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Abstract

Excitons, bound electron-hole pairs, play a crucial role in governing light-matter interactions

in two-dimensional materials and wide-bandgap insulators such as hexagonal boron nitride.

To obtain the energies and eigenstates of excitons, the state-of-the-art method is to solve

the Bethe-Salpeter equation (BSE). Over the past two decades, many new approaches have

been developed to compute exciton dynamics, including their coupling with phonons. These

methods have been successful in determining properties such as exciton lifetimes and in un-

derstanding the optical spectra associated with them. Despite this progress, the symmetries

of excitons and the selection rules associated with them have been largely overlooked.

In this thesis, we demonstrate how excitonic states transform under the action of crystal

symmetry operations. In particular, we present a robust method for computing the represen-

tations of excitonic states. We apply this framework to analyze the selection rules govern-

ing exciton-photon and exciton-phonon interactions, which manifest themselves in spectro-

scopic techniques such as resonant Raman spectroscopy, absorption, and phonon-assisted

luminescence across a wide range of materials.

Furthermore, we explore a particularly intriguing phenomenon in two-dimensional het-

erostructures: interlayer exciton-phonon coupling. This phenomenon arises from the inter-

action between excitons and phonons across adjacent layers. Although this phenomenon

has been experimentally observed in various heterostructures of layered materials, its micro-

scopic origin and underlying selection rules have remained elusive. Using the WSe2@hBN

heterostructure as an example, we investigate the origin of interlayer exciton-phonon cou-

pling and its signatures in resonant Raman scattering through first-principles calculations.

With the methods developed in this thesis, we elucidate how crystal symmetries play a cen-
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tral role in governing interlayer exciton-phonon scattering processes, which are responsible

for the anomalous resonant Raman intensities of the in-plane and out-of-plane hBN phonon

modes. Moreover, we address the long-standing question regarding the underlying mecha-

nism of this coupling. In particular, we find that the deformation potential induced by the hBN

phonon interacts with the hybridized hole density of WSe2 excitons near the hBN interface,

leading to interlayer exciton-phonon coupling.

Finally, we present three computational tools that enhance state-of-the-art exciton-phonon

calculations: (i) LetzElPhC, (ii) Ydiago, and (iii) PhdScripts.

LetzElPhC is a code for the calculation of electron-phonon and exciton-phonon coupling

matrix elements. The code utilizes full crystal symmetries, which now makes it possible to

perform exciton-phonon calculations using symmetries, drastically decreasing the computa-

tion time for these calculations. It resolves the long-standing phase issues that arise when

expanding the electron-phonon coupling matrix elements from the irreducible Brillouin zone

to the full Brillouin zone, which stem from the incompatibility between the electron-phonon

matrix elements and the excitonic wavefunctions. The code also computes the electronic

representation matrices as a byproduct, which enable us to compute the representations of

the excitonic states.

Ydiago is a diagonalization library for the YAMBO code, which significantly accelerates

the diagonalization of full or partial BSE matrices, achieving a tenfold improvement in both

speed and memory efficiency compared to existing implementations in the Yambo code.

PhdScripts are a set of Python scripts that allow us to compute the irreducible rep-

resentation labels for the excitonic states, exciton-phonon matrix elements with full crystal

symmetries, as well as resonant Raman intensities and phonon-assisted luminescence in-

tensities. Due to the use of symmetries, these scripts enable a more efficient computation

of exciton-phonon properties compared to existing implementations.

viii



Contents

1 Introduction 2

1.1 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methods 11

2.1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Conjugacy Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Factor group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Group Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 Characters of Representations . . . . . . . . . . . . . . . . . . . . . . 18

2.1.7 Orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.8 Decomposition of Reducible Representations . . . . . . . . . . . . . . 21

2.1.9 Application to Quantum mechanics . . . . . . . . . . . . . . . . . . . . 21

2.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Density functional theory (DFT) . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Single particle Green’s function . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Two-particle correlation function . . . . . . . . . . . . . . . . . . . . . 33

2.2.4 Optical Properties and Many-Body Effects of MX2 monolayer . . . . . 40

3 Symmetries of Excitons 45

ix



3.1 Symmetries of electronic states in crystals . . . . . . . . . . . . . . . . . . . . 46

3.2 Symmetries of excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Symmetries of excitons in LiF . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Application of Symmetries in Computational Aspects . . . . . . . . . . . . . . 61

4 Symmetries in Exciton-phonon interactions 63

4.1 Total crystal angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Exciton-phonon coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Bra-Ket notation for exciton phonon matrix elements . . . . . . . . . . 68

4.3.2 Rotation of electron-phonon matrix elements . . . . . . . . . . . . . . 69

4.3.3 Rotation of exciton-phonon matrix elements . . . . . . . . . . . . . . . 71

4.4 Conservation of total crystal angular momentum . . . . . . . . . . . . . . . . 73

4.5 Resonant Raman scattering in MoSe2 . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Phonon assisted luminescence in hBN . . . . . . . . . . . . . . . . . . . . . . 78

5 Interlayer exciton-phonon coupling 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Resonant Raman scattering . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Interlayer exciton-phonon coupling . . . . . . . . . . . . . . . . . . . . 93

5.3 Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 GW Band structure and exciton wave functions . . . . . . . . . . . . . 102

5.3.3 Cumulative work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.4 Resonant Raman spectra of other possible heterostructures . . . . . . 106

5.3.5 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions and Outlook 112

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

x



6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Lëtzebuerg Electron-Phonon Code (LetzElPhC) 116

A.1 About the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Installing the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2.1 Mandatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2.2 Installation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.3 Running the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3.1 Running DFT and DFPT (Step 0) . . . . . . . . . . . . . . . . . . . . . 119

A.3.2 Running the Preprocessor (Step 1) . . . . . . . . . . . . . . . . . . . . 120

A.3.3 Performing the ELPH Calculation (Final Step) . . . . . . . . . . . . . . 121

B Ydiago 124

C Resonant Raman spectra and averaged electron-hole densities of the 1s exci-

ton for other possible stackings of the hBN@WSe2 heterostructure 129

xi



List of Abbreviations

BSE . . . . . . . . . . . . Bethe-Salpeter Equation

DFT . . . . . . . . . . . . Density Functional Theory

TDA . . . . . . . . . . . . Tamm-Dancoff Approximation

GGA . . . . . . . . . . . Generalized Gradient Approximation

LDA . . . . . . . . . . . . Local Density Approximation

FFT . . . . . . . . . . . . Fast Fourier Transform

BZ . . . . . . . . . . . . . . Brillouin Zone

PL . . . . . . . . . . . . . . Photoluminescence

CL . . . . . . . . . . . . . . Cathodoluminescence

DFPT . . . . . . . . . . . Density Functional Perturbation Theory

HPC . . . . . . . . . . . . High Performance Computing

IBZ . . . . . . . . . . . . . Irreducible Brillouin Zone

MBPT . . . . . . . . . . Many-Body Perturbation Theory

RPA . . . . . . . . . . . . Random Phase Approximation

QE . . . . . . . . . . . . . Quantum Espresso

TMDC . . . . . . . . . . Transition Metal Dichalcogenides

hBN . . . . . . . . . . . . Hexagonal Boron Nitride

SOC . . . . . . . . . . . . Spin-Orbit Coupling

1



Chapter 1

Introduction

Symmetry is a central concept in physics, offering both a profound theoretical framework

and practical tools for understanding complex systems. In essence, symmetry refers to the

invariance of a system under specific transformations, such as rotations, translations, or

reflections. These symmetries have far-reaching consequences in modern physics, often

leading to conservation laws, such as the conservation of momentum and angular momen-

tum [43]. Symmetries also play a crucial role in understanding many fundamental concepts,

including the spin of elementary particles [118], Bloch’s theorem [4], and more.

A direct consequence of these underlying symmetries is the existence of selection rules

that govern the allowed transitions between quantum states [119]. For example, consider

the hydrogen atom, which exhibits both full rotational and inversion symmetry. The solutions

to the Schrödinger equation for the hydrogen atom are the atomic orbitals 1s, 2s, 2p, 3s, . . . .

Electrons in the hydrogen atom can be excited or de-excited by absorbing or emitting a

photon with compatible energy. However, due to the symmetries of the system, not all

transitions are allowed. For example, the inversion symmetry of the hydrogen atom forbids

the transition from the 2s excited state to the 1s ground state via single-photon emission. On

the other hand, the transition from 2p→ 1s is allowed by photon emission. This selection rule

plays a crucial role in the recombination of electrons and hydrogen ions in hot gases [119].

The 2s → 1s transition requires the emission of two photons [49], each with insufficient

energy to excite a neighboring hydrogen atom, and thus contributes to recombination. In
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contrast, the 2p → 1s transition, which involves the emission of a single photon, can excite

nearby hydrogen atoms, which hardly influences the overall recombination dynamics.

These selection rules are not limited to hydrogen-like systems, but can also be extended

to more complex systems such as molecules and crystals [25]. Unlike the hydrogen atom,

these systems often lack full rotational symmetry and may or may not possess an inversion

symmetry. Additionally, the presence of multiple electrons introduces many-body effects

that must be taken into consideration to accurately describe electronic states. As a result,

understanding how light interacts with these systems requires a sophisticated framework

that accounts for these complexities.

Today, understanding light–matter interactions in crystals and molecules is at the fore-

front of materials science research. Using these interactions, one can manipulate light emis-

sion and absorption at the nanoscale, leading to practical applications in quantum comput-

ing [36], light-emitting diodes [77], solar cells [47], nonlinear optics [6], etc. Recent advances

in understanding light–matter interactions, particularly in two-dimensional materials, have

further expanded the ability to control and tailor optical properties, paving the way for a new

generation of optoelectronic devices [112]. Therefore, understanding light–matter interac-

tions in these materials, especially in two-dimensional materials, is crucial and has gained

significant interest over the past two decades.

