory and in-
troduced the GW and BSE formalisms, which are state-of-the-art methods for computing
exciton energies and eigenstates. One important aspect of excitons is their symmetry prop-
erties, which govern their optical selection rules and interactions with other quasiparticles.

Traditionally, the symmetries of excitonic states have been described by modeling them
as hydrogenic systems and assigning atomic orbitals to their solutions. For example, in
materials with strong dielectric screening, if the exciton consists mainly of transitions at the
band extrema, only “s-like” excitons are optically active (bright) [30].

As mentioned earlier, although the hydrogenic model adequately describes the dipole
selection rules in conventional bulk semiconductors with Wannier-Mott-type excitons [116],
it fails to capture the selection rules for excitons that deviate from this type. For example,
excitons in monolayer transition metal dichalcogenides (TMDCs) are known to deviate signif-
icantly from the hydrogenic Rydberg series [19]. Moreover, the hydrogenic model is insuffi-
cient for studying selection rules in processes such as exciton-phonon scattering. Therefore,
more robust approaches are needed to understand the symmetries of all types of excitons.

In this chapter, we rigorously employ group theory methods to study the symmetry prop-
erties of the excitonic states obtained from the BSE. The contents of this chapter are planned
to be integrated into a publication [80].

Before we study the symmetries of excitonic states, we first examine the symmetries of
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the underlying electronic states.

3.1 Symmetries of electronic states in crystals

The set of all spatial symmetries that leave the crystal invariant forms a space group G. The
unitary operators U(g), for all g € G, form a projective representation (or a linear represen-
tation if spin is neglected) of G on the Hilbert space of electronic states [121, 118, 2]. It is
worthwhile to highlight that one can work with linear representations of a much larger group
instead of working with projective representations, which gives rise to the concept of double
point groups [25] when dealing with projective representations of point groups with spin-orbit
coupling in crystals. The electronic Hamiltonian # remains invariant under the action of g if
and only if U/(g) commutes with 7, which is expressed as [#, U(g)] = 0 [107].

Within the group G, the set of all pure translational symmetries forms a normal subgroup
T of G. The group 7 is abelian, as the group multiplication is commutative. The space
group G can be decomposed into unique left (or right) cosets of the subgroup 7 in G, which

is written as
G=JaT, (3.1)
=1

where g; are the coset representatives, ¢;7 represents the cosets of 7 in G, and n is the
index of 7 in G. Since T is a normal subgroup of G, it follows that the set of all left (or right)
cosets of 7 in G forms the quotient group, represented by G/7 which is isomorphic to the
point group P of the crystal [29]. The point group P is the set obtained by removing the
translational components from the elements of the space group G. It can happen that P is
not be a subgroup of G.

Since the Hamiltonian H commutes with all elements in 7, it follows that both % and
f](g) for all g € T can be simultaneously block-diagonalized, with each block classified by
the one-dimensional irreducible representations of 7. Upon imposing the Born—-von Karman
boundary condition [4], these irreducible representations are labeled by the wavevector k,
which is restricted to the first Brillouin zone of reciprocal space. This allows us to express

the eigenstates of A, which are Bloch states [107, 25, 29], as:
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wk,m,o(r) = eik.ruk,m,o (I‘), (32)

where ux ., »(r) is the periodic part of the wavefunction, determined by the structure of the
potential. Here, m and o denote the band and spin indices, respectively.

The set of all symmetries in G that leave the wavevector k unchanged (up to a reciprocal
lattice vector) forms the little group Gy of k, which is a subgroup of G. The quotient group
Gx/T is isomorphic to the little point group Py of k, which is a subgroup of the point group
of the crystal, P.

Now, consider an element g = {R | 7} € G, which transforms the position vector r as
r — Rr + 7, where R is an orthogonal matrix and = is a translation, potentially a fractional

multiple of the lattice vectors. The operator U (g) acts on the Bloch state Y m,o(r) @s [2, 29]:

ﬁ(g>wk,m,o(r) = SU’U(R)wk,m,a(Ril(r - T))? (33)

—

where S(R) = e"i507 g a2 x 2 unitary matrix acting on the spinorial subspace of the
electronic wavefunction. Here, ¢ = (0,,0,,0.) denotes the Pauli matrices, and i and ¢
are the axis and angle of the orthogonal matrix R (we treat improper rotations as product
of proper rotation and inversion. As angular momentum is invariant under inversion, for
improper rotations, ii and ¢ correspond to the matrix —R). If spin is neglected, S(R) reduces
to the 1 x 1 identity matrix.

Under the action of ¢, the wavefunction remains an eigenstate of 7 but transforms to a
wavevector k' = Rk + G, where G is a reciprocal lattice vector ensuring that Rk lies within
the first Brillouin zone [25]. Throughout this work, we adopt the convention ¥ (r) = Yk (r),
known as the periodic gauge.

Assuming that the wave functions v ,,,» ,» form an orthonormal set (for all k), the wave-
functions U(g)wkmp(r) and Y gk m.-(r) represent the same physical state, differing only by

a phase (or a unitary rotation for degenerate states). This relation is expressed as:

( d}kma Zka m ¢ka ,o! (I‘) (34)
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Figure 3.1: Feynman diagram for an arbitrary four-point function F'(1,2;3,4).

where Dy (g9) = @, Dk,i(9) is a block-diagonal unitary matrix, with each block Dy ;(g) cor-
responding to a degenerate subspace that is preserved under the action of all symmetry

operations (invariant subspace). The matrix Dy (g) is given by:
Dx,m'm(9) = Z/¢Ek,m’,a’(r)SU’U(R)wk,m,cr(R1(1' —7)) d’r. (3.5)

The unitary matrices Dy (g) for all g € G and k-points are central to the analysis of electronic-
state symmetries in crystals. If g belongs to the little group of k, then Dy(g) corresponds to
the representation matrices of the symmetry operation, which can be further decomposed
into irreducible representations of the electronic states.

Furthermore, the matrices Dy can be extended to incorporate time-reversal symmetry

7, which is given by
D7) = 3 [ s 0)010(T Vi ) . (3.6)

where S(.7) = —ioy, or the 1 x 1 identity matrix if spin is neglected.

3.2 Symmetries of excitons

Building on this foundation, we now examine the symmetries of excitonic states. The exciton
energies and eigenstates are obtained by solving the Bethe—Salpeter equation (BSE) [98, 1],
as shown in the previous chapter. To understand the symmetry properties of excitons, we
study the symmetries of the BSE itself. Rather than working directly with the BSE, we first
generalize the symmetry analysis to an arbitrary four-point function that is invariant under

symmetry operations. This general framework is then applied to the BSE as a special case.
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Consider a generic four-point function F(1,2;3,4), represented by the Feynman dia-
gram shown in Fig. 3.1, where the indices denote position and time coordinates, e.g.,
1 — (ri01,t1). The Fourier transform of F'(1,2;3,4) in the time domain, denoted as F =

F(ri01,r909; 303, r404;w,w' , "), can be expanded in terms of non-interacting one-electron

Bloch states ¢(r), which form an orthonormal basis, and is given by [93, 105]

F= Z Pky,a,01 (r1)¢k47d704 (r4)¢1*(2,b,02 (r2)d)l*{3,c,0'3 (r3)Fk1a7k2b(w7 w/7 w”)’
ki ,ko2,k3.k ksc,kqd
1,K2,K3,K4

a,b,c,d

(3.7)

where the matrix Fkla,ka(w,w’,w”) represents the Fourier transform F in the basis of one-
electron Bloch statggsc.ykﬁere, the indices a and ¢ denote the band indices of the electron,
while b and d correspond to the band indices of the hole.

Now consider the action of U(g) on the fourier transform of the four-point function, which
is given by

U(g)F = F' = F(rjo}, rhoh; vyol, i w, ', ") (3:8)

where ri = R~!(r; — 7) Vi € {1,2,3,4}. Combining Egs. (3.7) and (3.8), and employing

Eqg. 3.4 we obtain

F' = Z PRk, 0o) (F1) P RKy, 0 (F4) ORicy 11 o (02) PRy o o, (T3)
s
V., (3.9)

X Z Fkla,kgb(wa wlv w”)Dkl,a’a(g)Dltg,c/c(g)Dlig,b/b(g)Dk4,d/d(g) } .
abed ksc,kad

If F is invariant under the action of g, i.e F = F’ then from Eq. (3.9) we get

I r,n [ r,on
Fri, o Ry (W, 0", w0") = E { Fyyaxop(w, W', w")
Rk3C’,Rk4dl a,b,c,d k3C,k4d (3 10)

Dica(9) Dy e(9)Dicy (9 Dis,va(9) |-

"Due to time-translation symmetry, the number of independent frequency variables in the Fourier transform
is reduced from four to three [105].
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Equation (3.10) motivates us to define the matrices U(g) forallg = {R | 7} € G, given by

Uy a' b (9) = qu,a'a(g)pﬂg,yb(g)%kl,k/ 5Rk2,k' . (8.11)
172 1 2
kikoa,b

Similarly, in the case of time-reversal symmetry, the matrix 2/(.7) is given by

U, 1 (7)) = Dicy.ara(T ) Dy ()01, 1t S—ieq i, 2 (3.12)
kikoa,b
where % is the complex conjugation operator, which ensures the anti-unitary property of
time-reversal symmetry.

This allows us to conveniently express Eq. (3.10) as F = UFUT, where F represents
the matrix Fi,q1,s(w,w’,w”). Here, we employ the closure property of the set of k-points
under spacekéﬁé(ljg operations. It is worthwhile to point out that if this closure property is not
respected (for example, in some shifted k-grids), the symmetry properties are destroyed,
leading to erroneous results such as breaking of degeneracies (see, for example, Ref. [122]).

An important point to note is that since the D matrices are unitary, the &/ matrices are
also unitary for spatial symmetries. To show this, let n = {ki,ks,a,b} and consider the

product U (9)U(g)':

UGUG)T =D U (9, (9)

= Z Duey/a(9) Dicy 6 (9)O Ry K, O Rk i, Py 070 (9) P 76(9) S Ricy e/ O R
k1.,k2,a,b

= 5k’2’,k’25k’1/,k’1 Z DR—lk/l,a/a(Q)D;zflk’z,b/b(g)p*}zflk’l,a”a(g)DR—lk’Q,b”b(g)
a,b

= 5k’2’,k’2 (5k’1’,k/1 5&”,0/5b”,b’ = (5,”/7,,7//.

(3.13)
On the other hand, in the case of time-reversal symmetry, U/ is anti-unitary due to the
presence of the complex conjugation operator.

A central result of this work is that the set of all matrices U(g) for g € G constitutes a
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unitary representation of the space group G.

To prove that the set {/(g)} forms a linear representation of the space group, let g1 =
{R;y | 71} and g2 = {R2 | T2} be two elements in G. The product of these two elements is
given by:

g1+ g2 = {1 Ry | RyT2 + T1}.

In order to show that the ¢/(g) matrices form a linear representation of the space group, we

need to show that it is a group homomorphism, i.e.,

U(g1)U(g1) = U(g1 - g2) V91,92 €G (3.14)
To prove Eq. (3.14), we consider U(g1)U(g2) and let n = {ky, k2, a, b},

(U(gl)u(QQ))n’,n” = Zun’,n(gl)un,n” (92)

*
= Z {Dkl,a’a(gl)pkz,b’b(gl)(slel,kll(sle%k,z
k1,k2,a,b

*
X Dyt qa (QQ)Dk’Qbe// (92)5R2k'1',k1 5321(’2’,1(2 }

* *
= DR2k”,a'a(91)DR Kk b/b(gl)Dk”,aa” (92)Dk” b (92)5R1R2k”,k’ 5R1R2k”,k’
1 2Ko, 1 2 171 2972

a,b
(3.15)
Now, consider the following product for the D matrices as given in Eq. (3.15)
Z IDng’l',a’a(gl),Dk’l’,aa” (92>
=Y (RiRoki,d|U(g1)|RakY, a) (oK, alU(g2) K], a")
i (3.16)

= (R1RokY, d'|U(g1)U (g2)|k7, a")
= (R1RoK},d'|U (g1 - g2)e'®91:92)|K o'

_ ei¢(91792)Dk/1/7a/a// (91 g2)

where it is assumed that the set of U(g) matrices forms a projective representation of the
space group, i.e., U(g1)U(g2) = 991920/ (g, - go). Substituing Eq. (3.16) in Eq. (3.15), we
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obtain
(U(g)U(G2) ) i = O, Rkt 1, Oy Roket e, €711 9 e 10(91:92)
X Dwy,arar (91 - 92) Dy e (91 - 92) (3-17)
= Up (91 - 92)
This implies that the set of U(g) Vg € G forms a linear representation of the space group G
An important consequence of Eq. (3.10) arises when considering the effect of pure lat-
tice translations. If g corresponds to a translation, i.e., r — r 4+ 7, which belongs to the

translational subgroup 7, then
Dk,m,n (g) = 6m ne_ik.T- (31 8)

Substituting into Eq. (3.10), we obtain that the matrix elements Fkla,ka(w, w’,w") are nonzero
ksckad
only if the following crystal momentum conservation condition is satisfied:

ks—ki=k — ko +G = Q. (3.19)

Eq. (3.19) implies that the matrix F, along with the ¢/ matrices are block diagonal in the
basis of one-particle Bloch states, with each block labeled by the crystal momentum Q. This
momentum corresponds to a one-dimensional representation of the subgroup 7 (analogous
to the electronic Hamiltonian) and gives rise to the very well known concept of dispersion

(such as exciton dispersion) [33]. This implies that the each block of F can be written as:
F(Q) = Fligl)b(w7 w/,w”) == Fkla,klbe(u%w,a w//).

Kncd ks ks —Qd (3.20)

Furthermore, from Eq .(3.10), block matrices F(Q) and F(1Q) are related by a similarity
transformation i.e,
FRQ) — y(Q £(Q) (U(Q))T7 (3.21)
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where the U/(Q)(g) matrices are defined as

U@ = l(c?a)b(g) = Ui, k1~ RQab(9)- (3.22)
kzcd k3 k3 —Q,cd

If g belongs to the little group of q i.e Rq = q + G, then we obtain
FQ = Q) FQ) Qi (3.23)

Now, we apply the formalism developed above to the BSE. As written in Eq. (2.69) and
Eqg. (2.70), the BSE is given by [98, 97, 48, 1, 93]

L(1,2:3,4) = L0(1,2;3,4)+/d(5,6,7, 8) {L0(1,2;5,6)

(3.24)
x K(5,6:7,8)L(7, 8; 3,4)}
and the electron-hole interaction kernel K (5, 6;7,8) is given by [105]
K(5,6;7,8) = iW(5,6)5(5,7)5(6,8) — iv(5,7)8(5,6)5(7, 8). (3.29)

From Eq. (2.67), by construction, the two-particle correlation function is invariant under

space group operations. The BSE kernel is also invariant under, which can be shown as

follows:
vrir) = L - (3.26)
Now, if we apply a space group opearationr’ = Rr + 7
1
o(ry,rh) = \Rr241—T—Rr2 -7 (3.27)
TR

This implies that the bare exchange is invariant. Similarly, we can also show that the

53



screened Coulomb interaction is invariant:
W(ry,ro,w) = /d3r”v(r1, r”,w)sfl(r”, ra,w), (3.28)
The dielectric function is invariant under the crystal symmetry operation, i.e.,
e r" ry,w) = e Y(Rr” + 7, Rry + 7, w).

This gives us

(3.29)

Due to the invariance of the four-point functions L(7,8;3,4) and K (5, 6; 7, 8) under space
group operations, their Fourier transform in single-particle basis follows Eq. (3.10). This
implies that the effective two-particle BSE in the frequency domain can be solved separately
for each momentum transfer Q as shown in the previous chapter.