The central entities involved in light-matter interactions in two-dimensional materials are

“excitons", hydrogen-like bound states that form when an electron is excited from the valence

band to the conduction band, leaving behind a positively charged hole [31], as illustrated in

Fig. 1.1. In low-dimensional materials [112, 74], molecular systems, and wide-bandgap

materials such as hexagonal boron nitride (hBN) [117, 84], excitons play a dominant role

in determining optical properties due to reduced dielectric screening. Just as in hydrogen

atoms, the symmetries of excitons dictate which states can be excited or de-excited through

light absorption and emission. Therefore, a thorough understanding of excitonic symmetries

is essential to accurately describe and engineer the optical response of materials where

excitonic effects are significant.

An important aspect of excitons is their interaction with other quasiparticles, especially

3
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Figure 1.1: A cartoon depicting the formation of an electron-hole bound state, known as an
exciton, upon illumination with light.

phonons. Exciton-phonon interactions play a critical role in optical scattering processes

such as resonant Raman scattering [41, 95, 70], phonon-assisted luminescence [14, 85],

and absorption. For example, in bulk hBN, one of the most widely used dielectric sub-

strates or spacers for two-dimensional materials, strong exciton-phonon coupling gives rise

to below-gap luminescence peaks [85]. Therefore, understanding excitonic dynamics and

their interactions with other quasiparticles, such as phonons [85, 95], is vital for exploring

the light-matter interactions in these materials.

Furthermore, exciton-phonon interactions significantly influence the lifetimes of excitonic

states, which, in turn, determine the optical properties of materials [15]. More generally,

controlling exciton lifetimes provides means to tailor optical emission properties. Since sym-

metry dictates the allowed scattering pathways in these processes, understanding the sym-

metries of excitons and their selection rules for scattering with other quasiparticles, such as

phonons, is crucial for designing and manipulating the optical properties of materials.

In order to accurately describe and understand the properties of excitons and exciton-

phonon interactions, it is essential to compute their energies and eigenstates. The standard

approach for obtaining these quantities is to solve the Bethe-Salpeter equation (BSE) for the

4



Wannier-Mott Frenkel

Figure 1.2: Types of excitons: (i) Wannier-Mott exciton, which extends over many unit cells.
(ii) Frenkel exciton, where the electron and hole are localized within a unit cell. Adapted
from Wikipedia

two-particle electron-hole correlation function [98, 67, 1, 83, 97]. This method is robust and

applicable to a wide range of systems, including those that significantly deviate from simple

models [84, 32, 123, 74]. Notably, physical observables obtained from BSE calculations

have been shown to closely match experimental results across various materials, making it

a powerful formalism for studying excitonic properties.

Although the solutions of the BSE describe excitonic states very well, extracting the

symmetry information of excitons from them is not trivial. In some cases, hydrogen-like

models are employed to describe excitons and understand their symmetry properties [30].

Based on their spatial extent, excitons are classified into two main types: Wannier-Mott

excitons and Frenkel excitons as shown in Fig. 1.2. Wannier-Mott excitons are typically

found in materials with high dielectric constants, such as conventional semiconductors (e.g.,

silicon and GaAs). These excitons are spatially extended, with radii much larger than the

lattice constant, and can be effectively modeled as hydrogen-like systems within a quasi-

continuous dielectric environment. In contrast, Frenkel excitons are highly localized and are

typically found in molecular crystals and organic materials, where the exciton binding energy

5
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is significantly larger, making them unsuitable for hydrogen-like modeling.

One key advantage of the hydrogenic model is its ability to offer insights into the sym-

metries of excitons. A fundamental question in this context is: which excitonic states couple

to light, and why? The hydrogenic model provides a reasonable explanation in many cases.

In bulk semiconductors, where excitons originate from transitions near the band gap and

exhibit nearly circular symmetry, they are typically optically active (bright) [30].

Although the hydrogenic model provides valuable insight and works well for simple bulk

semiconductors that host Wannier-type excitons, it is often too simplistic for systems whose

excitonic character deviates from the Wannier type. Firstly, it is not applicable to Frenkel-type

excitons. Moreover, recent studies have revealed that excitonic spectra can significantly

deviate from hydrogen-like solutions, even in conventional semiconductors. For example,

excitons in hBN exhibit notable deviations from the hydrogenic model [32]. Furthermore,

the traditional classification of Wannier-Mott and Frenkel excitons becomes inadequate in

materials with strong excitonic effects. For example, excitons near the optical band gap of

hexagonal boron nitride (hBN) have been shown to fall outside both categories [123, 32].

Understanding the symmetries of excitonic states directly from the solutions of the Bethe-

Salpeter equation remains a significant challenge. Currently, there are no rigorous ab initio

methods for systematically analyzing excitonic symmetries. Although some attempts have

been made to manually inspect excitonic wavefunctions in specific systems [85, 32, 84, 12],

such as hexagonal boron nitride (hBN), these methods do not generalize easily to other

materials.

In addition to these challenges, several fundamental questions remain unanswered: Can

one assign symmetries to excitonic bands in a similar way to the symmetry assignments

in electronic band structures? How do symmetries act on the excitonic Hamiltonian? Can

symmetries be utilized to simplify the solution of the Bethe-Salpeter equation? Addressing

these questions requires a systematic, symmetry-based approach—an effort that constitutes

the central goal of this thesis.

6



1.1 Scope of this work

The primary goal of this thesis is to understand the symmetries of excitons. Over the past

two decades, the Bethe-Salpeter equation (BSE) has become the gold standard for com-

puting excitonic energies and eigenstates. Thanks to advances in computational power, it

is now possible to perform BSE calculations for systems significantly larger than was feasi-

ble 20 years ago. In addition, many new methods have been developed in the last decade

to study exciton dynamics, including techniques for computing and understanding exciton-

phonon interactions and exciton dispersions. Although these developments have enabled

an accurate reproduction of the experimental findings, the underlying symmetry principles

were often overlooked.

As mentioned above, currently, one often relies on hydrogenic models or “manual” anal-

ysis of excitonic wavefunctions in real space, by fixing the electron or hole position to deter-

mine how excitonic states transform under symmetry operations. However, such analyses

are nontrivial and can become cumbersome, even for relatively simple systems or when

dealing with degenerate states. Therefore, a more robust, ab initio approach is needed.

One of the main objectives of this thesis is to understand how excitons transform under the

action of symmetries. We compute the representations of excitonic states, thereby allowing

us to systematically understand their symmetry properties and selection rules. Furthermore,

we introduce the concept of total crystal angular momentum for excitons and phonons, which

is analogous to crystal momentum for translations and gives rise to the concept of “chirality ”

for excitons and phonons.

Another important aspect of symmetries is their potential to significantly simplify first-

principles calculations. In density functional theory (DFT), nearly all well-established ab ini-

tio codes heavily employ symmetries to reduce computational cost. However, this is largely

not the case for BSE calculations, where symmetries are mostly neglected. Even today,

BSE is typically solved by explicitly breaking symmetries or by expanding wavefunctions

over the full Brillouin zone. Moreover, the use of symmetries in exciton-phonon calculations

has been largely avoided due to phase mismatch issues, which can lead to incorrect results
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if not handled properly. As a result, exciton-phonon calculations are still performed without

symmetries. Given that BSE calculations are computationally expensive, neglecting sym-

metries severely limits their applicability to larger systems. In this thesis, we discuss how

symmetries can be leveraged to bypass the explicit computation of quantities such as exci-

ton wavefunctions at symmetry-rotated Q points. Furthermore, we show how the full BSE

Hamiltonian can be constructed by explicitly computing only a subset of the matrix elements,

with the remainder obtained through symmetry operations. We also address phase issues

that have plagued the exciton-phonon community over the past several years.

Of course, no theoretical method or implementation is complete without its application

to real systems. In the second half of this thesis, we apply the developed formalism to

understand the selection rules governing exciton-phonon interactions and their manifes-

tations in optical spectroscopic tools, such as resonant Raman spectroscopy, absorption

spectroscopy, and phonon-assisted luminescence. As will be demonstrated, symmetry prin-

ciples and selection rules manifest beautifully in these experiments, thereby allowing us to

understand the underlying exciton-phonon scattering pathways.

Finally, we conclude by showing how symmetries lead (although unintentionally) to the

discovery of interlayer exciton-phonon coupling, where excitons in one layer interact with

phonons in another. This fascinating phenomenon provides new insights into the coupling

mechanisms between excitons and phonons across different layers in van der Waals het-

erostructures [55]. Although numerous experimental works have demonstrated this phe-

nomenon in various heterostructures, the underlying mechanism has remained elusive. In

this thesis, we use the WSe2@hBN heterostructure to uncover the origin of this mecha-

nism. In particular, we apply our developed methods to explain the symmetry selection

rules in this heterostructure, which are responsible for the discovery of this effect: the out-

of-plane phonon mode of hBN, which is Raman inactive in pristine hBN, couples with the

first bright exciton of WSe2, whereas the in-plane Raman-active modes do not. This leads

to anomalous resonant Raman intensities for both modes. Furthermore, we systematically

analyze the microscopic processes responsible for this phenomenon and unveil the micro-

scopic mechanism for the first time.
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1.2 Outline

This thesis is organized as follows.

In Chapter 2, we very briefly discuss the basic group theory and the Bethe-Salpeter

equation, which is the state-of-the-art method for obtaining excitonic energies and eigen-

states. This chapter primarily introduces the relevant equations and fundamental concepts

that will be used in later parts of the thesis.

In Chapter 3, we introduce the group-theoretical treatment of excitons. Specifically, we

examine how crystal symmetries act on excitonic states obtained from the Bethe-Salpeter

equation. We first demonstrate that the well-known concept of exciton dispersion naturally

arises as a consequence of the translational symmetry group. Furthermore, we show how

excitonic states and energies at different exciton momenta can be determined by applying

symmetry operations. In addition, we illustrate how symmetries can be exploited to reduce

computational complexity in exciton calculations.