As given in Eq. (2.81) and Eq. (2.82), the BSE and the effective two-particle Hamiltonian

for each momentum transfer Q are written as

. i(fis.e — fis—
L9, () = Wiae—facqd) (330)
kgcd w_Hk1ab

k;;Cd

with the two-particle exciton Hamiltonian given by

H(Q) = fNIl((?Czb = 5a705b,d6k1,k3 (Ek37c - 5k3—Q,d) + i(fkg,c - fk3—de)f{l(<?a)b : (3-31)
kscd kscd

An important point to note is that, unlike the £2 and X< matrices, the Q) matrix does

not follow the similarity transformation given in Eq. (3.21) due to the presence of the factor
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(fxs,c — fxs—q.d) in Eq. (3.31). To obtain a similarity transformation analogous to Eq. (3.21)
for the exciton Hamiltonian defined in Eq. (3.31), we use the block diagonal form of the BSE

Hamiltonian as given in Eq. (2.83):

RQ @
H(Q = (3.32)
—(c@)t _p@Q

The band transitions (c,d) — (a,b) for the R(Q) block are (¢,7) — (¢,7'), for the D(Q) block
the transitions are (7, &) — (¢, &), and for the C(Q) block the transitions are (¢,7) — (¢/,&).
Using Eq. (3.21) for the kernel matrix elements, we obtain

HG Y = 7 V()Y (% V(g))", (3.33)

where % (Q)(g) is defined as

)
% Q(g) = (ul (9) (C?)( )) : (3.34)
0 Uy~ (g

with UI(Q) (g) and UQ(Q) (¢9) givenin Eq. (3.22).

The band transitions (¢, d) — (a, b) for the ul(Q) (g) block correspond to (¢,v) — (&,7),
while foruéQ) (9), they correspond to (0, ¢) — (v, ).

Similarly, for time-reversal symmetry .77, Eq. (3.33) takes the following form:

1y Y = 2w (T MY (0 D7), (3.35)

2p

where the matrix % (Q)(.7) is given by

(3.36)

27 (u{m(y) 0 ) |

0 U

An important consequence of Egs. (3.33) and (3.35) is that the action of a symmetry op-

eration on an exciton wavefunction with momentum transfer Q yields an exciton wavefunc-
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tion with momentum transfer RQ with the same eigenvalue. This can be explicitly written by

considering an excitonic state with momentum transfer Q, given by [97, 98, 1]:

VR (re,rn) = D Agt? dui(re) dh_q(rn). (3.37)
kij

where Aig‘:’) is the right eigenvector of the excitonic Hamiltonian Hé?) given in Eq. (3.32),
and ¢i;(re) and ¢y _q ;(ry) are the Bloch states corresponding to the electron and hole,
whose position coordinates are r. and r;,, respectively.

The action of a symmetry operator on \I/g(re, ry) is given by

A S7
U(9)We (xestn) = ) {%é/(g;/,kijAk,z(‘?)
kiji'j'k/ (3.38)

X Qi (re) ¢i/—RQ,j/(rh)}~

Since U’(g)\Il?(re, ry) and \I/?Q(re, ry) correspond to the same states, they must differ by a

phase (or by a rotation matrix), given by

U(g) 02 (re, ) = Pq.55(9) Wl (re, 1), (3.39)

where Zq s5(g) is a rotation matrix which is block diagonal in degenerate space and is

given by

Q S,(Q)/ 7,5 (RQ)~ %
2q,5'5(9) = Z %(’i’;‘/,kijAk,z(‘j )(Ak’,i(’j’ )) ) (3.40)
Kiji'j'k'

where A5"(BQ) gre the left eigenvectors. In Eq. (3.40), we assume that the overlap matrix
between the left and right eigenvectors is an identity matrix?.

Since the BSE Hamiltonian is non-Hermitian, its eigenvectors are not mutually orthogo-
nal, and consequently, its invariant subspaces may not be orthogonal either. However, within
the Tamm-Dancoff approximation, the Hamiltonian becomes Hermitian, and the eigenvec-

tors form an orthogonal set. Throughout the remainder of this thesis, we adopt the Tamm-

2We can always choose the left eigenvectors such that their overlap with the right eigenvectors yields the
identity matrix.
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Dancoff approximation, which enables the use of standard group-theoretical methods to
derive selection rules.

If g is in the little group of Q, then Zq s/5(g) corresponds to a representation matrix of the
excitonic states (including the non-unitary case, where the representation is non-unitary). In
order to obtain the irreducible labels for the excitonic states, we decompose the little group

Gq of Q into left cosets of the subgroup 7 in Gq, i.e.,

nQ
Ga =J T, (3.41)
=1

Q

where g, are the coset representatives, giQT represents the cosets of 7 in Gq, and nq is

the index of 7 in Gq. The quotient group Gq/7 is isomorphic to the point group Pq [29, 25].
Q

The set of coset representatives g,* is obtained by removing the lattice translational
part (excluding fractional translations) from the little group symmetries Gq. The set of coset
representatives does not necessarily form a group, which allows for a slight redefinition of the
representation matrices. The new, redefined exciton representation matrix for an element g
is given by

7q(9) = Zq(9)e"¥T. (3.42)

The new representation matrices are identical for elements within a given coset. The
group multiplication rule for two elements ¢; = {R; | 71} and go = {R2 | T2} from two

different cosets is given by

90(91)Pq(92) = Dq(g1 - g2)e G072, (3.43)

where Gy = Rl‘lQ — Q is reciprocal lattice vector. If Gy = 0, i.e., if there are no fractional
translations in the little group Gq, then Zq corresponds to a linear representation. Other-
wise, it corresponds to a projective representation of the point group Pq. For demonstration
purposes, we discuss only points where Gy = 0. i.e., symmorphic symmetries. Projective
representations can be worked out using the procedure laid out in Ref. [29].

To obtain the irreducible representations of the excitonic states, we decompose Zq into

57



the irreducible representations of the little point group Pq, i.e.,

Pq =P aq; (3.44)

where @(g corresponds to the I irreducible representation of the point group, and ¢ is its
multiplicity in the decomposition. We use the standard orthogonality relation [29, 25] for the

characters to obtain ¢;, which is given by

o= ,IG| S 2 (g)x(g), (3.45)

geG
where |G| is the order of the group, x()(g) is the character of the I" irreducible representa-

tion, and x(g) is the trace of Zq.

3.3 Symmetries of excitons in LiF

Now, we demonstrate the application of the above methods to understand the symmetries of
excitonic states in a widely studied material: LiF, which possesses Oy, point group symmetry
and lacks non-symmorphic symmetries. This implies that we only need to work with linear
representations at every Q-point in the Brillouin zone.

We first assign irreducible representation labels to the excitonic states computed from
ab-initio approaches by solving the BSE within the Tamm-Dancoff approximation and then
reveal the underlying selection rules governing exciton-light interactions, as evidenced by
their signatures in optical absorption spectroscopy.

In Fig. 3.2, we show the computed exciton dispersion of LiF. The longitudinal-transverse
splitting at the I" point was turned off (this is done by setting the G = 0 component of the bare
exchange term to 0), as it breaks the degeneracies due to the presence of a long-range ex-
change interaction. As shown in the figure, each excitonic state at the high-symmetry points
is labeled with the irreducible representations of the corresponding little group, computed
using the method described above.

Along the I' — X path, the lowering of point group symmetry causes the lowest triply
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Figure 3.2: Exciton dispersion of LiF, computed using ab initio methods. Excitonic states at
high-symmetry points are labeled with their corresponding irreducible representation labels.

degenerate exciton to split into singly and doubly degenerate modes. As we proceed along
the X — W direction, further symmetry reduction leads to the additional splitting of the
previously degenerate F, representation. Finally, along the W — L path, the degeneracy of
the lowest two bands is lifted when moving away from the W point, but they merge again at
the L point due to the higher point group symmetry present there.

Next, we focus our attention on the excitonic states at the T" point, as only they participate
in the absorption of light by the material. In order to obtain the optical absorption spectrum,

we calculate the imaginary part of the dielectric tensor, which is given by [98]

8m2e? 2
ea(w) = 2 Z’(O\e~r\5>‘ §(w — Es) (3.46)
S

w

where e is the light polarization direction, r is the dipole operator, and Eg are exciton ener-
gies.
In Fig. 3.3, we show the absorption spectrum of LiF, with red and blue vertical lines

representing the bright and dark excitons, respectively. As seen in Eq. (3.46), absorption is

59



300 T T T

T
=
<
g
<
=

T

250

200

Im {e}

[
o
o
T
|

o)
o
T
1

0 ! i, |
13.0 13.5 14.0 14.5 15.0

Energy (eV)

Figure 3.3: The absorption spectrum of LiF, computed using ab initio methods. The red and
blue vertical lines indicate the positions of optically bright and dark excitons, respectively.
The red and blue labels correspond to the irreducible representation labels for bright and
dark excitons. The second vertical red line at higher energy appears broader than the first
due to a slight breakdown of degeneracy among the excitons, introduced by numerical inac-
curacies in the single-precision diagonalization solver. Using double precision and enforcing
much stricter convergence criteria for the eigenvalues would reduce this error.
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directly proportional to the absolute square of the dipole matrix elements. So excitons with
finite exciton-photon matrix elements appear in the absorption spectrum.

As depicted in Fig. 3.3, the lowest bright excitons transform under the T3, representation.
The first dark exciton transforms under the 7', representation. Both 77, and T3, excitons
shown in Fig. 3.3 are triply degenerate. From the character table of the O, point group, we
know that the dipole operators transform under the T}, representation. Therefore, excitons
that transform under the T3, representation are optically active (bright), as manifested in the
absorption spectrum.

Of course, one could perform a similar analysis on any other material without even plot-
ting the excitonic wavefunctions. In the next chapter, we will apply our formalism to more
complex systems, such as hBN, which possesses non-symmorphic symmetries, and mono-

layer MoSe,, which exhibits strong spin-orbit coupling effects.

3.4 Application of Symmetries in Computational Aspects

Before concluding this chapter, we briefly discuss or highlight how one can improve the
computation of the excitonic states using symmetries. Up to this point, we have focused on
the formalism and its application to understand the symmetries of excitonic states. However,
one of the most important uses of symmetry is its ability to greatly simplify the problem
and reduce the computational cost of quantities that can be obtained by applying symmetry
operations.

The first application of symmetry is to obtain the exciton wavefunctions across the en-
tire Brillouin zone by applying symmetry operations to the wavefunctions computed in the
irreducible part. In order to obtain the exciton wavefunction at a point RQ from Q using the

symmetry g = {R |7}, one can use Eq. (3.38) i.e :

S,(RQ Q 5,(Q
Ak,z('j )(re,rh) = Z %(/i’;",kij(g)Ak’Ei’j)/' (3.47)
K i’

This completely avoids the need to construct the BSE kernel and diagonalize the two-

particle BSE Hamiltonian at the RQ point, as the full wavefunction information can be ob-
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tained through symmetry operations.

The second application is to construct the full BSE Hamiltonian by explicitly computing
only a subset of the matrix elements, with the remainder obtained through symmetry opera-
tions. Suppose we want to construct a BSE Hamiltonian for a finite momentum transfer Q.
In this case, one could use the symmetries in the little group of Q to avoid computing matrix
elements by using Eq. (3.33), which can significantly speed up the calculation. It is impor-
tant to take into account the sparsity of the % (g) matrices rather than explicitly constructing
them and performing brute-force full matrix multiplication.

Of course, one can do much more with symmetries. For example, the BSE Hamiltonian
can be block-diagonalized by constructing symmetry-adapted bases using projection oper-
ators. This approach allows each block to correspond to an irreducible representation of
the symmetry group, thereby significantly reducing the size of the matrix that needs to be

diagonalized. However, a detailed implementation of this methodology is left for future work.
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Chapter 4

Symmetries in Exciton-phonon

interactions

In the previous chapter, we discussed the transformation properties of excitonic states un-
der symmetry operations. In this chapter, we use the developed formalism to understand
the selection rules governing exciton-phonon interactions. Moreover, we will see how these
selection rules manifest beautifully in optical scattering experiments such as resonant Ra-
man scattering and phonon-assisted luminescence. Additionally, we introduce the concept
of total crystal angular momentum, which is analogous to crystal momentum, and present
expressions for computing exciton-phonon matrix elements using symmetries. Parts of this
chapter will be published in Ref. [79].
We start by writing the effective two-particle Bethe-Salpeter Hamiltonian for finite-momentum

transfer within the Tamm-Dancoff approximation [22] as given by Eq. (2.84):

f)%?k/,vck = (6(31( - Evk—Q)év/C/k'aUCk + K’L()f;c)’)k’,vck7 (41)
whereKﬁ,)k, L+ 18 the two-particle interaction kernel, and ¢/¢’ denote conduction band in-
dices, while v/v’ represent valence band indices. The terms e, and e,x_q correspond to
the single-particle energies of the Bloch states ¢.k(r) and ¢,x_q(r), respectively.

The exciton energies and eigenstates at a finite momentum transfer Q are obtained by
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diagonalizing the BSE Hamiltonian in Eq. (4.1), which is written as

D Hbhesaciae = E§V AR (4.2)
vck
where ngQ) are the exciton energies, and AféicQ) are their corresponding eigenvectors in the
two-particle electron-hole basis [97, 98, 1].

Now consider a crystal symmetry operator g = { R | v}, which transforms the coordinates
asr — Rr + v. If g belongs to the little group Gq of Q, i.e., RQ = Q + G, where G is a
lattice vector, then the representation matrix of the excitonic states, Zq(g), for the symmetry
operation g, which is block diagonal in the degenerate subspace, is given by Eq. (3.40) and

is written as:

Dass)= > (AU (@) AP, (4.3)

k,cv
)
k,C’l},k/C/U/

The unitary matrix 2/(Q)(g) is given by [79]:

U 1eo(9) = Dicere(9) D@ (9) SRicic- (4.4)

Here, Dk (g) represents the phase matrices, defined as in Eq. (3.5).

4.1 Total crystal angular momentum

Although, as shown in the previous chapter, one could derive selection rules from the ir-
reducible representations of the little group, it is often more intuitive to consider quantum
numbers analogous to total angular momentum. Due to the lack of continuous rotational
symmetries in crystals or molecules, the conservation of angular momentum is no longer
valid. This motivates us to define the total crystal angular momentum of an exciton or a
phonon, analogous to the crystal momentum for translations.

If the little point group of Q contains an n-fold rotational symmetry along the rotational

axis 1 (in case of multiple rotations, we take the largest n), represented by R, (1), the cor-
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responding unitary matrix U (R, (1)) can be expressed as

(4.5)

Uty ) = exp (272,

n
where J; is a Hermitian matrix, which we refer to as the total crystal angular momentum or
pseudo angular momentum operator along the rotation axis i [106].

Since the order of the n-fold rotation symmetry is n, i.e., (R,(2))"” = I, where I is the
identity operation, this implies that the corresponding unitary matrix U(R,, (1)) possesses
eigenvalues of the form exp (_%ng) Furthermore, since [U(R,(h)), # Q] = 0, where
Q) represents either the dynamical matrix for the phonon wavevector Q or the excitonic
Hamiltonian matrix for a transfer momentum Q, it follows that .J; and #(Q) commute. Con-
sequently, they are simultaneously diagonalizable. This allows us to assign a quantum num-
ber j to each eigenstate of #(Q), which we refer to as the total crystal angular momentum
of the exciton or the phonon. It is important to emphasize that the total crystal angular mo-
mentum of the exciton or the phonon does not depend on the choice of basis or starting
point. This is because the eigenvalues corresponding to irreducible representations remain
invariant under similarity transformations, just like the character of a representation.

Now, consider a set {®q s/} of degenerate eigenstates of #(Q) that form an invariant
subspace under the action of the symmetry elements of the little group Gq. The action of
the symmetry operation U (R, (1)) on an eigenstate from this set can be expressed as

l
U(R.(0)®qs = > TysPqs, (4.6)

§'=1
where I'g g is the [-dimensional representation matrix corresponding to the phonon (given
in Ref. [64]) or exciton (as defined in Eq. (3.42)) for the symmetry operation R, (i1).

If the basis {®q s} does not form a simultaneous eigenbasis of U(R, (1)) and #(Q),
then the representation matrix I'ss is not diagonal. To obtain a simultaneous eigenbasis,
we diagonalize the unitary matrix I'ssg. The unitary matrix that diagonalizes I'g/s trans-
forms the basis {®q s/} into a new set of eigenstates that simultaneously diagonalize both

Ja and 7(Q), with the corresponding eigenvalues given by e~27»/"  The values j, €
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{0,1,...,n—1} represent the total crystal angular momentum quantum numbers for phonons
or excitons. These quantum numbers are responsible for “chiral” behavior in excitons [50]
and phonons [125], particularly in hexagonal materials, as will be demonstrated in the next

section.

4.2 Chirality

Over the past few years, there has been significant interest in circularly polarized phonons,
known as chiral phonons [125, 115]. Similarly, the first bright excitons in TMDCs have been
shown to possess a form of chirality that selectively couples with left- and right-circularly
polarized light [50, 112]. A natural question to ask is: where does this chirality come from?

To answer this, consider a hexagonal lattice that possesses a three-fold rotational sym-
metry in the little groups of the I and K() points. This symmetry implies that the total crystal
angular momentum for excitons or phonons can take values {—1,0,1} (we use —1 instead
of 2, since the total crystal angular momentum is defined modulo »n for an n-fold rotation).
Point groups with C'5 symmetry contain an E representation, which can be single or double
degenerate and carry a total crystal angular momentum of +1. This implies that the simul-
taneous eigenstates of excitons or phonons that transform under E modes will be chiral and
will selectively couple with other quasiparticles.

The phonon eigenvectors which are also eigenstates of the C'3 rotation operator are
known as chiral phonons, and the total crystal angular momentum is referred to as the
“pseudo angular momentum” of phonons [125]. Similar to phonons, the first bright excitons
in TMDCs carry a total crystal angular momentum of +1, which causes them to selectively
couple with left- or right-circularly polarized light. Due to spin-orbit coupling effects, these
excitons become even more interesting; a more detailed discussion is provided in the next
section. This total crystal angular momentum is sometimes also referred to as the valley

index, chiral index, or pseudospin [112].
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4.3 Exciton-phonon coupling

As discussed previously, the coupling of excitons with phonons plays an important role in
optical scattering processes such as resonant Raman scattering (which will be discussed
in the next section). One of the central ingredients required to compute physical properties
involving exciton-phonon scattering is the exciton-phonon matrix element. These matrix ele-
ments are analogous to the electron-phonon matrix elements that are essential for studying
phenomena involving electron-phonon interactions.

Unlike electron-phonon matrix elements, there are different definitions of exciton-phonon
matrix elements found in the literature. For example, Ref. [17] defines them as the expecta-
tion value of the directional derivative of the BSE Hamiltonian along the phonon eigenvector,
whereas Ref. [3] defines them as the expectation value of the Kohn-Sham deformation po-
tential with respect to excitonic states. Although the definitions differ in form, they yield the
same final expression. This is the same result obtained from a perturbative expansion of the
matrix elements involved in Raman scattering [95].

The exciton phonon matrix elements within the TDA are given by

S’ x 49, ~
Gy 5(Q.a) = Y (A V) AV (K, q)

kec'v B ) (47)
-3 @l AtV (k- Q- a,q).

k,cv
kcvv’

The electron-phonon matrix elements gﬁ,yc(k, q) are given by
goo(k,q) = (k+q,c| 3V |k, c), (4.8)

where GQV is the directional derivative of the total Kohn-Sham potential with respect to the
phonon displacement vector of mode index A and momentum q.

The exciton-phonon matrix element in Eq. (4.7) can be interpreted as the quantum me-
chanical sum of two independent processes: (i) the scattering of an electron from momen-

tum k to k 4 q via absorption of a phonon with momentum q, while the hole remains at fixed
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momentum k — Q; and (ii) the scattering of a hole from momentumk — Qto k — Q — q via

emission of a phonon with momentum q, while the electron remains at fixed momentum k.

4.3.1 Bra-Ket notation for exciton phonon matrix elements

In this subsection, we demonstrate how the exciton-phonon matrix elements defined in
Eq. (4.7) can be written in compact Bra-Ket notation. This formulation will be useful later
when deriving selection rules.

We consider the following matrix element within the Tamm-Dancoff approximation [22]:

GY 5(Q.q) = (S, +Q|9V] S.Q) (4.9)

where Q is the transfer momentum of the initial exciton S, q is the momentum of the phonon
with mode index A and deformation potential agv, and Q + q is the transfer momentum of

the outgoing exciton S’. The excitonic state |S, Q) can be written as [97, 98, 1]:

19,Q) = > A7l ay_q,l0), (4.10)
kev
where |0) is the non-interacting ground state. Furthermore, the phonon deformation potential

can be expressed in terms of one-particle Bloch states as

8()1\‘/ = Z (m,q+ k |8()1\V| n,l~{> aI(—i-qmakn

mank (4.11)
1

— E A f{
B 8 af{—i-qmaf(ngmvn( ’ q)’
m,n,k

where gﬁm(f{, q) are the electron-phonon matrix elements. Substituting Eq. (4.10) and
Eqg. (4.11) into Eq. (4.9) gives

~ Sl, % S, ~ ~
Gs@a)= > {@Al AV (kaq)
kk'kec/vo'mn (41 2)

T T T
X <0 | ak’—Q—qv’ ak’c’ aﬁ+qmaﬁnakcak—Qv ‘ O> } ’
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Considering the correlation function in Eq. (4.12), and employing Wick’s contractions gives
T T T
<0’ak’—Q—qv’ak’c/ al;—i-qmal;nakcak—Qv ‘O>

= { - 5k—Q,l;+q5v,m 5k’ ,k(Sc’ ,célz,k’—Q—q(sv’ n

(4.13)
T 5k/_Q—q,k—Q51}',U(Sk',f(Jrq(SC’,m(Sf(,k(sn,c

+ 6k’ 7Q7q,k7Q5v’ ,Uék’,kdc’,céfc—&-q,f{ém,n } '

Substituting Eq. (4.13) into Eq. (4.12), we obtain

gg’,S(Qa q) = gg’,S(Q> q) + 5q,O(SS,S’ Zggz,m(ka q= 0)7 (414)

m,k
where gg,?S(Q, q) are the exciton-phonon matrix elements as defined in Eq. (4.7). The extra
term in Eq. (4.14) corresponds to a disconnected diagram and is canceled when performing
a perturbation expansion due to normalization (for example, see supplementary information

of Ref. [95] in the case of resonant Raman matrix elements).

4.3.2 Rotation of electron-phonon matrix elements

As electron-phonon matrix elements are one of the central ingredients when computing
exciton-phonon matrix elements, it would be beneficial to obtain them using symmetry rela-
tions without explicitly performing the computation of the bra-ket.

In this section, we demonstrate how electron-phonon matrix elements transform under
symmetry operations. The action of the symmetry operator U*(g) on the phonon deformation

potential is given by [39, 64]

U(9)0qVeet(r)UT (g) = Z T (9) g Veer (t), (4.15)
A/

where g represents a spatial crystal symmetry operation or time-reversal symmetry. If g is a
spatial crystal symmetry operation, it corresponds to a coordinate transformationr — Rr+v,

with R being an orthogonal matrix and v a translation vector.
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The term I'y \/2(g) is the phase matrix (or representation matrix, if g belongs to the little
group of q) for the phonon modes, analogous to the D matrices for Bloch states. It is unitary
and block diagonal in degenerate subspaces when phonon eigenvectors are chosen to be

orthogonal. When g is a spatial symmetry, I'q x/x(g) is given by [64]

Fq,)\’)\(g> = (d%q)TU(g)dé

iq-(g— 1 E— Tk A N *
- Z el TR )Raﬁdqwﬁ(dRq&a)'

K:’/B7i%7a

(4.16)

Here, d?{q and dé are the phonon eigenvectors for q and Rq phonon crystal momenta. In

the case of time-reversal symmetry, we have

Taa(g) = (¥ (d})". (4.17)

If Rq # q + G, where G is a reciprocal lattice vector, and the phonon eigenvector at Rq
is obtained by applying the symmetry operation g to the eigenvector at q, then I'q(g) is an
identity matrix.

It is important to note that the deformation potential is generally a 2 x 2 matrix in the spinor
subspace. Therefore, the symmetry operators ﬁ(g) must include spin rotation matrices that
account for transformations in the spinor subspace.

Now, consider the following electron-phonon matrix elements:

m.n(RK, Rq) =(m, Rq + Rk |(9%,V | n, RK)), (4.18)

where we use parentheses to distinguish the action of the operator on either the bra or the
ket, also taking time-reversal symmetry into account.
From the definition of the phase matrices in Eq (3.5), and using their unitary property, we

have:
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R (4.19)
[m, Rk + Ra) = Y Dicyqmm (9)U (9) Im, K + ).
Substituting Eq. (4.19) into Eq. (4.18), and using Eq. (4.15), we obtain:
gm n(Rk Rq) = Z {Dk—i-q,mm’ (g)Dlt,nn’ (9)
mhn (4.20)

((m',a+ Xk [U(9)) (Tana(9)U(9)0qVeet (1)U (9)U (9)] ', k)
If g is a normal spatial symmetry, we have:

gmn Rk Rq { Z Fq X/\ Dk—i—q mm/ (g)
m/,n' N (421)

X Dieu (9)n0 0 (K, @) }-

In the case where g is time-reversal symmetry which is anti-unitary, we need to conjugate
g}n,,n,(k, q) due to the transfer of the action of the leftmost Uf(g) from the bra to the ket in
Eq. (4.20), i.e

Gmn(—k, —q) :{ > Taxa(9)Pirqumm (9)
m X (4.22)

From Eqgs. (4.22) and (4.21), we can obtain the electron-phonon matrix elements for
the Rq phonon wavevectors without explicitly evaluating the bracket. Furthermore, when ¢
belongs to the little group of q, we can also retrieve the Rk matrix elements from the k matrix

elements with the correct gauge consistency.

4.3.3 Rotation of exciton-phonon matrix elements

In this section, we show how exciton-phonon matrix elements transform within the Tamm-

Dancoff approximation [22] using symmetries, in a manner similar to electron-phonon matrix
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elements. Consider the following bracket:
Gr)ﬁ/,n(RQ, Rq) = (m, Rq + RQ |(8;‘2/qV | n, RQ>)7 (4.23)

where G represents the exciton-phonon interaction matrix elements.
Similar to the phase matrices for Bloch states, the phase matrices for excitonic states

under symmetry operations are written as:
U1S,Q) = Zqs5(9) |5, RQ) (4.24)

where Zq s5(g) is a unitary matrix when the excitonic states are chosen to be orthogonal.

This implies that

) (4.25)
m, RQ + Ra) = Y D& +qumm (9)U(9) M, Q +q) .

m/
Following the procedure outlined for electron-phonon matrix elements in the previous sec-
tion, we obtain the following transformation rules. If g is a normal spatial symmetry, we

have:

gT);LTL RQ Rq Z Fq )\’)\ @Q—i—q mm/ (g)
m/,n’ N (426)

X @aﬂ’m' (g)QN’r)?\z’,n’ (Q7 q)

If g corresponds to time-reversal symmetry, we obtain:

gz\;n 7 Z Pq,)\’)\ gQ-l-q,mm (g)
ml (4.27)

X -@a,nn’ (g)(gr/}l’,n’(Qa CI))*

Substituting Eq. (4.14) into Egs. (4.27) and (4.26), we obtain an identical relation for the
exciton-phonon matrix elements, where Gis replaced with G.

From Egs. (4.27) and (4.26), we conclude that the exciton-phonon matrix elements for Rq
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phonon wavevectors can be determined without explicitly evaluating the bracket. Further-
more, when g belongs to the little group of q, we can also retrieve the RQ matrix elements

from the Q matrix elements, with the correct gauge.

4.4 Conservation of total crystal angular momentum

In this section, we derive a conservation rule for the total crystal angular momentum, analo-
gous to the conservation of the total angular momentum.

Suppose that there is an n-fold rotational symmetry along the rotational axis n in both
the little point groups of Q (exciton transfer momentum) and q (phonon momentum); then

(8.Q+dl0V15,Q) = (S, Q+q UU 4V UTUIS, Q) 4.28)
=(5,Q+q| 3;‘/ 15, Q) oo (is+iv—is) .

where U is the unitary operator corresponding to the n-fold rotational symmetry, and jg,
Jju, and js: are the total crystal angular momenta of the S exciton, v mode phonon, and S’
exciton, respectively. We assumed that we are in the simultaneous eigenbasis of the Hamil-
tonian (either phonon or exciton) and unitary matrix. If this is not the case, we transform to
a new basis such that they become simultaneous eigenbases.

From (4.28), we see that the matrix element (S’, Q + q| 95V |S, Q) can be non-zero only

Js +Jv —jsr =ln, (4.29)

where [ is an integer. The disconnected term transforms similarly as the matrix elements
(9",Q +q| 94V |S, Q), which implies that the conservation rule in (4.29) is equally applicable

to exciton-phonon matrix elements.
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4.5 Resonant Raman scattering in MoSe,

We now demonstrate the application of the above methods to understand the symmetries of
excitonic states in two widely studied materials: monolayer MoSe; and bulk hexagonal boron
nitride (hBN). In particular, we reveal the underlying selection rules governing exciton-photon
and exciton-phonon interactions, as evidenced by their optical spectroscopic signatures.

First, we examine the zero-momentum excitonic states of monolayer MoSe,, which be-
longs to the D3, point group. At the center of the Brillouin zone, the little group includes all
the symmetries of the crystal point group. This implies that the zero-momentum excitonic
states must transform under the representations of the crystal point group.

In Fig. 4.1a, we show the energies of the first few zero-momentum excitonic states,
calculated using GW-BSE [53, 98] on top of density functional theory (DFT) calculations.
The excitonic states are labeled with the irreducible representations of the point group, with
bright and dark excitons represented in red and blue, respectively. The first exciton, which
is doubly degenerate due to time-reversal symmetry, is spin-forbidden and optically dark for
in-plane light polarization as it transforms under A} + A7 representation. Since the out-of-
plane dipole operator Z transforms under the A} representation, the first dark exciton can
possesses a finite out-of-plane dipole moment and is therefore optically bright for out-of-
plane light polarization. In contrast, dark excitons near ~1.8 eV lack the A’ representation
and, therefore, do not possess an in-plane or out-of-plane dipole moment. On the other
hand, the first bright exciton, which is doubly degenerate and commonly referred to as the
A exciton, transforms under the E’ irreducible representation. Since the in-plane dipole
operators Z and j transform under the E’ representation, the A5 exciton possesses a finite
in-plane dipole moment, which makes it optically bright for in-plane light polarization.

One of the most intriguing properties of monolayer transition metal dichalcogenides
(TMDCs) is their ability to selectively populate the electron and hole densities of the Aj
exciton in the inequivalent K valleys using left- or right-circularly polarized light. To under-
stand this phenomenon, we analyze the total crystal angular momentum of the A;; exciton

along the principal axis, which takes the values j = +1. These j values are obtained by diag-
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Figure 4.1: Excitons in monolayer MoSe,. (a) Exciton energy spectrum at the I" point with
corresponding irreducible representations. The blue/red vertical lines indicate the positions
of dark/bright excitons, respectively. (b) Reciprocal space plot of the A;; exciton wavefunc-
tion in the simultaneous eigenstate of the total crystal angular momentum matrix and the
exciton Hamiltonian. (c) Resonant Raman spectrum as a function of incoming photon en-
ergy. The A} and £’ Raman modes are represented by blue and orange lines, respectively.
The grey shading corresponds to the imaginary part of the 2D polarizability tensor, repre-
senting the absorption spectrum. The black dots denote experimental data for the A} mode,

taken from Ref. [70].