Next, we rigorously derive explicit expressions for the representation matrices of excitonic

states, enabling the assignment of irreducible representation labels of the point group to

these states. Finally, we apply this formalism to a simple material, lithium fluoride (LiF), to

provide insights into the optical selection rules governing absorption spectroscopy.

In Chapter 4, we apply the techniques developed in Chapter 3 to analyze selection rules

in exciton-phonon coupling. A key result of this chapter is the introduction of total crystal an-

gular momentum, which provides deeper insight into the selection rules governing these

interactions. We then apply these selection rules to two widely used spectroscopic tech-

niques: (1) resonant Raman spectroscopy and (2) phonon-assisted luminescence. Finally,

we demonstrate how these selection rules manifest in experimental observations, providing

a direct link between theory and experiment. In the end, we present explicit expressions

for rotating electron-phonon and exciton-phonon matrix elements using crystal symmetry

operations, ensuring efficient exciton-phonon workflows without any phase issues.

In Chapter 5, we extend the methods developed earlier to study the phenomenon of

interlayer exciton-phonon interactions, where excitons in one layer couple with phonons in
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a different layer. This chapter emphasizes the central role of symmetry and serves as an-

other example of how symmetries can lead to new discoveries, even if unintentionally. We

provide a detailed explanation of the microscopic mechanisms underlying this fascinating

phenomenon, which has remained an open question for the past decade despite a substan-

tial number of experimental measurements on various systems. In order to demonstrate the

mechanism, we use the WSe2@hBN heterostructure, and perform microscopic analysis of

interlayer exciton-phonon coupling, which unveils the underlying mechanism for interlayer

exciton-phonon coupling.

In the Appendix, we provide documentation for two newly developed codes:

• LetzElPhC, a program for computing electron-phonon coupling matrix elements with

full symmetries.

• YDiago, a library designed to facilitate faster diagonalization in the Yambo code.
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Chapter 2

Methods

In this chapter, we very briefly discuss the methods that will be used in the rest of this thesis.

In the first section, we introduce the basic definitions of group theory that will be used

later in this thesis. In this work, we are concerned only with finite groups. This is by no means

a complete review of group theory. A more detailed discussion can be found in numerous

standard references, such as Refs. [29, 25, 107].

In the second section, we briefly review the current state-of-the-art methods used to

compute and understand excitonic states. The purpose of this chapter is mainly to introduce

definitions and define some expressions that will be used later in the thesis. The section on

excitons is adapted mainly from Ref. [93]. A more detailed description can be found in many

standard references [93, 98, 53, 1, 83, 67].

2.1 Group Theory

A group G is a set of elements with a binary operation ◦ (also referred to as the group

multiplication) that satisfies four criteria:

• Closure: For all elements a, b ∈ G, a ◦ b ∈ G.

• Associativity: For all elements a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).
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• Identity: There exists an identity element e ∈ G such that for every a ∈ G: a ◦ e =

e ◦ a = a

• Inverse: For each element a ∈ G, there exists an element b ∈ G known as inverse of

a which is denoted by a−1 such that: a ◦ b = b ◦ a = e

A group is said to be an Abelian group if its group multiplication is commutative, i.e., for

all a, b ∈ G:

a ◦ b = b ◦ a.

Cardinal number: The number of elements in a set (if finite) is referred to as the cardinal

number of a set.

Order of an Element in a Group: Suppose g be an element of the group G, then the

smallest positive integer n for which gn = e, is called the order of g in G.

An important theorem in group theory to mention here is the Rearrangement Theorem

(for proof see Ref. [25]). Consider an element g ∈ G and let G ≡ {g1, g2, . . . }. The set

obtained by multiplying g with each element of G regenerates G, i.e.,

{g ◦ g1, g ◦ g2, . . . } ≡ {g1 ◦ g, g2 ◦ g, . . . } ≡ G.

This implies that every element in G is obtained only once when multiplying the entire

group with g.

2.1.1 Subgroups

A subgroup H of a group G is a subset of G that itself forms a group under the same

operation ◦. The subgroup H must contain the identity element of G to fulfill the necessary

group criteria. For the set of integers (Z), which form a group under addition, the set of even

integers forms a subgroup of Z.
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2.1.2 Cosets

Given a subgroup H of a group G, and an element g ∈ G, we can define the left coset of H

in G as:

gH = {g ◦ h | h ∈ H}

Similarly, the right coset of H in G is defined as:

Hg = {h ◦ g | h ∈ H}

It is important to highlight that the cosets do not necessarily form a subgroup of G.

If g also belongs to H, then the coset (left or right) is the same as H (due to the rear-

rangement theorem). It can also be shown that two cosets are either the same or do not

contain any elements in common (disjoint) [25, 107]. This implies that cosets can be used

to partition a group into disjoint sets, i.e.,

G ≡
n⋃

i=1

giH ≡
n⋃

i=1

Hgi, (2.1)

where n is known as the “index” of the subgroup H in G, which represents the number

of cosets, and gi are known as the “coset representatives”.

Moreover, the cardinal numbers of cosets are the same (due to the rearrangement theo-

rem), which is equal to the cardinal number of the subgroup H. This implies that the cardinal

number nH of a subgroup H divides the cardinal number nG of the group G. The number
nG
nH

is the same as the index of the subgroup n.

2.1.3 Conjugacy Classes

An element g ∈ G is said to be conjugate to a ∈ G if:

g = X ◦ a ◦X−1 for X ∈ G
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The conjugacy class of an element g ∈ G consists of all elements in G that are conjugate

to g, i.e.,

C(a) = {g ◦ a ◦ g−1 | g ∈ G}.

Conjugacy classes give rise to the concept of an important class of subgroups called

“normal”, “invariant”, or “self-conjugate”.

A subgroup H of G is said to be normal if for any g ∈ G and a ∈ H:

g ◦ a ◦ g−1 ∈ H

An important point to note is that for a normal subgroup, the left and right cosets are the

same.

2.1.4 Factor group

The normal subgroups lead to the concept of the factor group (or quotient group), which is

denoted as G/H. The set of cosets of a normal subgroup H in G forms a group known as

the factor group of G with H:

G/H = {giH | gi ∈ G}.

The group multiplication for the factor group is defined as the multiplication of elements of

two cosets, which gives rise to another coset. Factor groups are particularly important when

studying the representation of space groups, which will be discussed later in this thesis.

2.1.5 Group Representations

Group Homomorphism

A group homomorphism is a function that maps one group to another, i.e., ϕ : G→ H, while

preserving the group operation. That is, for all elements a, b ∈ G,

ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b).
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Group Isomorphism

A group isomorphism is a group homomorphism that is bijective. A group isomorphism

preserves the algebraic structure.

An automorphism is an isomorphism from a group to itself i.e ϕ : G→ G.

Group Representation

A representation or (linear representation) of a group G is a group homomorphism from G

to the group of automorphisms GL(V ) of a vector space V (an automorphism of a vector

space V is a linear operator that is a bijective map from V onto itself), i.e., ρ : G→ GL(V ).

If we also consider automorphisms that respect group multiplication up to a constant

factor c(g1, g2), i.e.,

ρ(g1 ◦ g2) = c(g1, g2) ρ(g1) ◦ ρ(g2),

then the representation is said to be a projective representation of G.

Matrix representation

Every n-dimensional vector space over a field F (F is R or C) is isomorphic to Fn (See

Appendix II of Ref. [107] which shows this for a complex field). The linear operations can

be chosen to be matrices acting on them. If the group of automorphisms is chosen to

be a group of n × n invertible matrices that act on a complex vector space Cn, then the

representation is called a matrix representation. Often, by default, a representation refers to

a matrix representation of a group. We use D instead of ρ for matrix representations. For

example, consider a cyclic group C3 = {E, a, a2} with a3 = E. The one dimentional matrix

represantion of C3 is given by

D(E) = 1 (2.2)

D(a) = ei
2πi
3 (2.3)

D(a2) = e
4πi
3 (2.4)
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Similarly, a possible 2× 2 matrix representation of the C3 group is given by:

D(E) =

1 0

0 1

 (2.5)

D(a) =

−1/2 −
√
3/2

√
3/2 −1/2

 (2.6)

D(a2) =

 −1/2
√
3/2

−
√
3/2 −1/2

 (2.7)

Unitary representation:

A unitary representation is a representation in which the linear operators are unitary, i.e.,

UU † = I, where U † is the adjoint of U . We almost always work with unitary representations

of a group.

If the linear operators are matrices and the basis of the vector space are orthogonal,

then U † is the Hermitian adjoint (conjugate transpose) of U , and I is the identity matrix.

Unitary representations are important in quantum mechanics as they preserve the in-

ner product. Since symmetries preserve probabilities or inner products on Hilbert spaces,

symmetries are represented by unitary or anti-unitary operators (for time-reversal symmetry)

acting on the Hilbert space. This is also known as the Wigner’s theorem, which is funda-

mental and serves as one of the founding theorem of quantum mechanics [120].

Invariant subspaces

A subset W of a vector space V that forms a vector space by itself is known as a subspace.

The set consisting of only the zero vector or the entire space V is known as a trivial subspace

of V .

If a subspace W is closed under the action of a linear operator T : V → V (i.e., the action

of T on an element of W gives an element in W ), then it is known as an invariant subspace

of T .
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A subspace W is said to be G-invariant if ∀g ∈ G and ∀w ∈W , ρ(g)w ∈W .

Equivalent Representations

Two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) are said to be equivalent if

there is an isomorphism A : V1 → V2 such that

ρ2(g)A = Aρ1(g) ∀g ∈ G.

In matrix language, if we consider two matrix representations {D1(g1), D1(g2), . . . } and

{D2(g1), D2(g2), . . . }, they are said to be equivalent if there is a square matrix A such that

A−1D2(g)A = D1(g) ∀g ∈ G.

An important point to highlight is that for a representation D of a finite group, there is

always a unitary representation that is equivalent to D (known as the Weyl unitary trick).

This implies that it is enough to work only with unitary representations.

Irreducible Representation

A representation ρ : G → GL(V ) is said to be irreducible if there is no nontrivial subspace

of V that is G-invariant. For example, consider the group of distance-preserving transforma-

tions of Euclidean space, denoted as SO(3). The set of 3× 3 orthogonal matrices acting on

the vector space R3 forms an irreducible representation of SO(3).

If a representation is not an irreducible representation, then it is said to be a “reducible”

representation. A reducible representation can be decomposed into a direct sum of irre-

ducible representations. This implies one can work with individual smaller irreducible repre-

sentations instead of larger representation.

In matrix language, a representation is said to be reducible if there is an equivalent

representation that can bring all the group elements to the same block-diagonal form. If not,

then it is said to be irreducible. In other words, a reducible representation is of the form (or
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can be brought to this form by the same similarity transformation applied to all the elements

of the group)

D(g) =

D1(g) 0

0 D2(g)

 ∀g ∈ G.

Any reducible representation can be decomposed into a direct sum of irreducible repre-

sentations (Maschke’s Theorem).

2.1.6 Characters of Representations

The character χ of a representation ρ is a map χ : G→ C which is defined as

χ(g) = Tr(ρ(g)) ∀g ∈ G,

where Tr denotes the trace of the linear operator. Since the trace is invariant under similarity

transformations, all the elements in a conjugacy class have the same trace, which implies

that the trace is a function of the conjugacy classes of the group. Moreover, the characters

for the equivalent representations are the same. This allows us to compactly tabulate the

characters of irreducible representations for the conjugacy classes in each group. These

tables are referred to as character tables. For example, the character table for the cyclic

group C3, which contains three elements and three classes, is given below:

C3 E a a2

A 1 1 1

E 1 ω ω2

E∗ 1 ω2 ω

where ω = e2πi/3, and A, E, and E∗ are the labels of irreducible representations of the group

C3.
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2.1.7 Orthogonality relations

One of the most important applications of group theory in quantum mechanics is the deriva-

tion of selection rules for matrix elements of operators. Before discussing these selection

rules, we introduce two fundamental lemmas known as Schur’s lemmas, which are cen-

tral to the representation theory of finite groups. Using Schur’s lemmas, one can prove the

Great Orthogonality Theorem [21], which forms the foundation for applying group-theoretical

techniques to quantum mechanical problems.

From here on, the word representation implies matrix representation.

Schur’s lemma 1

Let D1 : G → GL(V ) and D2 : G → GL(W ) be two irreducible representations of a finite

group G. Suppose that there exists a matrix X such that

XD1(g) = D2(g)X ∀g ∈ G.

Then either X = 0, or X is an invertible square matrix (which implies W and V must be

isomorphic). In the latter case, the representations D1 and D2 are equivalent [9].

Schur’s lemma 2

Let D : G → GL(V ) be an irreducible representation of a finite group G on a vector space

V . Suppose that there exists a matrix X such that

XD(g) = D(g)X ∀g ∈ G.

Then X = λIn×n for some scalar λ, where In×n is the identity matrix. [9].

An important consequence of the second lemma is that all irreducible representations

of finite abelian groups are one-dimensional. This is because every element of an abelian

group commutes with every other element of the group, which implies that all representation

matrices commute with each other. By Schur’s lemma, this means that every element of the
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group can be represented by a scalar.

The great orthogonality theorem

With the two Schur lemmas, one can derive a very powerful result known as the “great

orthogonality theorem” (see Ref. [25] for proof). Let D1 : G→ GL(V ) and D2 : G→ GL(W )

be two irreducible unitary representations of a finite group G. If they are not equivalent, then

∑
g∈G

D1(g)ij D
†
2(g)kl = 0. (2.8)

For each representation, ∑
g∈G

D1(g)ij D
†
1(g)kl =

|G|
d
δil δjk, (2.9)

where |G| is the cardinal number of the group, and d is the dimension of the matrices in

the D1 representation.

Orthogonality theorem for characters

From Eqs. (2.8) and (2.9), we can show that

∑
g∈G

χ1(g)χ
∗
2(g) =

∑
c

nc χ1(c)χ
∗
2(c) = |G| δ12, (2.10)

where the sum over c runs over conjugacy classes, each containing nc elements, and χ1(c),

χ2(c) are the characters corresponding to the class c.

Furthermore, we can rewrite Eq. (2.10) as

∑
c

√
nc
|G| χ1(c)

√
nc
|G| χ

∗
2(c) = δ12. (2.11)

If we interpret the set of characters of each irreducible representation as a vector of

dimension Nc, then the number of linearly independent such vectors is Nc. This implies that

there can be at most Nc sets of characters satisfying Eq. (2.11), and hence the group has at
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most Nc irreducible representations.

Another orthogonality relation is given by

n∑
α=1

(
χ(α)(i)

)∗
χ(α)(j) =

|G|
ni

δij , (2.12)

where the sum runs over irreducible representations. Similar to Eq. (2.10), we can interpret

Eq. (2.12) as the dot product of two vectors of dimension equal to the number of irreducible

representations. This now implies that the number of conjugacy classes must be at most

equal to the number of irreducible representations.

Therefore, the number of conjugacy classes is equal to the number of irreducible repre-

sentations. More details on orthogonality relations can be found in Ref. [25].

2.1.8 Decomposition of Reducible Representations

In this section we show how one can decompose a given representation into a direct sum of

irreducible representations using the orthogonality relations discussed previously.

Let D be a representation of a finite group G on V . Then D can be decomposed into

irreducible representations Di as

D(g) =
⊕

miD
i(g) ∀g ∈ G, (2.13)

where mi are the multiplicities of the irreducible representations, which are given by

mi =
1

|G|
∑
c

nc χ(D)(c)
(
χi(c)

)∗
, (2.14)

where χ(D)(c) is the character of the representation D for class c, χi(c) is the character of

the irreducible representation Di, and nc is the number of elements in class c.

2.1.9 Application to Quantum mechanics

We now briefly discuss the applications of group theory to quantum-mechanical problems.
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Consider the following eigenvalue problem:

HΨ = EΨ,

where H is the Hamiltonian and Ψ is a wavefunction. The set of eigenvectors of H spans

the Hilbert space of the physical system. Moreover, the transformation of H by an operator

R is given by

H ′ = RHR−1.

If H is invariant under the action of R, i.e., H ′ = H, then we say that R is a symmetry of

the system. The set of all such symmetry operations R forms a representation of a group G

acting on the Hilbert space.

Since R and H commute, we have

HRΨ = RHΨ = ERΨ.

This shows that RΨ is also an eigenvector of H with the same eigenvalue as Ψ. This im-

plies that the presence of symmetries gives rise to the concept of degeneracies in quantum

systems.

Suppose that we collect all the eigenvectors corresponding to the eigenvalue E; then this

vector space forms a G-invariant subspace of the Hilbert space, with dimension equal to the

degeneracy of the eigenvalue E. This implies that the representation R can be decomposed

into subrepresentations:

R ≡
⊕
i

Ri,

where each Ri acts on a G-invariant subspace W containing the eigenvectors of H with

eigenvalue E. If Ri is irreducible, then the corresponding eigenstates can be labeled by the

irreducible representation. If Ri is not irreducible, it can be further decomposed into a direct

sum of irreducible representations using the procedures briefly described above.
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Selection Rules

Finally we conclude the section on Group theory by discussing the selection rules for matrix

elements.

Consider the following matrix element:

⟨Ψn| Ô |Ψm⟩ ,

where Ψn/m are eigenstates of the Hamiltonian H, and Ô is an operator which may not

possess the same symmetries as H.

Clearly, the matrix element is a linear operator (more precisely, a functional) that takes

a vector from a vector space V , where each element is composed of a set of three vectors

{|Ψm⟩ , Ô, ⟨Ψn|}, and maps them to a scalar, which must be invariant under the action of

any symmetry operation. This implies that the representation of the group G on V must

be a trivial representation (or fully symmetric). Since V is a direct product of three vector

spaces {|Ψm⟩}, {Ô}, {⟨Ψn|}, it follows that the direct product representation of G on these

three vectors must either be trivial or contain a trivial representation for the matrix element

to be finite. In other words,

DA ⊂ Dn ⊗DO ⊗Dm,

where DA is the trivial representation of G on V , and Dn, DO, and Dm are the representa-

tions of G on the vector spaces {|Ψm⟩}, {Ô}, and {⟨Ψn|}, respectively.

2.2 Excitons

Before discussing excitons, we first provide a brief overview of density functional theory

(DFT), and the single-particle Green’s function along with common approximations. These

serve as the foundation for the many-body formalism and play a crucial role in the subse-

quent discussion of the two-particle Green’s function.
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2.2.1 Density functional theory (DFT)

We start by writing the fully interacting time-independent many-body Hamiltonian of a crystal

without relativistic effects and ignoring the spin of the electron, which is given by [66]

Ĥ = T̂e + T̂I + V̂ee + V̂II + V̂eI , (2.15)

where T̂e = −∑
i

ℏ2
2me

∇2
i is the kinetic energy operator for electrons, with me being the mass

of an electron; T̂I = −∑
α

ℏ2
2Mα

∇2
α is the kinetic energy operator for nuclei, with Mα being

the mass of the α-th nucleus; V̂ee = 1
2

∑
i ̸=j

e2

|ri−rj | describes the repulsive Coulomb poten-

tial energy between electrons; V̂II = 1
2

∑
α ̸=β

ZαZβe
2

|τα−τβ | accounts for the repulsive Coulomb

potential between nuclei; V̂eI = −∑
i,α

Zαe2

|ri−τα| represents the attractive Coulomb potential

between electrons and nuclei.