75



onalizing the two-dimensional representation matrix of the A, exciton corresponding to the
three-fold rotational symmetry of the crystal. The unitary matrix obtained from this diagonal-
ization is then used to transform the energy eigenstates into the simultaneous eigenstates
of the exciton Hamiltonian matrix and the total crystal angular momentum matrix along the
principal axis.

Since circularly polarized light carries a total crystal angular momentum of +1 along the
out-of-plane direction ', the simultaneous eigenstates of the A;, exciton selectively couple
with left- or right-circularly polarized light upon absorption or emission, giving rise to the
concept of chirality in excitons of monolayer TMDCs.

In Fig. 4.1b, we plot the phase-space map of the Ay exciton, definedas A(k) =3 __ , | Agen|?,
showing its simultaneous eigenstates along with the corresponding eigenvalue j, of the total
crystal angular momentum operator along the principal axis. For each j., the A;; exciton is
localized in its corresponding K valley, thereby enabling the selective excitation of electron
and hole densities in a specific valley using circularly polarized light.

The properties of the A, exciton, such as its lifetime, are strongly influenced by exciton-
phonon interactions [15]. These exciton-phonon interactions, in general, play an important
role in optical-scattering processes such as resonant Raman scattering [95]. To understand
the selection rules in these interactions, we look at phonon-mediated Stokes resonant Ra-
man scattering in monolayer MoSe». Using the approach outlined in Refs. [94, 95], we
compute the resonant Raman intensities at zero temperature within the Tamm-Dancoff ap-

proximation [22]. It is given by:

N L3 BV
wr &z (hwr — Es + i) (hwr — hwy — Egr +i7)
: (4.30)
+Z (d§)” Gagid ‘2‘
(hwr, + Eg — i7y) (hwy, — hwy + Egr — i)

S,8’

"Applying an n-fold rotation operator to left- and right-circularly polarized light vectors, % [ ilz} results in

; 1
—i(£) 1

ii]’ implying that the total crystal angular momentum is +1.
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Here, 1/v indicate the polarizations of the incident and scattered light, wy, is the energy of the
incoming photon, and wy, is the phonon frequency of mode \. The sums run over excitonic
states S(S’) with energies Eg(s. The peak width is given by an empirical decay constant
7. The term d; represents the exciton-dipole matrix element along polarization 1 for photon
absorption, while (G24,)* denotes the exciton-phonon coupling matrix element for exciton S
scattering into S’ via phonon emission of mode X [95] (see Eq. (4.7) for the expression of
exciton-phonon matrix elements).

In Fig. 4.1c, we show the calculated resonant Raman intensities (solid lines) for the A4}
and E' Raman modes of monolayer MoSe- as a function of the incoming photon energy
near the A;; exciton energy. The black dots correspond to the experimental Raman inten-
sities of A measured at T' = 4 K, taken from Ref. [70]. The grey shading represents the
imaginary part of the in-plane polarizability tensor (absorption spectrum). The most striking
observation is that the intensities of the A} mode are orders of magnitude higher than the
E’ mode. In order to understand this observation, we look at the underlying selection rules.

From Eq. (4.30), we can notice that only excitons that have finite d’g/”, i.e., bright excitons,
participate in one-phonon resonant Raman scattering. This implies that near the optical gap
of monolayer MoSe,, only the A, excitons are responsible for the majority of the resonant
Raman scattering.

The A} and E’ phonon modes possess total crystal angular momentum of 0 and +1
along the principal axis, respectively. Similar to the excitons, these j values give rise to the
concept of chirality for these phonons. Since A;; excitons possess +1 total crystal angular

momentum, we can use the conservation of total crystal momentum, which is given by
Jsr =Jjs +jx+3l (4.31)

where jgr, js, and j, represent the total crystal angular momenta of the scattered exciton,
incoming exciton, and phonon, respectively, and [ is an integer.
Clearly, from Eq. (4.31) and with the knowledge of total crystal angular momentum, we

see that the A} modes do not change the total crystal angular momentum of excitons, but
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the £’ modes change it by £1. This implies that the A} mode allows only for intra-valley
scattering of the A;; exciton, while the E’ mode allows inter-valley scattering. However,
the intervalley scattering is largely forbidden due to spin conservation rules for electrons
and holes and the very minimal overlap of excitonic states localized at K/K’, as seen in
Fig. 4.1c. This implies that the E’ mode has much less intensity than the A} mode, as seen
in Fig. 4.1c. It should be noted that our analysis is more rigorous than the hand-waving
argument presented in the previous work [95, 73], which relied on the conservation of the
angular momentum based on the roughly circularly symmetric band structure near the K/ K’

points.

4.6 Phonon assisted luminescence in hBN

Next, we examine the selection rules in absorption and phonon-assisted luminescence of
bulk hBN, which possesses a Dg;, point group. In Fig. 4.2a, we present the absorption spec-
trum of hBN, where the vertical red and blue lines indicate the positions of in-plane bright
and in-plane dark excitons, respectively. The in-plane and out-of-plane dipoles transform
under the Ey,, and Ay, representations of the Dg;, point group, respectively. In BN, the first
exciton is dark as it transforms under the E», representation, whereas the second exciton
is an in-plane bright exciton which transforms under the F;, representation. The first out-
of-plane dipole-active exciton appears around 6.5 eV and exhibits very weak dipole strength
along the out-of-plane direction.

When moving away from the I point, the symmetry of the system is reduced. As illus-
trated in Figs. 4.2b and c, the symmetry point group along the high-symmetry path I' — K
is reduced to C5,. One of the defining symmetries of this Cs, group is the horizontal mirror
symmetry of hBN. In the exciton dispersion, we observe that the E,; mode splits into A,
and B; representations, both of which are even under horizontal mirror symmetry. Similarly,
in the case of phonons, the out-of-plane modes (ZA/ZO), marked in green, are odd under
horizontal mirror symmetry, while the in-plane modes (LA/TA or TO/LO) are even under hor-

izontal mirror symmetry.
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Figure 4.2: Excitons in bulk hBN. (a) Optical absorption spectrum of hBN. Blue/red ver-
tical lines represent the positions of in-plane dark/bright excitons with their corresponding
irreducible representations. (b) Exciton dispersion of the two lowest excitons of bulk ABN.
The labels correspond to the irreducible representations at the high-symmetry points. (c)
Phonon dispersion of bulk hRBN. The green lines correspond to out-of-plane modes, which
are odd under horizontal mirror symmetry. (d) Experimental (dots, taken from Ref. [111])
and computed (solid blue line) phonon-assisted luminescence spectrum of ~BN.
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One can also see the symmetries of excitons by visualizing their wavefunctions in real
space by fixing the position of either the hole or the electron. Typically, a single hole is
fixed at a position where the hole density is expected to be finite. For example, in the case
of the lowest excitons in hBN, a reasonable choice is to place the hole slightly above the
nitrogen atom, as the hole state is primarily composed of nitrogen p, orbitals [32]. However,
this placement breaks the horizontal mirror symmetry, since applying the horizontal mirror
operation would not map the hole back to the same position.

To restore mirror symmetry, we consider two hole positions [84]: one slightly above and
the other slightly below the nitrogen atom. These two positions are mirror images of each
other with respect to the horizontal mirror plane passing through the hBN layer. Once the

two holes are fixed, we define the following antisymmetrized wavefunction:
U(r) =U(r,z+2z) — U(r,z — z), (4.32)

where ¥(r, z & z,) is the excitonic wavefunction with the hole fixed at a vertical distance z,
above or below the horizontal mirror plane at z, and r is the electron position. We take the
difference between the excitonic wavefunctions at the two hole positions to account for the
fact that nitrogen p, orbitals are odd under horizontal mirror symmetry; a symmetric con-
struction would otherwise lead to an almost complete cancellation of the total wavefunction.
From Eq. (4.32), we see that the constructed function ¥(r) is symmetric for antisymmet-
ric excitons and antisymmetric for symmetric excitons with respect to the horizontal mirror
plane.

We then define the electronic density for these excitons as:
p™°(r) = sgn(Real{¥(r)}) - [T (r)[?, (4.33)

where sgn denotes the sign function. The sign function is included to capture the phase
information of the wavefunction ¥ (r).
In Fig. 4.3(a,b) and Fig. 4.4(a-c), we plot the electronic density of the exciton as defined

in Eq. (4.33), by fixing two holes near a nitrogen atom, indicated by two black circles. In
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Figure 4.3: Electronic density of excitons, as given in Eq. (4.33), at the T" point (0,0, 0) for
the first two in-plane bright excitons, which are degenerate and symmetric with respect to
the horizontal mirror plane. The hole is fixed near a nitrogen atom.

Fig. 4.3, we present the two lowest in-plane bright excitons at the T" point that transform
under the Ey, irreducible representation. Additionally, in Fig. 4.4(a, b), we show the exciton
wavefunctions at the Q = (%, %,0) point for the two lowest excitons, which transform under
B, and A; representations, respectively. These excitons are symmetric with respect to the
horizontal mirror plane of the hBN layer. On the other hand, in Fig. 4.4(c), we plot the lowest
antisymmetric exciton at 2 with respect to the horizontal mirror plane, which transforms
under the Bs representation.

At the T point, the bright excitons are symmetric with respect to the horizontal mirror
plane, leading to antisymmetric electron densities as shown in Fig. 4.3(a,b). It is important
to note that to obtain the fully symmetric excitonic wavefunction [122], one must perform an
average over the degenerate states. However, for bright excitons, the representation matrix
for the horizontal mirror symmetry is the identity, so the antisymmetry of the electron density
for the bright excitons is preserved regardless of whether such averaging is performed.

Similarly, for the lowest excitons at the Q2 point, we observe antisymmetric electron den-
sities, consistent with symmetric exciton wavefunctions. The most intriguing case is the anti-
symmetric exciton shown in Fig. 4.4(c). The absence of electron density in the layer closest
to the fixed holes is a consequence of symmetry: since boron p, orbitals are antisymmetric,
any electron density in the nearby layer would render the overall exciton wavefunction sym-

metric. Thus, symmetry forbids such density near the hole, as both observed and expected
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Figure 4.4: Electronic density of excitons, as given in Eq. (4.33), at @ = (3, §,0): panels
(a) and (b) show the two lowest-energy excitons, which are symmetric with respect to the
horizontal mirror plane; panel (c) shows the first antisymmetric exciton with respect to the
horizontal mirror plane. The hole is fixed near a nitrogen atom, indicated by the black circle,
and the arrow denotes the direction of the 2 point.
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from our analysis.

The presence of horizontal mirror symmetry at the €2 point directly impacts the selection
rules of the exciton-phonon matrix elements, which are evident in the phonon-assisted lu-
minescence of hBN. To compute phonon-assisted luminescence, we follow the method in

Ref. [124], where the intensity is expressed as

_(BG-Em)

I 3 {€ BT (14 mQ)iwr — BG + i q) ‘Z (A5 955 (0, Q)" ‘ JRCER
S.QAu (B — hwaq) Eg — EQ + hwyq

where F,, is the lowest exciton energy, T is the exciton temperature, kp is the Boltzmann
constant, E? represents the exciton energy at Q, n) q is the Bose factor for a phonon of
mode A with momentum Q, and the remaining indices are consistent with those used in
Eqg. (4.30). The exciton-phonon matrix elements are given in Eq. (4.7).

Eq. (4.34) captures the indirect emission process mediated by phonons, where an ex-
citon S at finite momentum Q scatters to the bright exciton S” via emission of a phonon of
mode index \. The prefactor includes a Boltzmann factor eXp[—(ES(;Q — E,,)/kpT] accounting
for the exciton population at temperature 7', and a Bose factor 1 + n) q for the population
of the emitted phonon. The delta function enforces energy conservation between the laser
frequency wy, the exciton energy, and the emitted phonon energy.

In Fig. 4.2d, we present the experimental and computed phonon-assisted luminescence
spectrum of ABN. The dominant phonons contributing to the transition matrix element in
EqQ. (4.34) are located near the midpoint between I" and K. This is due to the presence of
the Boltzmann factor in Eq. (4.34), which exponentially suppresses the matrix elements as
one moves away from the minimum exciton energy E,,. As seen in Fig. 4.2b, the exciton
minimum occurs near the midpoint of I' and K. Therefore, the majority of the phonons
involved in the luminescence process of hBN originate from regions close to mid point of I'
and K.

Furthermore, in Fig. 4.2d, we observe that only in-plane phonon modes contribute to
the luminescence spectrum of ABN. Although some previous works have successfully re-

produced the luminescence spectrum of hBN [85, 124], the underlying selection rules are
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not well understood. Moreover, in all of these works, the symmetries were neglected during
the calculations, resulting in slower computations with larger storage requirements. On the
other hand, works such as Ref. [60], which attempted to use symmetries in their calcula-
tions, fail to account for the correct selection rules due to phase issues when computing the
exciton-phonon matrix elements. The results presented in this thesis were obtained without
breaking any symmetries, while also correctly reproducing the luminescence spectrum.
Now, with knowledge of the symmetries of the excitons, we can now understand the se-
lection rules that govern the phonon-assisted luminescence process. Similar to the Raman
case, Eq. (4.34) indicates that the outgoing excitons (denoted by the S’ index in Eq. (4.34))
must be bright excitons to have a finite contribution to the scattering matrix element. Due to
the presence of the Boltzmann factor, only the lowest-energy states significantly participate
in the luminescence process. Since both the initial and final excitonic states (we only con-
sider the first in-plane dipole-active excitonic states, as the out-of-plane dipole is very weak)
are even under horizontal mirror symmetry, the exciton-phonon matrix elements are finite
only when the phonon modes are also even under this symmetry operation. As a result,
out-of-plane phonon modes do not couple to the lowest-energy excitonic scattering states,
leading to their absence or very low intensity in the luminescence spectrum, as shown in
Fig. 4.2d. In contrast, the in-plane phonon modes are even under horizontal mirror symme-

try and therefore contribute to the luminescence.
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Chapter 5

Interlayer exciton-phonon coupling

In the previous chapter, we looked at the intralayer exciton-phonon coupling, where both the
excitons and phonons originate from the same layer or material. In this chapter, we focus on
interlayer exciton-phonon coupling, which occurs when an exciton in one layer couples with
phonons from another layer.

The coupling between excitons and phonons across adjacent layers has been exper-
imentally observed in various heterostructures of layered materials. However, the pre-
cise mechanism underlying this phenomenon remains elusive. Using the WSe,@#4BN het-
erostructure as an example, we study the origin of the interlayer exciton-phonon coupling
and its signature in resonant Raman scattering through first-principles calculations. Our
study emphasizes the central role of crystal symmetries in the interlayer exciton-phonon
scattering processes, which are responsible for the anomalous resonant Raman intensities
of the in-plane and the out-of-plane BN phonon modes. We find that the deformation poten-
tial induced by the hBN phonon interacts with the hybridized hole density of WSe» excitons
near the hBN interface, leading to interlayer exciton-phonon coupling. This work is taken
directly from Ref. [81]
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5.1 Introduction

In recent years, the interfacing of two-dimensional (2D) materials with different layers or
substrates [34] has revealed fascinating properties that are difficult to achieve with individ-
ual layers. For example, interlayer electron-electron interactions can give rise to diverse
phenomena such as moiré excitons [96], superconducting phases [13], and Mott insulat-
ing states [92]. Similarly, interlayer electron-phonon interactions can have profound effects
on carrier mobilities [18] and even influence superconducting critical temperatures [114],
further underscoring the importance of these interactions in tailoring the properties of 2D
heterostructures.

Recent optical scattering measurements have revealed that excitons (electron-hole bound
states) in one layer can couple with phonons in the adjacent layer [55, 62, 54, 28, 27,
20]. This remarkable interlayer exciton-phonon coupling was first demonstrated in mono-
layer WSe, encapsulated in hexagonal boron nitride (hRBN) using Raman spectroscopy [55].
Subsequent Raman and photoluminescence [20, 54] measurements on various other het-
erostructures such as Black phosphorus@SiO,, metal phosphorus trichalcogenides@SiO [16],
WS.@Bi,Ses [51] confirmed the existence of interlayer exciton-phonon coupling, indicating
that the observed phenomenon is robust and is not limited to WSe,@hBN heterostructure.

The interlayer exciton-phonon coupling can play a key role in exciton dynamics, their
lifetimes, and decoherence times [15], and has recently been used to study phonon polari-
tons in neighboring layers [110, 126]. Therefore, understanding the origin of these interlayer
exciton-phonon interactions is crucial to leverage these interactions for future applications.
Although the signatures of interlayer exciton-phonon coupling in these measurements pro-
vided an ideal setting to study this phenomenon, the microscopic mechanism remains elu-
sive. A speculative mechanism was proposed in Ref. [20], suggesting that two polar phonon
modes, one from each layer, couple via a dipole-dipole interaction. This mechanism as-
sumes that the bond polarity in one layer and the intralayer exciton-phonon interaction in
the other layer play a fundamental role in these interactions [27]. Although this argument

seemed plausible initially, it failed to explain the resonant Raman intensities of non-polar
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modes in these heterostructures [27]. Furthermore, the proposed mechanism could not ac-
count for the sensitive dependence of the exciton-phonon coupling strength on the interlayer
distance [62].

In this thesis, we use WSe,@hBN as an example to unveil the microscopic mecha-
nism of exciton-phonon coupling across layers. Using ab initio methods, we compute res-
onant Raman intensities, which provide a detailed atomistic view of the interlayer exciton-
phonon scattering process. We demonstrate the selection rules in interlayer exciton-phonon
scattering, which are responsible for the anomalous resonant Raman intensities: When in
resonance with the A exciton of WSe,, the out-of-plane hBN phonon mode (which is Ra-
man forbidden in pure hBN) exhibits a much higher intensity in the heterostructure than the
Raman-allowed in-plane mode [55]. Our main findings reveal that the deformation potential
of the hBN phonon scatters the hybridized part of the WSe, exciton-hole in the vicinity of the
hBN layer, giving rise to interlayer exciton-phonon coupling. We show that this coupling is
extremely sensitive to the interlayer distance and that the bond polarity of the phonon layer

is not required to observe this effect [54, 28, 27, 20].

5.2 Results and Discussion

5.2.1 Resonant Raman scattering

We start our discussion by looking at the resonant Raman scattering in a monolayer WSe,@hBN
heterostructure. We follow Refs. [94, 95] and calculate the differential cross section for
Stokes Raman scattering mediated by one phonon:

do  wrL —wx,, 9
dig & WL |M,uy(w[nw>\)| : (51)

Here, 1 and v denote the polarization of the incoming and outgoing light, respectively, while
wr, and w)y denote the frequencies of the incoming light and the created phonon of branch

A, respectively. Within the Tamm-Dancoff approximation [22], the Raman scattering matrix
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element Mfw at zero temperature takes on the simple form

M, (wr,wy) = () (Gss)"ds
mv ’ 5o (th—Es-l-i’}/) (th — hwy — Eg —i—i’y)
(45)" Gasds

+ - — -
;(th—i-Es—w) (hwr, — hwy + Egr — i)

The sums run over all excitonic states S and S’ with energies Eg(,y and decay constant
7. The quantity d is the coupling matrix element between an exciton S and a photon of
polarization y, while (G3,)* represents the exciton-phonon coupling matrix element related
to the scattering of an exciton S to an exciton S’ via emission of one phonon of branch  [95].

The exciton-phonon matrix element g3, for the state |S’) scattering to the state |S) via

absorption of phonon of zero momentum is given by Eq. (4.7) which can be simplified as

gg\'S’ = Z{Aﬁ;) ( Z gl)(\cc’AE::’v - Z gl)(\U,’UAE;UI) }7 (53)
kcv c v’

where g3 = (km|9,V|kn) corresponds to the electron-phonon matrix element between

the single electron states |kn) and |km), with 9,V representing the deformation potential due

to the phonon mode ). If an exciton is mostly composed of one valence and one conduction

band at each k-point (like 1s/2s excitons in WSe-), we can approximate the diagonal exciton-

phonon matrix element in Eq. (5.3) as
QQS ~ Z{|AE|2(9ﬁ55 - gﬁm)}a (5.4)
k

where ¢/v are the band indices of the conduction/valence band indices that contribute the
most to the envelope wave function at a given k-point.

The exciton-photon (dipole) matrix elements d'; are given by

A= (AR.)" (ck[¥|vk) - e, (5.5)

kcv

where v is the velocity operator, e* is the polarization vector of the incoming photon, and
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the sums run over all k-points in the first Brillouin zone, over all conduction bands (c¢) and
valence bands (v). (ck|v|vk) represents the dipole matrix elements, and AE’CU is the exciton
envelope wave function for the single-electron transition |k,v) — |k, ¢). Detailed derivation

of these expressions can be found in the supplementary information of Ref. [95].

Figure 5.1: Top and side view of crystal structure of monolayer WSe, on top of single layer
hBN used in the ab-initio calculations. Figures were created with the VESTA software [76]

We obtained all quantities required for the evaluation of Eq. (5.2) from first principle meth-
ods using the GW-BSE [53, 98] formalism on density functional theory (see supplementary
information section 5.3 for details of the ab initio methods). Experimental evidence [126]
shows that the interlayer exciton-phonon phenomenon persists even for a single layer of
hBN placed on top of WSe,. Therefore, we considered a heterostructure consisting of one
layer of hBN and one layer of WSe, as shown in Fig 5.1 in this study. This is sufficient to
understand the underlying mechanism. Additional calculations for different structural config-
urations, including a sandwiched structure, are provided in the supplementary information
section 5.3.

In Fig. 5.2a, we show the calculated Raman intensities for the different phonon branches
as a function of the energy of the incoming photon at normal incidence (w;). We define
the Raman intensity as the differential cross section, averaged over the polarization of the
incoming light at normal incidence, and summed over the in-plane polarization of the out-

going light. The blue line denotes the Raman intensities for the out-of-plane optical (ZO)
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Figure 5.2: Raman intensities of the ZO and LO/TO modes of ABN in a heterostructure of
single layers of hBN and WSe, as a function of energy of the incoming photon at normal
incidence. (wr). a) Computed resonant Raman intensities of the ZO mode (blue line) and
LO/TO mode (orange line). The gray shaded area denotes the imaginary part of the in-
plane polarizability of the heterostructure. Blue triangles represent experimental data of the
Z0O mode Raman intensities at 4 K, taken from Ref. [70]. (b) and (c) Computed Raman
intensities for (b) the ZO mode and (c) the LO/TO mode, considering all scattering channels
(red lines) or retaining only intra-exciton scattering channels (blue line).
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phonon of the hBN layer. We compare the Raman intensity profiles to the imaginary part of
the in-plane polarizability (absorption coefficient) of the heterostructure (shaded area) and
to experimental Raman intensities from McDonnell et al. [70](blue triangles, see supporting
information section 5.3 for further details). The most striking features of the ZO-mode in-
tensity profile are the two strong resonances at wy, =~ 1.72 eV and wy, =~ 1.82 €V, labeled “I’
and “II” in Fig. 5.2a. The first of these two peaks coincides with a resonance in the absorp-
tion coefficient which corresponds to the well-known 1s state of the “A”-exciton [5] of WSe,
and can thus be interpreted as the resonant excitation of the 1s A-exciton in WSe,, which
then couples to the hBN ZO mode. The second peak, in contrast, does not have such a
counterpart in the absorption spectrum. It is the quantum of one ZO mode away from the
first resonance peak and corresponds to the resonant recombination of the 1s exciton under
phonon emission (when wy, = 1, + wzo), compare Eq. (5.2). Finally, Peak Il coincides with
the 2s-A-exciton of the absorption coefficient and is due to the resonant excitation of the 2s
state. The results of our calculation match the experimental data of McDonnell et al. [70]
well in terms of the local peak intensities. We note that the 2s exciton is blue-shifted in our
calculation with respect to experiment, as we consider a heterostructure of one layer WSe,
on top of one layer of hBN vs. a system of monolayer WSes; sandwiched in bulk ABN in
experiment (where screening is stronger and, thus, the energy difference between 1s and 2s
excitons reduced. See Fig. 5.8 in supporting information section 5.3) [5].

Compared to the ZO mode of hBN, its in-plane LO/TO mode displays a Raman intensity
three orders of magnitude lower, yet with a qualitatively similar resonance structure as a
function of wr,. This anomalous behavior, where the ZO and LO/TO phonon modes of the
hBN layer couple differently when the incident light is in resonance with the WSe; layer,
was reported in Ref. [55], which offered a speculative explanation for the underlying Raman
scattering process. Using our atomistic first-principles approach, we can now scrutinize
the Raman scattering pathways and understand them in terms of symmetry and involved
scattering events.

From Eq. (5.2), it is evident that any contributing scattering pathway requires non-zero

optical matrix elements d and d%, as well as a non-vanishing exciton-phonon coupling ma-
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trix element ggs,. Monolayer WSe; and monolayer/bulk hBN individually possess Ds;, and
D3y, / Dg, point groups, respectively. However, when combined into a heterostructure, the
symmetry is reduced to C3, which is crucial for observing valley effects and preserving the
isotropic properties in these systems [26].

In order to infer the corresponding selection rules, we note that the underlying C5 point
group symmetry of the hnBN@WSe- heterostructure allows the classification of zero-momentum
phonons and excitons with total crystal angular momentum m = +1, 0, or —1. Each value of
m corresponds to an irreducible representation of the C'5 point group, with characters given

2mim

by e 3

for the 3-fold rotation symmetry. A finite optical strength d’ for light polarized par-
allel to the heterostructure is only possible for excitons S with mg = +1. Meanwhile, the

exciton-phonon matrix elements g 4 are non-zero only if m is conserved up to modulo 3:
mg —mg —my = 0 (mod 3). (5.6)

For the ZO-phonon (myzo = 0), this implies that active scattering pathways necessarily have
mg = mg. In contrast, for the LO/TO phonon (my,o,r0 = +1), we need to have mg = mg +1
(mod 3).

The combination of the optical and phonon-specific selection rules allows us then to
understand the nature of the resonance features |, I, and lll in Fig. 5.2a. As the 1s exciton
of WSe, is the dominant optically active low energy exciton available, resonance | and Il
are associated with the scattering process 1s — 1s, which gives rise to resonances for both
incoming (I) and outgoing (Il) light. However, while this resonance structure is seen in both
the ZO and the LO/TO mode, the latter is three orders of magnitude less intense, although
formally allowed by symmetry. To understand this enormous difference between the phonon
modes, we first note that the 1s exciton of WSe,, is in fact doubly degenerate due to time-
reversal symmetry [50]. The two members of the doublet are located at different inequivalent
corners K and K’ of the first Brillouin zone and carry the opposite m value, i.e. my, ) =
+(—)1. For the ZO mode, this implies that 1s — 1s scattering is allowed within a valley (intra-

valley scattering), while for the LO/TO mode with m value, 1s — 1s scattering is only allowed
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between 1s states in opposite valleys (infer-valley scattering). However, due to the strong
localization of the 1s exciton wave function in momentum space (see Fig. 5.7 of supporting
information section 5.3), there is only a miniscule overlap between wave functions centered
in different valleys and, as a result, the inter-valley scattering required for the LO/TO mode
is strongly suppressed and, consequently, the Raman intensity.

In order to substantiate this, we recalculate the Raman intensities by considering only
intra-exciton scattering channels, , i.e., by restricting the double sum in Eq. (5.2) to S = §'.
As shown in Figs. 5.2b and ¢, we can indeed numerically confirm that intra-exciton scattering
is absent for the LO/TO mode while being the dominant scattering process for the ZO mode.
In terms of the three most prominent resonances in the ZO mode Raman intensities, we can
thus conclude that resonances | and |l stem from 1s-to-1s intra-valley exciton scattering and
[ll from 2s-to-2s intra-valley scattering. We note that this finding is in contrast to previous
assumptions [55] that identified peaks Il and Il to the two resonances associated with the
inter-exciton scattering process 1s — 2s.

However, for the LO/TO mode, we confirm that intra-valley scattering plays no role, and
the suppressed but finite Raman intensity around the 1s exciton arises solely from weak
inter-exciton scattering. Along with the 1s exciton, these weak inter-exciton scattering pro-
cesses include finite-momentum excitonic states of pristine WSe,, which are folded onto the
I" point due to the supercell and are weakly brightened as a result of the reduced symmetry
of the heterostructure. Unlike the 1s and 2s excitons, these finite-momentum excitons of
pristine WSe, are not localized in the K valleys due to exchange interaction, as reported
in Ref. [91]. This suggests that, in addition to inter-valley scattering between degenerate
1s excitons, the 1s excitons can also scatter to these weakly brightened excitons, and vice
versa. Collectively, these inter-exciton scattering channels result in the very weak Raman

intensities observed for the LO/TO phonon mode between the 1s and 2s exciton energies.

5.2.2 Interlayer exciton-phonon coupling

While these symmetry considerations explain the difference between Raman intensities of

the LO/TO- and ZO-modes, a complementary analysis is required to understand the precise
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mechanism for interlayer exciton-phonon coupling. In order to elucidate the microscopic
mechanism, we consider the 1s — 1s scattering pathway for the ZO mode, which is the
dominant Raman scattering channel in the region w;, <1.8 eV. The 1s exciton is mostly
composed of one conduction and one valence band state 5.3, therefore we can approximate
the 1s — 1s exciton-phonon matrix element as (see supplementary information section 5.3

for details)

G0, ~ Y AL, |7 (420 — ¢20), (5.7)
k

where A}$ is the exciton envelope wave function for the single-electron transition |k, v) —
k,c). The diagonal electron-phonon matrix elements g for a single-electron state |kn)

within the framework of DFT are given by [38]

929 = /d3r |%en (r)]20,6 Vs (r). (5.8)

Here, ¢x,(r) denotes the one-electron wave function for state |kn), Vks(r) corresponds
to the total self-consistent Kohn-Sham (KS) potential, and dz0 represents the directional
derivative along the ZO phonon mode displacement vector [38]. Combining Egs. (5.7) and
(5.8), we obtain

G0 [ @r [nls ()~ nl)] B Vi), (5.9)

where nifv) (r) = Pk Ak [Yrew) (r)]* denotes an “exciton-averaged” electron (c) or
hole (v) density for the 1s exciton.

Previous studies [54, 28, 27, 20] have suggested that the polar nature of the ZO phonon
is responsible for the origin of the interlayer exciton-phonon coupling. To verify this claim,
we decompose the total perturbed potential in Eqg. (5.9) into macroscopic and microscopic
components [109]: 9, Vks(r) = 9, Vinicro(T) 4+ 0,6 Vinacro (r). These macroscopic and micro-
scopic fields are also referred to as the long-range and short-range components of the defor-
mation field, respectively, in the literature [38, 104, 109]. In polar materials, the macroscopic
component predominantly arises from a macroscopic dipole field generated by the presence

of Born effective charges and is often termed the Fréhlich field [109]. It also includes mi-

94



nor contributions from fields generated by quadrupole moments[11] and other higher-order
multipole terms for both polar and non-polar materials [42]. The microscopic component of
the perturbed potential is obtained by subtracting the macroscopic component from the total
perturbed potential. In this work, we only considered dipole terms in the macroscopic part,
as higher-order multipole terms are negligible.