To simplify the problem given in Eq. (2.15), one of the first and most widely used ap-

proximations is the Born-Oppenheimer approximation [8]. Since nuclei are much heavier

than electrons, their kinetic energy term, T̂I , is initially neglected. This allows the Hamilto-

nian to be decoupled into electronic and nuclear parts, and we can approximate the total

wavefunction as

Ψ(r1, ...rm; τ 1, ...τn) ≈ ψe(r1, ...rm; τ 1, ...τn)χ(τ 1, ...τn), (2.16)

where ψe(r1, ...rm; τ 1, ...τn) is the electronic wavefunction, and χ(τ 1, ...τn) is the nuclear

wavefunction.

The electronic Hamiltonian is solved for fixed nuclear coordinates, i.e.,

Ĥeψe(r1, ...rm; τ 1, ...τn) = Ee(τ )ψe(r1, ...rm; τ 1, ...τn), (2.17)

where Ĥe = T̂e + V̂ee + V̂ne is the electronic Hamiltonian. The nuclear Hamiltonian is then

given by (
T̂n + V̂nn + Ee(τ )

)
χ(τ 1, ...τn) = Eχ(τ 1, ...τn). (2.18)
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Although the Born-Oppenheimer approximation greatly simplifies the problem, solving

the full many-body Hamiltonian within this approximation still remains impossible. This made

it necessary to seek alternative methods to tackle the many-body problem, which led to the

development of a revolutionary method by Hohenberg, Kohn, and Sham known as density

functional theory (DFT) [52, 56].

Today, DFT is the state-of-the-art method for computing and predicting the ground-state

properties of materials. DFT reformulates the many-body problem in terms of an auxiliary

non-interacting system that shares the same electron density as the fully interacting system

described by Eq. (2.17). The electron density of the interacting system is given by

ρ(r) = m

∫
d3r2 . . . d

3rm|Ψi(r, r2, . . . , rm)|2. (2.19)

By working with an auxiliary non-interacting system, DFT drastically reduces computational

costs while still providing valuable physical insights.

DFT is founded on two theorems (referred to as the Hohenberg-Kohn theorems) [52],

which are stated as follows:

1. The ground-state electron density ρ(r) uniquely determines the external potential Vext(r)

and, consequently, all ground-state properties. The external potential in this case cor-

responds to the electron-ion interaction term, V̂eI , in Eq. (2.15).

2. The total energy functional E[ρ] satisfies the variational principle:

E0 = min
ρ
E[ρ], (2.20)

where E0 is the ground-state energy.

The total energy functional E[ρ] is given by [52]:

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] + Eext[ρ], (2.21)

where Ts[ρ] is the kinetic energy of a system of non-interacting electrons, EH [ρ] is the clas-

sical electrostatic (Hartree) energy, Exc[ρ] is the exchange-correlation energy, and Eext[ρ] is
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the interaction with the external potential. These terms are explicitly given as follows:

The Hartree energy is given by

EH [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)
|r− r′| . (2.22)

The exchange-correlation energy is written as:

Exc[ρ] =

∫
dr ρ(r)ϵxc(ρ(r)), (2.23)

where ϵxc(ρ) is the exchange-correlation energy per electron.

and the external potential energy is written as

Eext[ρ] =

∫
dr ρ(r)Vext(r). (2.24)

To construct E[ρ], Kohn and Sham introduced an auxiliary system of non-interacting

electrons whose density is expressed as

ρ(r) =
∑
i

|ϕi(r)|2, (2.25)

where ϕi(r) are the single-particle states, also referred to as Kohn-Sham states (or basis).

Applying the minimization procedure with the constraint that the single-particle states

ϕi(r) are normalized leads to an independent set of equations known as the Kohn-Sham

equations, which are given by

[
− ℏ2

2m
∇2 + Vext(r) + VH(r) + Vxc(r)

]
ϕi(r) = ϵiϕi(r), (2.26)

where ϵi are the Kohn-Sham eigenvalues, the Hartree potential is VH(r) =
∫
dr′ ρ(r′)

|r−r′| , the

exchange-correlation potential is Vxc(r) = δExc[ρ]
δρ(r) , and the external potential is Vext(r) =

δEext[ρ]
δρ(r) = Vion(r). In practice, one solves Eq. (2.26) self-consistently within the Local Den-

sity Approximation [56] (LDA) or the Generalized Gradient Approximation [86] (GGA) for the

exchange-correlation functional to obtain the ground-state density. A more detailed descrip-
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tion can be found in Ref. [66].

Although Kohn-Sham DFT accurately describes ground state properties in most cases,

it fails to adequately capture excited-state phenomena such as band gaps [88] and exci-

tons [67]. Therefore, the Green function approach, which is discussed in the remainder of

this chapter, is employed to address these limitations.

2.2.2 Single particle Green’s function

The single-particle Green’s function describes the probability that an electron propagates

from the space-time position (r1, t1) to (r2, t2). It enables us to calculate the ground-state

expectation values for any one-particle operators. The single-particle Green’s function is

defined as

G(2, 1) = −i⟨0|T̂{ψ̂(2)ψ̂†(1)}|0⟩, (2.27)

where T̂ is the time-ordering operator, the numbers represent the space-time coordinates

(for example, 1 → (r1, t1)), and the operator ψ̂(1) denotes the electron field operator in the

Heisenberg picture, which is given by

ψ̂(†)(r, t) = e+iĤtψ̂(†)(r)e−iĤt. (2.28)

where Ĥ is the electronic Hamiltonian for the equilibrium structure with |0⟩ representing its

ground state. The field operator ψ̂(r) can be expressed in terms of a complete set of single-

particle states and is given as

ψ̂(r) ≡
∑
n

ϕn(r)ĉn, (2.29)

where the set {ϕn(r)} are the one-particle wave functions and the operator ĉn is the fermionic

annihilation operator of state n, which obeys the fermionic anti-commutation relations, i.e.,

{ĉn, ĉ†n′} = δn,n′ , {ĉn, ĉn′} = {ĉ†n, ĉ†n′} = 0. (2.30)
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Within time-dependent perturbation theory [101, 118], the electronic Hamiltonian Ĥ can

be divided into two components:

Ĥ = Ĥ0 + V (t), (2.31)

where |∅⟩ is a non-degenerate ground state of Ĥ0, and V (t) is treated as a perturbation. In

many cases, a reasonable approximation for Ĥ0 is the Kohn-Sham DFT Hamiltonian, which

is given by

Ĥ0 ≡ ĤKS({τ (0)
i }) ≡

∫
d3r ψ̂†(r)

(
−∇2

2m
+ Vscf(r; {τ (0)

i })
)
ψ̂(r), (2.32)

where Vscf(r; {τ (0)
i }) is the self-consistent potential, which is the sum of the external poten-

tial, Hartree potential, and exchange-correlation potential as given in Eq. (2.26) and τ
(0)
i are

equilibrium positions of the atoms.

In the interaction picture, the field operators are then defined as [101, 118]

ψ̂
(†)
I (1) = e+iĤ0t1ψ̂(†)(r1)e−iĤ0t1 . (2.33)

The corresponding non-interacting Green’s function is expressed as

G0(2, 1) = −i⟨∅|T̂{ψ̂I(2)ψ̂
†
I(1)}|∅⟩. (2.34)

This allows us to write the Green’s functions involving two Heisenberg picture field oper-

ators given in Eq. (2.27) as [101, 118]

⟨0|T{ψ̂(2)ψ̂†(1)}|0⟩ =
⟨∅|T̂

{
ψ̂I(2)ψ̂

†
I(1) exp

(
−i

∫∞
−∞ dt ĤI(t)

)}
|∅⟩

⟨∅|T̂
{
exp

(
−i

∫∞
−∞ dt ĤI(t)

)}
|∅⟩

, (2.35)

where the perturbative Hamiltonian in the interaction picture is given by

ĤI(t) = e+iĤ0tV (t)e−iĤ0t. (2.36)

Substituting Eq. (2.29) into Eq. (2.34) (here ϕk,n(r) are the one-particle Kohn-Sham basis
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functions), the non-interacting Green’s function, which is diagonal is written as

G0(2, 1) =
∑
k,n

ϕk,n(r2)ϕ
∗
k,n(r1)(−i)⟨∅|T̂{ĉk,n,I(t2)ĉ†k,n,I(t1)}|∅⟩, (2.37)

where ĉk,n,I are ĉk,n operators in interacting picture.

The Fourier transform G0(2, 1) can be defined as

G0(2, 1) =
∑
k,n

ϕk,n(r2)ϕ
∗
k,n(r1)

∫
dω

2π
e−iω(t2−t1)G̃0;k,n (ω). (2.38)

where we employed time-translational invariance to reduce the two frequency coordinates

to one. The Fourier-transform of the Green’s function G̃0;k,n (ω) is given by

G̃0;k,n (ω) = (−i)
∫ ∞

−∞
dt′ ⟨∅|T̂{ĉk,n,I(t′)ĉ†k,n,I(0)}eiωt

′ |∅⟩

=
fk,n

ω − iη − ϵk,n
+

1− fk,n
ω + iη − ϵk,n

,

(2.39)

where fk,n denotes the occupation of the state |k, n⟩ in the KS ground state |∅⟩, and η → 0+.

On the other hand, the exact one-particle Green’s function defined in Eq. (2.27) is, in

general, off-diagonal in the KS basis, and is written as

G(2, 1) =
∑
k,m,n

ϕk,m(r2)ϕ
∗
k,n(r1)(−i)⟨0|T̂{ĉk,m(t2)ĉ

†
k,n(t1)}|0⟩, (2.40)

The Fourier transform of the exact Green’s function is defined as

G(2, 1) =
∑
k,m,n

ϕk,m(r2)ϕ
∗
k,n(r1)

∫
dω

2π
e−iω(t2−t1)G̃k,m,n(ω), (2.41)

where

G̃k,m,n(ω) =

∫ ∞

−∞
dt eiωt(−i)⟨0|T̂{ĉk,m(t)ĉ†k,n(0)}|0⟩. (2.42)

It should be noted that due to the translational invariance, Eq. (2.42) and (2.41), we only

have one k.

29



Finally, the interaction Hamiltonian V (t) is given as

V (t) ≡ Ĥ − Ĥ0 =
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)

e2

|r− r′| ψ̂(r
′)ψ̂(r)

−
∫
d3r ψ̂†(r) (Vxc(ρKS, r) + VH(ρKS, r)) ψ̂(r),

(2.43)

where ρKS is the ground-state charge density of the KS Hamiltonian.

Substituting Eq. (2.43) into the right-hand side of Eq. (2.35) and performing a diagram-

matic expansion as done in Ref. [93], one can show that it leads to the Dyson equation.

G(2, 1) = G0(2, 1) +G0(2, 3̄)Σ(3̄, 4̄)G(4̄, 1), (2.44)

where a bar above a variable denotes that integration is performed over that specific variable.

The irreducible self-energy, Σ(2, 1), is given by i times the sum of all connected Feynman

diagrams that remain intact when a single electron line is cut [93, 105].

Similar to the single-particle Green’s function, the irreducible self-energy can also be

expressed in the single-particle KS basis, and its Fourier transform Σ̃k,m,n(ω) is defined as:

Σ(2, 1) =
∑
k,m,n

ϕk,m(r2)ϕ
∗
k,n(r1)

∫
dω

2π
e−iω(t2−t1)Σ̃k,m,n(ω), (2.45)

where, similar to the Green’s function, we only have one k variable dependence due to

translational symmetry and one frequency dependence due to time-translational invariance.

The Dyson equation in Fourier domain, in the single-particle KS basis, takes the form of

a matrix equation given by

G̃k,a,b(ω) =
{∑

c

G̃0;k,a(ω)Σ̃k,a,c(ω)G̃k,c,b(ω)
}
+ δa,bG̃0;k,a(ω). (2.46)

Substituting Eq. (2.39) into Eq. (2.46) and setting η = 0, we obtain

−G̃−1
k,a,b(ω) = (ϵk,a − ω)δa,b + Σ̃k,a,b(ω). (2.47)
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From Eq. (2.47), we see that to obtain the exact single-particle Green’s function in the

KS basis, we need to know the irreducible self-energy in the KS basis. Since the irreducible

self-energy is a function of the exact single-particle Green’s function [105], we need to solve

Eq. (2.47) self-consistently. However, computing the irreducible self-energy self-consistently

is highly non-trivial, and therefore one makes a popular approximation known as the “GW "

approximation [105, 53]. Within the GW approximation, the irreducible self-energy is given

by [105, 93]

Σ(2, 1) ≈ −δ(2, 1)v(Hxc)(2)− iδ(2, 1)v(2, 3̄)G(3, 3̄+) + iG(2, 1)W (2, 1), (2.48)

where v(Hxc)(2) represents the sum of the Hartree potential and the exchange-correlation

potential, i.e., VH(ρKS, r)+Vxc(ρKS, r), and v(2, 3̄) and W (2, 1) denote the bare and screened

Coulomb interactions, respectively. Additionally, 3̄+ ≡ (r3, t
+
3 ) with t+3 infinitesimally greater

than t3 to ensure correct ordering of operators in time-ordered correlation functions.

The screened Coulomb interaction W (2, 1) = W (1, 2) within the random phase approxi-

mation (RPA) [105] obeys a Dyson-like equation given by:

W (2, 1) = v(2, 1) + v(2, 3̄)P (3̄, 4̄)W (4̄, 1). (2.49)

Here, the irreducible polarizability P (2, 1), which is analogous to the irreducible self-energy,

is written within the RPA as [93]

P (2, 1) ≈ P0(2, 1) ≡ −iG(2, 1)G(1, 2). (2.50)

Even within the GW and RPA approximations, one must solve Eqs. (2.46), (2.48), (2.49),

and (2.50) self-consistently. However, in this thesis, we always used the implementations (we

used the YAMBO code to perform the calculations) where it is solved non-self-consistently,

referred to as the G0W0 approximation, which is given by [53, 65]

P (2, 1) ≈ P0(2, 1) ≡ −iG0(2, 1)G0(1, 2), (2.51)
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W (2, 1) ≈W0(2, 1) ≡ v(2, 1) + v(2, 3̄)P0(3̄, 4̄)W0(4̄, 1), (2.52)

Σ(2, 1) ≈ Σ0(2, 1) ≡ −δ(2, 1)v(xc)(r2) + iG0(2, 1)W0(2, 1), (2.53)

G(2, 1) ≈ G0(2, 1) +G0(2, 3̄)Σ0(3̄, 4̄)G(4̄, 1), (2.54)

Moreover, we also employ the quasi-particle approximation (QPA) for the exact Green’s

function, which is approximated as [53, 65, 93]

G̃k,m,n(ω) ≈ δm,n

Z
(QP )
k,n

ω − ϵ
(QP )
k,n + i

γ
(QP )
k,n

2

. (2.55)

Here, the quasi-particle weight Z(QP )
k,n , energy ϵ(QP )

k,n , and decay width γ(QP )
k,n are given by [93]

Z
(QP )
k,n ≡

[
1− ∂Σ̃k,n,n(ω)

∂ω

∣∣∣
ω=ϵk,n

]−1

, (2.56)

ϵ
(QP )
k,n ≡ ϵk,n + Re

[
Z

(QP )
k,n Σ̃k,n,n(ω)

∣∣∣
ω=ϵk,n

]
, (2.57)

γ
(QP )
k,n ≡ −2Im

[
Z

(QP )
k,n Σ̃k,n,n(ω)

∣∣∣
ω=ϵk,n

]
(2.58)

In the QPA, the exact Green’s function can be written as

G(2, 1)QPA ≈
∑
k,n

ϕk,n(r2)ϕ
∗
k,n(r1)

∫
dω

2π
e−iω(t2−t1)

Z
(QP )
k,n

ω − ϵ
(QP )
k,n + i

γ
(QP )
k,n

2

. (2.59)

The QPA is commonly employed when solving the Bethe-Salpeter equation, which will

be discussed in the next section.

In practice, to obtain the quasiparticle energies given in Eq. (2.57), we first compute the

polarizability P (2, 1) within the Random Phase Approximation (RPA), as defined in Eq. (2.51).

The explicit expression is written as

P0(r, r
′;ω) =

∑
n,m

(fn − fm)ψ∗
n(r)ψm(r)ψ∗

m(r′)ψn(r
′)

ω − (εm − εn) + iη
. (2.60)
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Once P0 is obtained, we compute the inverse dielectric function, which is given by

ε−1(r, r′;ω) = δ(r− r′) +
∫
dr′′ v(r, r′′)P0(r

′′, r′;ω), (2.61)

where v(r, r′) = 1
|r−r′| is the bare Coulomb interaction.

Using the inverse dielectric function, we can then construct the screened Coulomb inter-

action, which is given by [53]

W0(r, r
′;ω) =

∫
dr′′ ε−1(r, r′′;ω)v(r′′, r′). (2.62)

With the screening coloub interaction, the self-energy can be computed as [53]

Σ(r, r′;ω) =
i

2π

∫
dω′G0(r, r

′;ω + ω′)W0(r, r
′;ω′)ei0

+ω′
. (2.63)

It should be noted that in Eq. (2.63), we need to evaluate W0 over a range of frequencies,

which makes the computation very expensive. To mitigate this, an analytical approximation

for ε−1(r, r′;ω) in Eq. (2.61) is used, known as the plasmon-pole model [40]. Once the self

energy is obtained, we can then compute the quasi-particle corrections to the DFT quasi-

particle energies.

With this discussion on the single-particle Green’s function, we will now look into the

two-particle correlation function in the next section. A more detailed discussion on GW

approximation can be found in Refs. [53, 67, 83].

2.2.3 Two-particle correlation function

In order to describe excitons, we need to consider the two-particle Green’s function, which

describes the correlated movement of two charges. The two-particle Green’s function is

defined as

G(2)(1, 2; 3, 4) ≡ (−i)2⟨0|T̂{ψ(1)ψ(4)ψ†(2)ψ†(3)}|0⟩. (2.64)

Similar to Eq. (2.35), one can expand the two-particle Green’s function given in Eq. (2.64)
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in terms of four Heisenberg time evolution operators. The exact two-particle Green’s function

in the interaction picture is given by

⟨0|T{ψ̂(1)ψ̂(4)ψ̂†(2)ψ̂†(3)}|0⟩ =
⟨∅|T̂

{
ψ̂I(1)ψ̂I(4)ψ̂

†
I(2)ψ̂

†
I(3) exp

(
−i

∫ +∞
−∞ dt ĤI(t)

)}
|∅⟩

⟨∅|T̂
{
exp

(
−i

∫ +∞
−∞ dt ĤI(t)

)}
|∅⟩

,

(2.65)

where we use the same definitions as in Eq. (2.35). Similar to Eq. (2.34), one can define

the independent two-particle Green’s function as [93, 105]

G
(2)
0 (1, 2; 3, 4) = G(1, 3)G(4, 2)−G(1, 2)G(4, 3), (2.66)

where G(1, 2) and others are single-particle Green’s functions (the exact one’s). We then

define two-particle correlation function L(1, 2; 3, 4) as

L(1, 2; 3, 4) ≡ G(2)(1, 2; 3, 4) +G(1, 2)G(4, 3). (2.67)

From Eq. (2.67) and (2.66), the independent two-particle correlation function L0(1, 2; 3, 4)

is given by

L0(1, 2; 3, 4) = G(1, 3)G(4, 2). (2.68)

Combining Eq. (2.65) and (2.67) and performing a diagrammatic expansion as done

in Ref. [93], one arrives at a Dyson-like equation for the two-particle correlation function

L(1, 2; 3, 4), very similar to the one-particle Green’s function case:

L(1, 2; 3, 4) = L0(1, 2; 3, 4) + L0(1, 2; 5̄, 6̄)K(5̄, 6̄; 7̄, 8̄)L(7̄, 8̄; 3, 4), (2.69)

where K(5̄, 6̄; 7̄, 8̄) is known as the two-particle interaction kernel, which is analogous to the

irreducible self-energy in the single-particle Green’s function case.