In Figure 5.3, we illustrate the different components of the 1s — 1s exciton-phonon ma-
trix element, as described by Eq. (5.9). We plot the in-plane average of the change in KS
potential (divided into microscopic and macroscopic part) and the integrated electron and
hole densities as a function of the out-of-plane spatial coordinate (z). We distinguish be-
tween the region close to the hBN layer, the near field (grey shading), and the remaining
area, the far field. Figure 5.3a shows the in-plane average of the microscopic (magenta
line) and macroscopic (blue line) components of the total field (see supplementary informa-
tion section 5.3 for computational details). The macroscopic component attains a constant
value on both sides of the hBN layer and extends entirely along the out-of-plane direction,
resembling the field generated by a uniformly charged plate. Conversely, the microscopic
component vanishes asymptotically due to the charge neutrality of the system. Interestingly,
the microscopic part exhibits two prominent features: (i) a large and rapidly varying part in
the near field, and (ii) a tiny part in the far field that is localized within the WSe- layer, as
depicted in the inset of Fig. 5.3b. The former arises from the change in lattice potential due
to the displacement of nuclei and the induced field of the hBN electron density; the latter is
due to the induced field generated by the WSe, electron density [38].

The different components of the total field are felt by the 1s exciton charge density of
the WSe,, layer. In Fig. 5.3b, we depict the in-plane integrated electron and hole densities
(nijv(r)) of the 1s exciton (see supplementary information section 5.3 for similar plots corre-
sponding to different stackings and encapsulated heterostructures). Both the electron and
hole densities of the 1s exciton are mostly made up of tungsten d orbitals [112]. However,
while the electron density of the 1s exciton is completely localized within the WSe,, layer, the
hole density also has a small, but finite component in the hBN layer (see inset of Fig. 5.3b).

This component corresponds to the hybridization of the p. orbitals of the hBN layer with

95



10.0 T , —
a) 1) b) —— Electron
75 o = .
. -— Difference
50F L = Se
1yl
il
—_ 25T 111 B W
E 1y
8 00} . |
N gk x10—2  Se
—25F f - | >
-25 00| | Ao :
—50F B
e [ hBN
= MiCro 1 |
—10.0 L L I T |
—100 0 100 —0.2 0.0 0.2 04 0.6 0.8
%ea J 050 V(r)axdy (meV) S nl?v(r)dXdy (bohr—1)

Figure 5.3: lllustration of the different components of 1s — 1s exciton-phonon matrix ele-
ment as given in Eq. (5.9), plotted against the out-of-plane spatial coordinate. The horizon-
tal orange, grey, and green lines correspond to the spatial positions of the Se, W, and hBN
atomic layers, respectively. The grey/white shading represents the near-field/far-field regime
of the hBN layer. (a) In-plane averaged microscopic (magenta) and macroscopic compo-
nents (blue) of the total field. The arrows on the B and N atoms represent the ZO phonon
mode displacement pattern. (b) In-plane integrated electron and hole densities of the 1s
exciton.
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Figure 5.4: Cumulative work done by (a) the total field, (b) its macroscopic component, and
(c) its microscopic component as defined in Eq. (5.10). The vertical dashed lines indicate
the asymptotic values.

the d orbitals of the WSe, layer, i.e., to the weak chemical bond between the two layers. It
is noteworthy that the hybridization only occurs for the valence, i.e., bonding orbitals, and
not for the conduction band orbitals, owing to the favourable or unfavorable band alignment
between the hBN and WSe; valence and conduction bands, respectively. This hybridization
has been experimentally observed and reported in Ref. [63].

Finally, we consider the interaction of the electron and hole densities of the 1s exciton
with the total field to gain atomistic insight on the exciton-phonon interaction across layers.
The 1s — 1s exciton-phonon matrix element can a priori receive contributions from three
different channels: (i) the constant, macroscopic part interacting with the electron and hole
densities over all space (ii) the large near field interacting with the small hybridized hole

density in the near-field, and (iii) The small far field in the WSe, layer interacting with the
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large electron and hole densities.
To quantify the contribution of each channel to the overall exciton-phonon interaction, we

define the cumulative work W (z) along the z axis for a field 0V (r) as

W(z) = / T P (n(r) - nB(1)(@OV(r) - OV (r — o). (5.10)

—00

The cumulative work for the total field asymptotically reaches the diagonal exciton-phonon
matrix of the 1s exciton as given in Eq. 5.9 (see cumulative work section in supplementary
information section 5.3 for more details).

In Fig. 5.4, we depict the cumulative work done by the total field and its constituents,
denoting their asymptotic values with dashed, vertical lines. The cumulative work for the total
field starts from zero and reaches its asymptotic value by the end of the near-field region
as shown in Fig. 5.4a. This implies that the coupling of the 1s exciton to the ZO phonon
arises almost entirely from the electric fields in the near-field region and their interaction
with the hybridized part of the charge density of the 1s exciton. Given that only the hole
of the 1s exciton hybridizes with the hBN orbitals, the 1s — 1s exciton-phonon scattering
can be interpreted as being primarily due to the scattering of the hybridized-hole by the ZO
phonon, thereby making it a near-field effect.

To better understand the nature of this near-field effect, we further examine the con-
tributions of each individual field to the total exciton-phonon coupling by considering the
cumulative work of the macroscopic and microscopic components separately. Since the ZO
phonon is antisymmetric about the ABN plane, both the macroscopic and microscopic fields
flip their sign at the hBN layer (see Fig. 5.3a). At the same time, due to lowering of sym-
metry in the heterostructure, the hybridized-hole density around the ABN layer is not mirror
symmetric with respect to the hBN plane. In combination with the large microscopic and
macroscopic fields, this asymmetry leads to a finite amount of work in the near-field region
(see Fig. 5.4b and c). By contrast, in the far-field regime, the electron and hole distribution
are mirror symmetric with respect to the W-layer and in consequence, the net work done by

the ZO mode to the exciton cancels out.
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Figure 5.5: Resonant Raman intensities of ZO (left) and LO/]'O (right) phonor]s of hBN at
an interlayer spacing (between tungsten and hBN layer) of 5 A (orange) and 6 A (blue)

Further insights can be drawn from the behavior of the macroscopic component. While
the macroscopic part interacts with the entire electron and hole densities, the cumulative
work reaches its asymptotic value already at the interface of the hBN layer and the re-
gion around the WSe, layer does not yield a net contribution. Given that the macroscopic
component is nearly constant, the work done by the electron and by the hole compensate
each other almost perfectly in the far-field, as a consequence of the exciton being a charge-
neutral excitation. However, the macroscopic part does contribute a finite amount of work to
the exciton-phonon coupling through its interaction with the hybridized part of the hole den-
sity (Fig. 5.4c). This implies that, similar to the microscopic contribution, the macroscopic
contribution also depends heavily on the hybridized density, thereby making it a near-field
effect (see cumulative work section in supplementary information section 5.3 for more de-
tails).

Given the near-field nature of interlayer exciton-phonon coupling, it is highly sensitive to
interlayer distance, as increasing the separation between layers exponentially decreases the
interfacial hybridization and, consequently, the coupling strength. To qualitatively validate
this, we computed the resonant Raman intensities for the same heterostructure with two
different interlayer distances of 5 A and 6 A. As shown in Fig. 5.5, the Raman intensities

decrease by two orders of magnitude when the interlayer spacing is increased by 20%. This
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qualitatively agrees with the experimental observations in Ref. [62] and confirms the near-
field effect of this phenomenon.

Finally, it is important to emphasize the fundamental distinction between interlayer elec-
tron-phonon and exciton-phonon couplings. Unlike the interlayer electron-phonon coupling,
which is very strong and is predominantly caused by the macroscopic component in the
far-field region [104], the interlayer exciton-phonon coupling is much weaker and originates
in the near-field region, with nearly equal contributions coming from both macroscopic and
microscopic components. Remarkably, exciton-phonon scattering takes place even in the
absence of the macroscopic component. This implies that bond polarity is not a prerequisite
for the occurrence of the interlayer exciton-phonon scattering, contrary to current specula-

tions [54, 28, 27, 20], which hypothesized a macroscopic dipole-dipole coupling mechanism.

5.3 Supporting information

5.3.1 Computational details

All the ground state properties presented in the paper are obtained from density functional
theory calculations (DFT) within the generalized gradient approximation [86] as implemented
in the QUANTUM ESPRESSO Code [37]. We use the Perdew-Burke-Ernzerhof (PBE) func-
tional [86] and fully relativistic norm-conserving pseudo-potentials (SG15 database) to per-
form all the DFT calculations [46, 100]. A plane-wave energy cutoff of 120 Ry is used to
expand the wave functions. The heterostructure used for all the ab-initio calculations is
shown in Fig. 5.1. This heterostructure is generated using the CELLMATCH software [58],
with the same parameters as mentioned in Ref.[35]. We then relax the structure with a con-
vergence threshold of 107> Ry and 10~° Ry/Bohr for total energy and forces, respectively.
After the relaxation, the obtained interlayer distance between the Tungsten and hBN layers
is 5 A which is in good agreement with Ref. [35]. In order to avoid spurious effects of out-
of-plane periodicity, we set the vacuum separation to 20 A and employ a Coulomb cutoff in
all our ab-initio calculations [103]. We then obtain phonons and electron-phonon coupling

matrix elements within density functional perturbation theory as implemented in the PH. x
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code of QUANTUM ESPRESSO. AT centered 9 x 9 x 1 uniform k point grid is used to converge
the ground state density, and we employ the same k-grid for the phonon calculations.

To obtain the total change in the Kohn-Sham potential, d,, Vks(r), for plotting purposes,
we construct the change in the local part of the total ionic potential from the pseudopotentials
as described in Ref. [103]. This is then added to the perturbed Hartree and exchange-
correlation potentials obtained from DFPT calculations.

The macroscopic part is computed using an analytical expression from Ref. [23], given

in atomic units as

: Q +izsgn(z — z.)| - 2% - u?©

2 ;

azo Vmacro(rHaZ) — § E 6—|Q\|Z—zn|ezQ'(r—‘rn _ _
2D

ey 1+27Q- a?P - QIQ

(5.11)

Here, A is the unit cell area, G is the in-plane reciprocal vector, Q and 2 are unit vectors

along Q and z, respectively, sgn is the sign function, and a2 is the polarizability tensor
which is given by

a? = (e 1), (5.12)

T dr
where € is the static dielectric tensor, and c is the out-of-plane lattice constant. The quantity
Z* is the Born effective charge tensor of atom . The displacement vector for the ZO phonon
mode, uZ?°, is

1
70 = ——eéf 5.13
tw 2Mywzo ©z0; ( )

where e’ is the phonon eigenvector, wzo is the frequency of the ZO phonon mode, and
M, is the atomic mass of atom «.

All the many-body perturbation theory calculations are performed on top of DFT calcu-
lations with the YAMBO code [65, 99]. In order to correct the Kohn-Sham band structure,
we perform a GyW, calculation on a uniform I" centred 12 x 12 x 1 grid with a total of 2600
Kohn-Sham states. A plane wave cutoff of 2 Ry is used for the dielectric tensor to obtain
the converged band gap. The frequency dependence of the dielectric tensor is calculated
with the plasmon-pole approximation [40]. We also use a G-terminator [10] and RIM-W

technique [44] to accelerate the convergence of the bandgap with respect to bands and k
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points respectively. We interpolate the quasiparticle corrections to a finer k-point grid with
the Wannier90 code [89].

We solve the Bethe—Salpeter equation (BSE) within the Tamm-Dancoff approximation
[22] starting from our previous mean field calculations with the YAMBO code. In order to
obtain the converged absorption spectrum, we use a uniform I centered 48 x 48 x 1 grid
with a total of 600 bands. We include the top eight valence and bottom eight conduction
bands in constructing the kernel matrix. A plane wave cutoff of 25 Ry and 2 Ry is used for
the exchange and the screened Coulomb part of the kernel. We use the Elemental library
[90] to diagonalize the entire BSE Hamiltonian.

Finally, we employ Egs. (2), (5.5) and (5.3) to compute the Raman scattering matrix ele-
ments from the dipoles, electron-phonon matrix elements and BSE envelope wave-functions.
The summation in the Raman scattering matrix element is performed over the first 48000 ex-
citonic states and the decay constant (v) is set to 5 meV. We define the Raman intensity as
the differential cross-section, averaged over the polarization of the incoming light at normal

incidence and summed over the in-plane polarization of the outgoing light.

5.3.2 GW Band structure and exciton wave functions

In Fig. 5.6, we show the GW band structure for monolayer WSe- placed over a single layer of
hBN. We interpolated the GW corrections on the high symmetry path using the Wannier90
code

In Fig. 5.7, we plot the excitonic wave functions in reciprocal space (“envelope wave
function”) defined as

(k) =Y |45, (5.14)

kcv
cv
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Figure 5.6: GW band structure of WSe,/hBN heterostructure used in the main paper
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5.3.3 Cumulative work

In the main text, we introduced the term cumulative work. The cumulative work, W (z),
does not have a direct physical interpretation, although its asymptotic value for the total field
corresponds to the diagonal exciton-phonon matrix element. This quantity is introduced to

serve two purposes:

» To quantify the contributions of microscopic and macroscopic fields to the exciton-

phonon strength.

+ To identify the contributions from different spatial regimes to the interlayer exciton-
phonon interaction, providing insight into whether the interlayer exciton-phonon cou-

pling is microscopic or macroscopic.

To this end, W(z) is defined by replacing the upper bound of the integral in Eq. (6) of the
main text with the out-of-plane coordinate z. Since it represents an integrated charge density
multiplied by the change in potential, we label it as “cumulative work”.

Furthermore, according to Eq. (6) of the main text, the exciton-phonon matrix element
remains unchanged when a constant field E, is added to the total field due to the charge

neutrality of an exciton:

/d?’r [ne® (x) = 1y ()] (9,0 Vs (v) + Eo) = Gy + /dgr [ne*(x) = n,*(x)] Eo

— glzs?ls + Ep x U Prals(r) — /d3rn11)3(r)] — les?ls-

This implies that we have the freedom to add or subtract a constant field in Eq. (6). Based
on this, we subtract the constant asymptotic field (9V (r — oc)) on the right-hand side of
Eqg. (7) to isolate and discard its interaction with the electron and hole densities, as it does
not contribute to exciton-phonon coupling.

By discarding the constant asymptotic field, the cumulative work of the macroscopic field

reaches its asymptotic value when approaching the hBN interface, as shown in Fig. 3b. This
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indicates that the macroscopic contribution arises from the interaction of the macroscopic
field with only the interfacial hybridization. Therefore, the macroscopic contribution is directly
related to the extent of interfacial hybridization.

Alternatively, this can be shown from Eq. (6):
GEO,, ~ / Pr [l (r) - n25(2)] B, Vics(r) = / Br [125(r) — n2(1)] (8,0 Vinaoro (£)+ 0y Viniero (1)

glzs(,)ls ~ glzgf;nicro + /dsr [nis(r) - nzl;s(r)] 96 Vmacro ()

Due to the ZO phonon mode being approximately anti-symmetric with respect to the hori-
zontal mirror plane of ABN (i.e., it changes sign about the hBN plane), we can express the
macroscopic field as 9, Vinacro(r) = EoSgn(z — znpn) (see Fig. 2a of the main text), where

znan is the out-of-plane coordinate of the ABN layer, and sgn is the signum function.