Equation (2.69) is widely referred to as the "Bethe-Salpeter Equation" (BSE), and one

typically solves this under certain approximations to obtain the excitonic energies and eigen-
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states. The BSE is currently the state-of-the-art method for computing the properties of

excitons.

The interaction kernel appearing in Eq. (2.69) can be written as a functional derivative of

the self-energy {Σ(5, 6) + δ(5, 6)v(Hxc)(5)} with respect to the Green’s function G(7, 8) and

is written as [105]

K(5, 6; 7, 8) =
δ{Σ(5, 6) + δ(5, 6)vHxc(5)}

δG(7, 8)
, (2.70)

where Σ(5, 6) and vHxc(5) are the self-energy and the Hartree potential, respectively, and

G(7, 8) is the single-particle Green’s function.

Within the GW approximation for the one-particle self-energy as given in Eq. (2.48), along

with the assumption that δW (5,6)
δG(7,8) ≈ 0, the interaction kernel K(5, 6; 7, 8) can be expressed

as the sum of the attractive screened Coulomb interaction and the repulsive bare exchange

interaction. It is then given by [53]:

K(5, 6; 7, 8) = iW (5, 6)δ(5, 7)δ(6, 8)

− iv(5, 7)δ(5, 6)δ(7, 8),
(2.71)

where v(5, 7) and W (5, 6) are the bare and screened Coulomb potentials as shown in previ-

ous section, respectively.

The BSE given in Eq. (2.69) is solved in the Fourier domain, similar to the Green’s func-

tion or self-energy as shown in Eq. (2.45). The Fourier transform F̃ of the four-point function

F (1, 2; 3, 4), where F is either K or L in the single-particle KS basis, is defined as

F (1, 2; 3, 4) ≡
∑

k1,k2,k3,k4
a,b,c,d

ϕk1,a(r1)ϕk4,d(r4)ϕ
∗
k2,b(r2)ϕ

∗
k3,c(r3)

∫
dω

2π

∫
dω′

2π

∫
dω′′

2π

× e−iω′′(t1−t2)e−iω(t1−t3)e−iω′(t4−t2)F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′) .

(2.72)

In Eq. (2.72), we used time translational symmetry to reduce the dependence of F̃ from

four to three variables. Moreover, due to translational symmetry, which will be demonstrated

in the next chapter, the number of wavevectors can be reduced from four to three. The
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wavevectors in Eq. (2.72) should satisfy the following relation (Eq. (3.19)):

k3 − k4 = k1 − k2 +G = Q. (2.73)

Where Q is the wavevector corresponding to the transfer momentum. Using Eq. (3.19), we

can write Eq. (2.72) as

F (1, 2; 3, 4) ≡
∑

k1,k3,Q
a,b,c,d

ϕk1,a(r1)ϕk3−Q,d(r4)ϕ
∗
k1−Q,b(r2)ϕ

∗
k3,c(r3)

∫
dω

2π

∫
dω′

2π

∫
dω′′

2π

× e−iω′(t4−t2)e−iω(t1−t3)F̃k1a,k1−Qb
k3c,k3−Qd

(ω, ω′, ω′′)e−iω′′(t1−t2)

(2.74)

The Fourier transform of the independent-particle correlation function L0 has only two-

frequencies and is defined as:

L0(1, 2; 3, 4) ≡
∑
k1,Q
a,b,c,d

ϕk1,a(r1) ϕk1−Q,d(r4) ϕ
∗
k1−Q,b(r2) ϕ

∗
k1,c(r3)

×
∫
dω

2π

∫
dω0

2π
e−iω(t1−t3)L̃k1a,k1−Qb

k1c,k1−Qd
(ω, ω′)e−iω′(t4−t2)

(2.75)

In Eq. (2.75), we used the fact that the independent two-particle correlation function is the

product of two one-particle Green’s functions. This implies that we can write the Fourier

transform of L0 as

L̃
0,
k1a,k1−Qb
k1c,k1−Qd

(ω, ω′) = G̃k1,ac(ω)G̃k1−Q,db(ω
′) (2.76)

Furthermore, from Eq. (2.71), we can express the BSE kernel in Fourier space in the KS

basis as

K̃k1a,k1−Qb
k3c,k3−Qd

(ω, ω′, ω′′) ≈ iW̃k1a,k1−Qb
k3c,k3−Qd

(ω′′)− iṽk1a,k1−Qb
k3c,k3−Qd

= K̃k1a,k1−Qb
k3c,k3−Qd

(ω′′). (2.77)

In practice, it is common to assume that the BSE kernel is static [93], which implies

that we can neglect its frequency dependence. Under this approximation, the kernel can be
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written as

K̃k1a,k1−Qb
k3c,k3−Qd

(ω′′) ≈ iW̃k1a,k1−Qb
k3c,k3−Qd

(ω′′ = 0)− iṽk1a,k1−Qb
k3c,k3−Qd

. (2.78)

The matrix elements W̃k1a,k1−Qb
k3c,k3−Qd

(ω′′ = 0) are commonly referred to as the direct term,

and ṽk1a,k1−Qb
k3c,k3−Qd

, known as the exchange term.

With these approximations and additional simplifications as shown in Ref. [93], the BSE

given in Eq. (2.69) in the Fourier domain can be written as (see Ref. [93] for a detailed

derivation)

L̃−1
k1a,k1−Qb
k3c,k3−Qd

(ω) = δk1,k3L̃
−1

0,
k3a,k3−Qb
k3c,k3−Qd

(ω)− K̃k1a,k1−Qb
k3c,k3−Qd

. (2.79)

One further employs the QPA given in Eq. (2.59), neglecting the quasiparticle decay rate

by setting γQP
k,a ≈ 0 and assuming the quasiparticle weight factors are ZQP

k,a ≈ 1. Under these

approximations, we obtain

L̃−1

0,
k3a,k3−Qb
k3c,k3−Qd

(ω) ≈ iδa,cδb,d
fk3,c − fk3−Q,d

ω − (εk3,c − εk3−Q,d)
, (2.80)

where fk3,c and fk3−Q,d are the occupation factors, while εk3,c and εk3−Q,d denote the single-

particle energies for states (k3, c) and (k3 −Q, d), respectively.

This implies that Eq. (2.79) can be written as

L̃k1a,k1−Qb
k3c,k3−Qd

(ω) =
i(fk3,c − fk3−Q,d)

ω − H̃k1a,k1−Qb
k3c,k3−Qd

, (2.81)

with

H̃k1a,k1−Qb
k3c,k3−Qd

= δa,cδb,dδk1,k3(εk3,c − εk3−Q,d) + i(fk3,c − fk3−Q,d)K̃k1a,k1−Qb
k3c,k3−Qd

. (2.82)

Here, H̃(Q)
k1a,k1−Qb
k3c,k3−Qd

represents the excitonic Hamiltonian for the transferred momentum Q. In

general, H̃(Q)
k1a,k1−Qb
k3c,k3−Qd

is not Hermitian. From the eigenvalues and the left and right eigenvec-

tors of the excitonic Hamiltonian, one can obtain the two-particle correlation function given

37



in Eq. (2.81).

The occupation factors fk,a in Eq. (2.82) are given by fk,a = 1 if a belongs to the valence

band and fk,a = 0 if a belongs to the conduction band. This implies that we can write the

BSE Hamiltonian given in Eq. (2.82) as a 2× 2 block matrix, given by

H2p =

 R C

−C† −D

 (2.83)

where R and D are known as the resonant and anti-resonant blocks, respectively, while C

is referred to as the coupling block. Let c̃, c̃′ belong to conduction bands and ṽ, ṽ′ belong to

valence bands. Then, the resonant block is Hermitian and is given by

Rk1c̃′,k1−Qṽ′
k3c̃,k3−Qṽ

= δc̃′,c̃δṽ′,ṽδk1,k3(εk3,c̃ − εk3−Q,ṽ)− iK̃k1c̃′,k1−Qṽ′
k3c̃,k3−Qṽ

. (2.84)

The anti-resonant block is Hermitian and is given by

Dk1ṽ′,k1−Qc̃′
k3ṽ,k3−Qc̃

= δc̃′,c̃δṽ′,ṽδk1,k3(−εk3,ṽ + εk3−Q,c̃)− iK̃k1ṽ′,k1−Qc̃′
k3ṽ,k3−Qc̃

. (2.85)

The coupling block C is given by

Ck1c̃′,k1−Qṽ′
k3ṽ,k3−Qc̃

= iK̃k1c̃′,k1−Qṽ′
k3ṽ,k3−Qc̃

. (2.86)

One often sets the coupling block C = 0, which is commonly referred to as the Tamm-

Dancoff Approximation. Throughout this thesis, we employ this approximation, as it makes

the excitonic Hamiltonian Hermitian and greatly simplifies the expressions when computing

observables.