. ZhBN (e’
G20, ~ GFOmiero _ / Br [n1*(r) — nl#(x)] Bo + / &r [n2*(r) — nk* ()] Eo

—00 ZhBN

. o ZhBN
615, ~ G100+ [ e [l =] B2 [ @ ) =l (o)) B

70 70 ,micro FhBN 3 1s 1s
gls,ls ~ gls,l’s - 2/ d’r [nc (I‘) — Ny (I‘)] EU
which implies that the macroscopic component only arises from the macroscopic field in-
teracting with the interfacial hybridization density. We would like to highlight that this holds

even for an encapsulated heterostructure.

5.3.4 Resonant Raman spectra of other possible heterostructures

In this section, we show the resonant Raman spectra and the averaged electron and hole
densities of the 1s exciton for different stacking configurations. To reduce computational
costs, we omit the computation of GW corrections to the band structure and instead ap-
ply a scissor operator to match the experimental optical gap. Applying a scissor operator

instead of the GW corrections induces an asymmetry in peaks | and Il; nevertheless, the
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only purpose of this section is to show that our conclusions remain valid when choosing dif-
ferent heterostructures. Unless explicitly stated, all calculations use the same convergence
parameters as mentioned in the computational details. All Raman intensities are scaled by

the same factor; therefore, Raman intensities from different plots are comparable.

Encapsulated monolayer WSe-
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Figure 5.8: Absorption spectra of the single-layer hBN heterostructure (red) and the encap-
sulated heterostructure (blue). The 2s exciton energy is red-shifted by an energy of ~ 30
meV when encapsulated with two layer of ABN on both sides.

Firstly, we compare the absorption spectrum of the encapsulated heterostructure with
that of the single hBN heterostructure. Experimentally, the energy difference between the
1s and 2s excitons is approximately 150 meV for the sandwiched structure, while our calcu-
lations indicate that this energy difference is approximately 200 meV for monolayer WSe,
on a single layer of hBN. However, as shown in Fig. 2a of Ref. [5], the 1s — 2s energy
difference for a suspended monolayer of WSe, (which closely resembles our structure) is
approximately 200 meV, while on a substrate the difference is reduced to approximately 160
meV. This confirms that the difference ~ 50 meV between peaks Il and Il is probably due

to insufficient dielectric screening. We further confirm this by computing and comparing
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the absorption spectra of the single-layer hBN heterostructure with that of the encapsulated
heterostructure (with two layers of BN on both sides), as shown in Fig. 5.8.

Next, in Fig. 5.9a, we show the resonant Raman intensities for different out-of-plane
modes in monolayer WSe, encapsulated with two layers of BN on both sides. The Z0O; and
7 04 modes exhibit higher intensities than the others, as both microscopic and macroscopic
fields interact with the higher hole density near the closest BN layers, as shown in the inset
of Fig. 5.9c. We note that the (small) difference in coupling to the 1s exciton between the
701 and Z0O, modes arises from the difference in stacking with respect to the WSe, layer.
The Z0O4 mode gains Raman intensity through the interaction of its finite macroscopic field
(generated by the out-of-phase motion of atoms) with the hybridized density at the nearest
layers. In contrast, the macroscopic field generated by the Z0O3 mode is antisymmetric
with respect to the tungsten layer within the outermost ABN layers. This symmetry causes

contributions from both sides to nearly cancel out, resulting in vanishing Raman intensity.

Dependence on twist angle

In the main text, we present the calculations on a heterostructure with a rotation angle of
approximately 100° between the hBN and WSes layers. In Fig. 5.10, we show the resonant
Raman spectrum and the electron and hole densities for the 1s exciton of the WSe, mono-
layer in heterostructures with different stacking angles. Differences between the spectra as
well as between the electron and hole densities are minor. This confirms our assumption
in the main text that the physical mechanism of interlayer exciton phonon coupling is rather

insensitive to the twist angle of the interface.
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Figure 5.9: a) Resonant Raman intensities as a function of incoming light energy for the ZO
modes in encapsulated monolayer WSe-. b) Displacement vectors for different ZO phonon
modes. The illustrations were created using Xcrysden [57] software, with a square-root
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Figure 5.10: (Left) Resonant Raman intensities for the LO/TO and ZO modes of the hBN
layer as a function of incoming light energy for heterostructures with different stacking an-
gles. (Right) Averaged electron and hole densities of the 1s exciton.
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Resonant Raman spectra and averaged electron-hole densities of 1s exciton for com-

plex heterostructures

In Appendix Ref C, we present the resonant Raman spectrum and the averaged electron-
hole densities for several heterostructures obtained by laterally shifting the hBN layer in the

structure shown in Fig. 5.1 (the same structure as used in the main text).

5.3.5 Experimental Data

The experimental Raman intensities for the hBN ZO mode were obtained by analyzing the
raw data recorded for a hBN-encapsulated monolayer WSe, heterostructure, which was
provided in the supplementary information of Ref. [70, 69]. While the experimental Raman
spectrum features multiple Raman peaks between 750-820 cm~!, we take the intensities of

the peak near 815 cm~! as the ZO mode intensities.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In conclusion, we show how crystal symmetries act on excitonic states and demonstrate
that the induced representation is linear, similar to that of phonons. Moreover, we develop a
robust ab-initio method to compute representations of the excitonic state. Unlike previously
existing methods, which require a manual analysis of each state, the method introduced in
this thesis to compute excitonic representations can be applied to a wide range of materials,
even when they deviate from the conventional Wannier or Frenkel exciton picture.

We then apply our developed formalism to understand the symmetries in exciton-photon
and exciton-phonon interactions. In particular, we study the underlying selection rules that
govern the coupling of light with excitons and the scattering pathways of excitons by phonons.
In order to demonstrate these selection rules, we apply our method to a wide range of ma-
terials such as LiF, transition metal dichalcogenides (TMDCs), and hBN.

Beyond fundamental insights, our work introduces practical computational advances.
While symmetries are widely used in density functional theory (DFT), their role in exciton-
phonon calculations has been largely ignored due to phase mismatch issues. We have
developed a methodology to systematically restore symmetry considerations in state-of-the-
art exciton-phonon calculations, leading to substantial reductions in computational cost while

preserving accuracy. These improvements enable efficient calculations of exciton-phonon
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coupling in complex systems.

In the final part of this thesis, we theoretically and computationally investigat the coupling
of excitons and phonons across layers and its signature in resonant Raman scattering. Using
symmetries, we identify the main exciton-phonon scattering channel in the Raman process
of a prototypical WSe,@hBN heterostructure. We find that the exciton-phonon coupling is
due to the scattering of the hybridized hole part of the WSe, exciton with the deformation
potential of the hBN phonon. This finding sheds light on the nature of the exciton-phonon
coupling, which previously was hypothesized to be due to a macroscopic, polar dipole-dipole
interaction, but which we actually find to be a near-field effect. We provide the first micro-
scopic explanation for this phenomenon, resolving a long-standing question in the field. This
understanding of the interlayer exciton-phonon coupling in two-dimensional heterostructures
can be a valuable guide for tailoring inter-layer interactions in such systems.

Finally, | present three newly developed computational tools that have made it possible

to perform the calculations presented in this thesis:

* Létzebuerg Electron-Phonon Code (LetzEIPhC): A software developed to compute
electron-phonon matrix elements. LetzEIPhC is written in C with multiple levels of par-
allelization, enabling efficient execution on large-scale high-performance computing
(HPC) systems. This code fully exploits all symmetry operations in a crystal, sig-
nificantly reducing both computational time and storage requirements. Moreover, it
computes the representations of electronic states, which are a central ingredient for
constructing the excitonic representation matrix. By leveraging symmetry operations,
LetzEIPhC enables exciton-phonon calculations without symmetry breaking, making it
possible to study much larger systems than previously feasible. Additionally, it fixes
the longstanding issue with phases when computing exciton-phonon matrix elements

using symmetries, a problem that has plagued computations over the last few years.

* Ydiago: A library developed for efficient diagonalization of large Bethe-Salpeter equa-
tion (BSE) matrices, which is essential for excitonic calculations. Before this work,

diagonalizing these matrices in Yambo was a major computational bottleneck. Ydiago
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provides an efficient and scalable solution to this problem, allowing the treatment of
significantly larger systems and enhancing the overall performance of BSE calcula-

tions.

» PhdScripts: Set of Python scripts that allow us to compute the irreducible represen-
tation labels for the excitonic states, exciton-phonon matrix elements with full crys-
tal symmetries, as well as resonant Raman intensities and phonon-assisted lumines-
cence intensities. Due to the use of symmetries, these scripts enable a more efficient

computation of exciton-phonon properties compared to existing implementations.

6.2 Outlook

The findings of this thesis offer valuable insight into the symmetry properties of excitons
and their implications for optical processes across various material systems. The method-
ologies developed herein establish a robust framework for understanding selection rules
in resonant Raman scattering and phonon-assisted luminescence, which can also be eas-
ily extended to other processes. Moreover, the computational tools developed to compute
resonant Raman scattering, phonon-assisted luminescence, irreducible representations of
excitons, and exciton-phonon lifetimes, which exclusively employ symmetries to reduce com-
putational costs, makes it now possible to apply these methods to much larger systems and
allows for high-throughput calculations. One could use these methods and tools on a wide
range of materials, such as magnetic insulators (e.g., Crls, BiFeO3) and hBN defect systems,
thereby deepening our understanding of their optical responses.

A key direction for future research involves the leveraging of the symmetry properties
of excitons described in this thesis to reduce computational costs. Currently, the use of
symmetry operations in exciton calculations within publicly available many-body codes re-
mains limited. By incorporating the expressions developed here, computations of excitons
and exciton-phonon interactions could be significantly accelerated, thereby enhancing exist-
ing computational frameworks, particularly for high-throughput exciton calculations. More-

over, an important application of the proposed methodology is to block diagonalize the BSE
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Hamiltonian, where each block corresponds to an irreducible representation. In order to
block digonalize, we need to construct the symmetry adapted basis which can be done us-
ing projection operators. This greatly reduces the time for BSE kernel construction, time for
diagonalization of BSE Hamiltonian, local storage, and RAM memory requirements when
performing BSE calculations.

Additionally, while this thesis has focused primarily on excitons and their interactions with
phonons, the study of magnons in magnetic insulators represents another important direc-
tion for future research. Magnons are known to appear in optical spectroscopic measure-
ments, such as in Raman spectra of magnetic materials which are important when study-
ing magnetic properties of materials. Recently, a new method was developed to compute
magnons with the BSE formalism [82]. A logical extension of this work would be to under-
stand their symmetries and their coupling with other quasiparticles, such as phonons [59].

Finally, it is important to highlight that although symmetries drastically reduce the compu-
tational cost of exciton-phonon calculations, there remains a need for interpolation methods
for excitons and exciton-phonon interactions, such as Wannier interpolation [68]. Wannier
interpolation of electrons [68], phonons, and electron-phonon matrix elements [39] has sig-
nificantly reduced the computational time required to compute properties such as carrier
mobilities [61]. Similarly to the electron-phonon case, fine Q-point grids are required to
compute exciton-phonon lifetimes and phonon-assisted luminescence or absorption spec-
tra accurately, because of their high sensitivity to the location of the exciton minima. A
promising direction for future work is to utilize the recently developed Wannier functions for
excitons [45] and extend them to interpolate exciton-phonon matrix elements. This would
enable for more efficient and converged exciton-phonon calculations, making large-scale

simulations feasible.
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Appendix A

Létzebuerg Electron-Phonon Code
(LetzEIPhC)

This appendix is taken from the documentation of the LetzEIPhC code [78] that was written

by me.

A.1 About the Code

LetzEIPhC is a C code designed to compute electron-phonon coupling matrix elements from
the outputs of standard Density Functional Theory (DFT) and Density Functional Perturba-
tion Theory (DFPT) calculations. Currently, it only supports the Quantum Espresso code,
but we have long plans to support the Abinit code as well. The main objective of this coding
project is to facilitate electron-phonon related calculations within the YAMBO code (version
5.2 and above), and it works only with norm-conserving pseudo-potentials. The code is

released under the MIT license and hosted on GitHub [link].

A.1.1 Main Features

» Utilizes full crystal symmetries, ensuring compatibility with the YAMBO code, without

encountering phase issues.
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» Implements multiple levels of parallelization, including OpenMP, plane-wave, k-point,

and g-point parallelization.
» Utilizes fully parallel IO via parallel NetCDF-4/HDF5 libraries.

* Highly portable. The code can be compiled on various CPU architectures and operat-

ing systems with minimal to no changes in the source code.

A.2 Installing the Code

A.2.1 Mandatory Requirements

GNU Make

C99 compiler with complex number support, such as GCC, Clang, ICC, AMD C-
Compiler, MinGW (for Windows), PGI, or Arm C compilers.

MPI implementation supporting at least MPI-standard 2.1 standard, such as Open-

MPI, MPICH and its variants, Intel MPI compiler, or Microsoft MPI (for Windows).

FFTW-3 or Intel-MKL.

HDF5 and NETCDF-4 libraries with Parallel 10 support (compiled with MP1).

A BLAS library, such as OpenBLAS, BLIS, Intel-MKL, or Atlas.

A.2.2 Installation Process

LetzEIPhC employs a standard make build system. Sample make files are available in the
sample_config directory. Copy one to the src directory and rename it as make.inc. Navigate
to the src directory and edit make.inc according to your requirements. Then, in the same

directory, execute the following commands:

1 $ make
2 #### To compile the code in parallel, use the —-3j option

3 $ make -j n

117



4

20

21

22

23

#### where n is the number of processes.

Upon successful compilation, you should find the lelphc executable located in the src di-
rectory. If you encounter difficulties in locating the required libraries, go to the YAMBO code
installation directory and open the report file in the config directory, which lists all necessary
libraries and include paths.

Below are the list of variables in the make.inc file with explanations.

cC := mpicc

#### MPI C compiler mpicc/mpiicc (for intel),
CEFLAGS := =03

#### —-03 is to activate compiler optimizations
LD_FLAGS =

#### use this to pass any flags to linker

#H### *x+x OPENMP BUILD #x*%

#### If you wish to build the code with openmp support
#### uncomment the below line

# OPENMP_FLAGS := —-DELPH_OMP_PARALLEL_BUILD

#### Aditionally, you need to add openmp compiler flag to
#### CFLAGS and LD_FLAGS.

#### Also uncomment the below two lines

# CFLAGS += —fopenmp ## use —-gopenmp for intel

# LD_FLAGS += —fopenmp ## use -gopenmp for intel

#### FFTW3 include and libs (see FFT flag in yambo config/report)

FFTW_INC := -—I/opt/homebrew/include

FFTW3_LIB := -L/opt/homebrew/lib -1fftw3_threads -1fftw3f -1fftw3f_omp

-1fftw3_omp -1fftw3

#### Note if using FFTW

#### Yambo uses double precision FFTW regardless of the precision with which
Yambo is built. In contrast, you need to link single (double) precision FFTW
for single (double) precision LetzElPhC. please refer to https://www.fftw.org
/fftw3_doc/Precision.html . Also you refer to https://www.fftw.org/fftw3_doc/

Multi_002dthreaded-FFTW.html if compiling with openmp support.
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#### If you want to compile the code in double precession, uncomment the below

#CFLAGS += -DCOMPILE_ELPH DOUBLE

#### Blas and lapack libs (see BLAS and LAPACK flag in yambo config/report)
BLAS_LIB := -L/opt/homebrew/opt/openblas/lib -lopenblas

#### you need to add both blas and lapack libs for ex : —-lblas -llapack

#### netcdf libs and include
#### (see NETCDF flag in yambo config/report)
NETCDF_INC := -I/Users/murali/softwares/core/include

NETCDF_LIB := -L/Users/murali/softwares/core/lib —-lnetcdf

#### hdf5 1lib (see HDF5 flag in yambo config/report)

HDF5_LIB := -L/opt/homebrew/lib —-1hdf5

#### incase if you want to add additional include dir and libs
INC_DIRS 5=

LIBS 8=

#### Notes Extra CFLAGS

### add -DCOMPILE_ELPH_DOUBLE if you want to compile the code in double
precession

### if you are using yambo <= 5.1.2, you need to add "-DYAMBO_LT_5_1" to cflags

### for openmp use -DELPH_OMP_PARALLEL_BUILD in CFLAGS and set —-fopenmp in

LD_FLAGS and CFLAGS

A.3 Running the Code

A.3.1 Running DFT and DFPT (Step 0)
Before using LetzEIPhC, ensure you have obtained the following quantities:

« Kohn-Sham wavefunctions (obtained from a non-self-consistent calculation after ob-

taining the ground state density of the system).
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» Phonon eigenvectors and perturbed Hatree and Exchange potentials due to phonon

modes (obtained from a DFPT run after finding the ground state).

With the Quantum Espresso code, follow these steps (an example is provided in exam-

ples/qe/silicon):
+ Perform a self-consistent field (SCF) calculation to obtain the ground state.

» Perform a DFPT calculation using the ph.x executable to obtain dynamical matrices

and changes in potentials on a uniform g-point grid.

» Perform a non-self-consistent field (NSCF) calculation to obtain the wavefunctions on

a uniform k-point grid. The k-grid and g-grid of phonons must be commensurate.

Note: Set the dvscf flag in the ph.x input to save the change in potentials. If you forget to set
this varaible, you have to rerun the entire calculation. Additionally, make sure that the g-grid
is commensurate with the k-grid used in the NSCF calculation (Although, the choice of kgrid
to converge the SCF calculation is irrelevant). Once these steps are completed successfully,
go to the NSCF folder and enter the prefix.save directory, where the wavefunctions are

stored. Then, execute p2y followed by yambo to generate the SAVE folder:

18 p2y
2 #### Generates the YAMBO SAVE directory
3 $ yambo

4 #### Further processing creates additional files

Upon successful completion of these steps, we are ready to use LetzEIPhC.

A.3.2 Running the Preprocessor (Step 1)

Once the SAVE directory is obtained, we need to create the ph_save folder. Navigate to the

phonon calculation directory and run the preprocessor with the -pp flag:

1 $ cd /path/to/phonon calculation directory
2 #### Run the preprocessor

3 $ lelphc -pp --code=ge -F PH.X_input_file
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4 #### Where PH.X input_file is the input file of ph.x code used for computing

phonons

Upon successful execution, the ph_save directory will be created, containing all necessary

files. If you wish to change the name of the ph_save directory, you can set the following

environment variable:

S export ELPH_PH_SAVE_DIR=ph_save_name_you_want

Remarks:

» The new format XML dynamical matrix files are currently not supported.

A.3.3

Performing the ELPH Calculation (Final Step)

Once both the SAVE and ph_save folders are created, the ELPH calculation can be exe-

cuted. Run the following command with the LetzEIPhC input file in any directory where you

wish to perform the calculation:

1 $ mpirun -n 4 lelphc -F LetzElPhC_input_file

2 ## Here, we are using 4 MPI processes.

A detailed description of the input file is provided below:

nkpool =1

# k point parallelization (number of kpools)

ngpool =1

# g point parallelization (number of gpools)

##

##
##
##
##
##
##

note (nkpoolxngpool) must divide total number of cpus.

For example, if you run the code on 12 processess,

and set nkpool = 3 and ngpool = 2

then, we have 2 sets of cpus working subset of gpoints
with each group having 3 sub groups which that work on
subset of kpoints. So in total, we have 6 subgroups, each

having 2 cpus that distribute plane waves
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## {1,2,3,4,5,6,7,8,9,10,11,12} (total cpus)
## |

#4+ | divided in to 2 gpools \

## (gpool 1) {1,2,3,4,5,6} (gqpool 2) {7,8,9,10,11,12}
#4# | \

## | | \ | \ |

## kpl kp2 kp3 kpl kp2 kp3

## where kpl are kpools each containg 2

## cpus work on subset of plane waves

start_bnd =1

# starting band to consider in elph calculation

end_bnd = 40

# last band to consider in elph calculation

save_dir = SAVE

# SAVE dir you created with yambo

ph_save_dir = ph_save

# ph_save directory that was created with preprocessor

kernel = dfpt

## 1) dfpt (default): Uses the total change in the Kohn-Sham potential

DFPT screening) .

## 2) dfpt_local g Excludes the contribution from the non-local part

of the pseudopotentials (p.p.) .

## 3) bare : No screening; includes only contributions from the

local and non-local parts of the pseudopotentials.

## 4) bare_local : Includes only the contribution from the local part

of the pseudopotential.

convention = standard

# standard/yambo, If standard (default)
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48

49

# <k+g|dV|k> is computed.

if yambo,

<k|dV|k-g> is outputed

### 4##, !, ; are considered as comments
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Appendix B
Ydiago

In this appendix, we discuss the Ydiago library code that was written during my Ph.D. to
allow efficient diagonalization in the YAMBO code. This text is taken directly from a section
that | have contributed to Ref. [72]

We present a specialized algorithm for diagonalizing the BSE Hamiltonian without TDA,

R C X7 X7
-ct —-D Y; Y;

We are particularly interested when D = R* and C = C7, as outlined in Ref. [102].

which is given as

Throughout this section, we assume the conditions D = R* and C = CT. The first step
in solving the BSE Hamiltonian with this specific structure is to construct a real symmetric

matrix M, of the same dimension, which satisfies the following equation:

R C
Qf ( ) Q= —iJM, (B.2)

where J is a real skew-symmetric matrix and Q is a unitary matrix, defined as:

oo LTy (o1 83)
ve2\r ) T \ar o) '

The expression for M,. is:
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M, — Re(A+B) Im(A—-B) ' (B.4)
—Im(A+ B) Re(A - B)

It has been shown that if M is positive definite in this special case, M, will also be positive
definite [102]. If M, is positive definite (which is highly probable), we can perform a Cholesky

decomposition on the real symmetric matrix M, i.e.,

M, =LL" (B.5)

where L is a real lower triangular matrix. This transforms the original eigenvalue problem

X X
LT [T =T [ (B.6)
Yr Yr

where W = LTJL is a real skew-symmetric matrix, and —il¥ is Hermitian, sharing

into the following form:

the same eigenvalues as the original BSE Hamiltonian. From Eq. (B.6), it is evident that
the eigenvalues of W differ from those of the BSE matrix by a factor of —i. Since the
eigenvalues of a skew-symmetric matrix occur in pairs and are purely imaginary, this means
that the eigenvalues of the BSE matrix must be real and occur in pairs, i.e., (—wr,wr). Thus,
the entire BSE problem in this special case can be interpreted as a real skew-symmetric
eigenvalue problem.

The most computationally demanding step in diagonalization is often the tridiagonaliza-
tion of a symmetric or Hermitian matrix. The algorithm presented here allows for the tridiag-
onalization of a real matrix instead of a Hermitian one, significantly reducing both floating-
point operations and storage requirements. However, not all eigensolver libraries support
a real skew-symmetric solver. For example, the ELPA library provides this functionality in
newer versions, while the Scalapack library does not. Nonetheless, the tridiagonalization
routines for symmetric matrices can be adapted slightly to handle skew-symmetric matrices,
as both largely share the same computational operations. Once the tridiagonal form of the

skew-symmetric matrix is obtained, multiplying the result by —i enables the use of Hermitian
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tridiagonal solvers to compute the eigenvectors of W. Solving the tridiagonal eigenvalue
problem is typically not the main computational bottleneck, as efficient algorithms like the
MRRR method, which scales as O(n?) [24], or the divide-and-conquer approach, which
scales as O(n?) but uses highly optimized General Matrix-Matrix Multiplication (GEMM) op-
erations.

After calculating the eigenvectors, a back-transformation is applied to recover those of
the BSE matrix. Due to the specific structure of the @ matrix in Eq. (B.3), explicit GEMM
operations with it can be avoided, further optimizing the procedure. Furthermore, the left
eigenvectors for positive eigenvalues and the left/right eigenvectors corresponding to their
negative partners can be determined without explicit computation [102]. Consequently, we
only need to compute the right eigenvectors associated with positive eigenvalues. The left
and right eigenvectors of the positive and negative eigenvalues for the BSE matrix are re-

lated as follows [102]:

Right eigenvector for w Left eigenvector for w

() )
Y i (B.7)

Right eigenvector for —w Left eigenvector for — w
Yy =Yy
X7 X7

It is important to emphasize that, in contrast to standard generalized Hermitian eigen-

where w > 0.

value solvers, this method reduces floating-point operations for the most computationally
expensive steps. Additionally, using a direct standard generalized Hermitian eigenvalue
solver on the BSE matrix may destroy the special properties of this matrix and potentially
break degeneracies [102], which is undesirable in such calculations. This approach not only
improves efficiency but also ensures robustness against such errors.

We now describe the implementation of the previously discussed algorithm within the

Yambo code. Before delving into the diagonalization procedure, we first address the chal-
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lenges encountered while optimizing the diagonalization routines in Yambo. Despite both the
Yambo code and Scalapack being in existence for over two decades, effectively interfacing
them posed significant challenges due to Yambo’s choice not to adopt the standard block-
cyclic data layout for the BSE matrix. While Scalapack provides data redistribution routines,
they are primarily designed to convert between different block-cyclic layouts, offering limited
flexibility for Yambo’s matrix structure.

A primary reason for Yambo not adopting a block-cyclic layout is the high computational
cost involved in constructing the BSE matrix. The construction of the BSE matrix generally
scales as O(n®), which is substantially more computationally intensive than the diagonal-
ization routines. Each matrix element requires performing a Fast Fourier Transform (FFT)
convolution followed by a GEMM operation, making data distribution a crucial factor for op-
timizing performance. Furthermore, in most instances, the FFT data size fits within CPU
caches, which limits the parallelization of these operations across a large number of CPUs.
Additionally, Yambo must store large wavefunction arrays to compute these matrix elements,
leading to significant memory consumption.

To mitigate these challenges, Yambo leverages symmetries to reduce the number of op-
erations. Most computations are performed within the same MPI rank to avoid redundant
calculations and minimize memory usage as well as communication overhead due to MPI
latency and synchronization. This approach results in significant improvements in computa-
tional efficiency, leading to faster execution times and better scalability. However, this comes
at the cost of not being able to adopt block-cyclic layouts. Consequently, the first step in en-
hancing diagonalization in Yambo is optimizing the data distribution routines, which involve
transforming a matrix arbitrarily distributed across MPI processes into a standard block-
cyclic layout. This transformation allows the use of most standard linear algebra libraries.

In Yambo, the redistribution of data from an arbitrary distribution to a block-cyclic layout
occurs in two main stages. First, the matrix elements are locally grouped along with their
corresponding global indices according to their destination rank. Then, a single A11toAllv
operation is used to transfer the data to their appropriate destinations according to the block-

cyclic layout.
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Although this redistribution process may seem memory-intensive, the peak memory foot-
print is relatively small when compared to the memory required for constructing the BSE
matrix. Moreover, the redistribution can be executed in multiple batches to further reduce
peak memory usage, ensuring scalability even for large-scale calculations.

Once the matrix has been appropriately redistributed, standard functions from linear al-
gebra libraries can be used to perform efficient computations. For the TDA case, where the
BSE matrix is Hermitian, standard Hermitian eigensolvers from ELPA or Scalapack are em-
ployed. ELPA offers two types of Hermitian solvers, with type-2 being the default in Yambo.
Users have the option to modify the solver selection via input parameters. In Scalapack, the
p2heevr solver is used. Both solvers allow for the computation of the lowest part of the
spectrum. Additionally, Scalapack provides functionality for extracting eigenvectors within a
specified range of eigenvalues or indices. If eigenvectors for more than 5% of the spectrum
are required, direct diagonalization routines are recommended. For smaller fractions of the
spectrum, iterative solvers, which will be discussed in the next section, are preferred.

For the special case of the BSE matrix, the algorithm described earlier is implemented. A
key difference between ELPA and Scalapack is that ELPA includes a dedicated solver for real
skew-symmetric matrices, whereas Scalapack lacks this feature. As a result, when using
Scalapack, we rely on its Hermitian solver, which generally results in slower diagonalization
compared to ELPA.

With the new implementation of the diagonalization solver, which can be used to obtain
either the full or partial eigenspectrum, we address the long-standing bottleneck associated

with the diagonalization of BSE matrices in the Yambo code.
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Appendix C

Resonant Raman spectra and
averaged electron-hole densities of
the 1s exciton for other possible
stackings of the .BN@WSe,

heterostructure

In this appendix, we present the resonant Raman spectrum and the averaged electron-
hole densities for several heterostructures obtained by laterally shifting the hBN layer in the
structure shown in Fig. 5.1 (the same structure as used in the main text). These calculations
have been performed to demonstrate that the interlayer exciton-phonon coupling mechanism
is insensitive to details of the hybridization (which depend on twist angle and translations).
To reduce computational costs for these test calculations, we used a uniform I"-centered
k-grid of 6 x 6 x 1 and disabled spin-orbit coupling during the self-consistency cycle to
obtain the ground state density, as well as to compute dynamical matrices and Hartree-
exchange deformation potentials. A denser k-grid of 18 x 18 x 1 was used for the BSE

calculations. Although spin-orbit effects were neglected during the calculation of the static
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dielectric function (where 300 bands were used instead of 600), they were explicitly included
when constructing the BSE kernel and evaluating the electron-phonon matrix elements. All
other parameters are identical to those detailed in the computational methods section. In
figure C.1, we show resonant Raman spectra and averaged electron-hole densities for the 1s
exciton. As seen in the subfigures, the structural details play a negligible role in the resonant
Raman spectrum and the hybridization of the hole density. The interlayer distance was kept

the same in all cases.

Figure C.1: Resonant Raman spectra (left column) and averaged electron-hole densities of
1s exciton(right column) for different heterostructures obtained by laterally shifting the hBN
layer in the structure shown in Fig. 5.1. The grey shading represents the imaginary part of
the 2D polarizability tensor. The coordinates on each sub-figure denote the shift in crystal
units, i.e., (I1,12,13) corresponds to a shift of ;@ + lsb + Isé, where @, b, and ¢ are the lattice
vectors of the heterostructure shown in Fig. 5.1.
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Density of states

Since it is computationally very expensive to perform BSE calculations for other stackings,
we examine the atom-projected density of states (DOS) at the valence band edge for dif-
ferent twist angles. As the hole wave function for the 1s state is composed of states near
the valence edge, any presence of hBN states near the valence edge confirms interfacial
hybridization. If the heterostructure contains n; x ny x 1 WSes unit cells, then we choose
the k-grid as {[+27 x [2] x 1}.

In Fig. C.2, we show the total density of states and atom-projected density of states
for tungsten and nitrogen atoms near the valence band edge. In all stackings, we observe
robust hybridization between nitrogen p. orbitals and the d orbitals of tungsten atoms. There-
fore, we expect that, for all of these stackings, the interlayer exciton-phonon coupling mech-
anism remains intact.

We would like to emphasize that a relatively coarse grid was used to compute the DOS
due to limitations in computational resources. This leads to some quantitative differences
in the DOS across different structures. These discrepancies arise from the incomplete in-
clusion of same-energy states during the summation in the DOS calculation. For example,
when n; and ny are factors of 12, the same states are included in the summation, resulting in
nearly identical DOS for different twist angles, even though the configurations have different

numbers of atoms (see plots (c) and (d) in Fig. C.2).
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