By diagonalizing the matrix given in Eq. (2.83), we obtain the excitonic energies and

eigenstates and is written as

 R(Q) C(Q)

−
(
C(Q)

)† −D(Q)

A(Q)

B(Q)

 = ε
(Q)
S

A(Q)

B(Q)

 , (2.87)
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where X =

A(Q)

B(Q)

 is the right excitonic wavefunction in the electron-hole basis, often

referred to as the envelope wavefunction. Eq. (2.87) is explicitly written as

∑
k3,c̃ṽ

{
δc̃′,c̃δṽ′,ṽδk1,k3(εk3,c̃ − εk3−Q,ṽ)− iK̃k1c̃′,k1−Qṽ′

k3c̃,k3−Qṽ

}
A

S,(Q)
k3,c̃ṽ

+

i
∑
k3,c̃ṽ

{
K̃k1c̃′,k1−Qṽ′

k3ṽ,k3−Qc̃

.
}
B

S,(Q)
k3,c̃ṽ

= εS,(Q)A
S,(Q)
k1,c̃′ṽ′∑

k3,c̃ṽ

{
δc̃′,c̃δṽ′,ṽδk1,k3(−εk3,ṽ + εk3−Q,c̃)− iK̃k1ṽ′,k1−Qc̃′

k3ṽ,k3−Qc̃

}
B

S,(Q)
k3,c̃ṽ

+

− i
∑
k3,c̃ṽ

{
K̃∗

k3ṽ,k3−Qc̃
k1c̃′,k1−Qṽ′

.
}
A

S,(Q)
k3,c̃ṽ

= −εS,(Q)B
S,(Q)
k1,c̃′ṽ′ .

(2.88)

In order to compute the kernel matrix elements in Eq. (2.88), we need to evaluate the

bare-exchange term and the screened Coulomb term, which are explicitly written as:

Vn1,n2
n5,n6

=

∫
dr dr′ ϕn1(r)ϕ

∗
n2
(r)

1

|r− r′|ϕ
∗
n5
(r′)ψn6(r

′),

Wn1,n2
n5,n6

(ω) =

∫
dr dr′ dr′′ ϕn1(r)ϕ

∗
n2
(r′)

ϵ−1(r, r′′;ω)
|r′′ − r′| ϕ∗n5

(r)ϕn6(r
′),

where ni = (ki,mi), with mi being the band index.

Once we obtain the exciton wavefunctions in electron-hole basis, the exciton wavefunc-

tion in the position basis is then given by

ΨQ
S (re, rh) =

∑
kcv

A
S,(Q)
k,cv ϕkc(re)ϕ

∗
k−Q,v(rh) +

∑
kcv

B
S,(Q)
k,cv ϕkv(re)ϕ

∗
k−Q,c(rh). (2.89)

When the Tamm-Dancoff Approximation (TDA) is employed, the diagonalization is re-

stricted to the resonant block to obtain the positive eigenspectrum, i.e.,

R(Q)A(Q) = ε
(Q)
S A(Q). (2.90)

After the diagonalization, one can obtain the two-particle coorealtion given in Eq. (2.81)
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as

L̃k1a,k1−Qb
k3c,k3−Qd

(ω) =
∑
S

i(fk3,c − fk3−Q,d)

ω − εQS
XS,Q

k3c,k3−Qd(Y
S,Q
k1a,k1−Qb)

∗, (2.91)

where Y S are the left eigenvectors, chosen such that the overlap matrix with the right eigen-

vectors is the identity matrix.

Once we have obtained the exciton energies and eigenstates, we can then compute

properties including excitonic effects. For example, within TDA, we can obtain the imagi-

nary part of the 2D polarizability tensor, which represents the absorption spectrum of a 2S

material and is given by tensor [98]:

Im{αµ
2D(ω)} =

2πe2

Aucω2

∑
S

∣∣∣∑
vck

AS
vck⟨vk|vµ|ck⟩

∣∣∣2δ(ω − εS), (2.92)

where Auc is the unit cell area, vµ is the velocity operator component along µ, AS
vck are

exciton expansion coefficients, and εS is the exciton energy.

Before concluding this brief review of the BSE formalism, we present an application of

the GW-BSE method to compute the absorption spectrum of a new class of 2D materials

with an indirect gap. These materials have the general formula MX2, where M represents a

pnictogen and X represents a chalcogen, as shown in Fig. 2.1. This work is adapted from

Ref. [71].

2.2.4 Optical Properties and Many-Body Effects of MX2 monolayer

Fig 2.2 shows the electronic band structures of all r-MX2 monolayers calculated using the

G0W0 [7, 99, 65] (solid lines) and PBE [87] (dashed lines) methods, including spin-orbit

coupling (SOC) effects. We observe that the overall band dispersion does not change sig-

nificantly with the choice of the exchange-correlation (XC) functional. However, the bandgap

varies considerably depending on the XC functional employed (see Table 2.1).

While SOC effects are negligible for lighter elements, they become substantial for heavier

constituent elements, particularly in the BiX2 series. Notably, there is no SOC-induced spin

splitting of bands due to the centrosymmetric structure of r-MX2 monolayers.
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r-MX2

mono-
layer

PBE PBE
+SOC

HSE06 HSE06
+SOC

G0W0

+SOC

AsS2 1.25 1.17 1.92 1.91 2.01
AsSe2 0.96 0.88 1.54 1.51 2.06
AsTe2 0.52 0.48 0.98 0.83 1.38
SbS2 1.42 1.35 2.12 2.08 2.24
SbSe2 1.09 1.03 1.69 1.62 2.23
SbTe2 0.65 0.63 1.10 1.00 1.57
BiS2 1.47 1.04 2.20 1.87 1.84
BiSe2 1.17 0.76 1.81 1.45 1.82
BiTe2 0.70 0.26 1.19 0.73 0.83

Table 2.1: Bandgaps (in eV) of r-MX2 monolayers calculated using PBE, PBE+SOC, HSE06,
HSE06+SOC, and G0W0+SOC.

To obtain the absorption spectrum, including electron-hole interactions, we solve the

Bethe-Salpeter equation (BSE) [98] on top of the G0W0 calculations within the Tamm-Dancoff

approximation [7], using the YAMBO code [99].

The optical spectra reveal strongly bound excitons dominating absorption for all r-MX2

monolayers. A significant shift in the absorption onset upon including excitonic effects in-

dicates large exciton binding energies, similar to MoS2 and other transition metal dichalco-

genides [75, 113].

First bright exciton energies of MX2 monolayers (in eV)
MX2 S Se Te

As 1.97 1.91 1.07
Sb 2.00 2.01 1.34
Bi 1.20 1.26 0.45

Table 2.2: First bright exciton energies of MX2 monolayers calculated using
BSE+G0W0+SOC.

The dielectric screening increases with heavier chalcogens, resulting in a redshift of the

absorption onset. However, no clear trend is observed with pnictogen elements, with Sb-

based compounds exhibiting the highest bandgaps and exciton energies.
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a)

b)
M X

Figure 2.1: a) Top and b) side views of the studied r-MX2 monolayer. The conventional (blue)
and primitive (red) unit cells are illustrated in panel (a).
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Figure 2.2: Electronic band structure of r-MX2 monolayers calculated using G0W0 (solid
lines) and PBE (dashed lines), including spin-orbit coupling effects. The Fermi energy (EF )
is set at the valence band maximum.
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Figure 2.3: Optical absorption spectra for different r-MX2 monolayers. The solid and dashed
lines correspond to calculations with and without electron-hole interactions. The red and
blue lines represent absorption along x and y polarization directions, respectively.

Finally, we analyze the anisotropic absorption of these materials. Unlike BP, where exci-

tons exhibit distinct x/y coupling due to D2h symmetry, r-MX2 monolayers (C2h) show excitons

coupling to both x and y polarizations, though with different intensities. The greater oscillator

strength along the y-direction results from the crystal’s in-plane anisotropy.

Calculation details:

All DFT calculations were performed using the QUANTUM ESPRESSO (QE) package [37]

with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC) functional [87]. We used

fully relativistic norm-conserving pseudopotentials from the PSEUDODOJO project [108] for

the QE calculations. Spin-orbit coupling (SOC) was included in all the calculations unless

specified otherwise.

Next for the GW calculations, we first obtained the Kohn-Sham energies and wave func-

tions on a uniform 9× 9× 1 k-point grid by performing a non self-consistent calculation with

a plane wave cutoff of 80 Ry using the QE code. In order to construct the microscopic

dielectric tensor, we used a plane wave cutoff of 8 Ry and performed the summation with
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1000 Kohn-Sham states. The frequency dependence of the dielectric tensor was described

within a plasmon-pole approximation [40]. A 2D Coulomb cutoff along the out-of-plane was

employed to remove the interactions with periodic images. In order to speed up the conver-

gence of G0W0 calculations with respect to bands and k-points, we used a G-terminator [10]

and RIM-W [44] technique, respectively.

To obtain well-converged absorption spectra, we used a uniform Γ-centred 30 × 30 × 1

k-point grid for all r-MX2 monolayers. A total of 250 bands and a cut-off of 4 Ry were used

to build the static dielectric tensor. We included the top eight valence and the bottom eight

conduction bands to construct the BSE interaction kernel. A plane-wave cutoff of 60 Ry

and 4 Ry was used in the construction of bare exchange and screened Coulomb blocks,

respectively.

In the next chapters, we will use the formalism introduced here to explore excitonic sym-

metries and exciton-phonon coupling phenomena.
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Chapter 3

Symmetries of Excitons

In the previous chapter, we briefly presented some basic concepts of group theory and in-

troduced the GW and BSE formalisms, which are state-of-the-art methods for computing

exciton energies and eigenstates. One important aspect of excitons is their symmetry prop-

erties, which govern their optical selection rules and interactions with other quasiparticles.

Traditionally, the symmetries of excitonic states have been described by modeling them

as hydrogenic systems and assigning atomic orbitals to their solutions. For example, in

materials with strong dielectric screening, if the exciton consists mainly of transitions at the

band extrema, only “s-like” excitons are optically active (bright) [30].

As mentioned earlier, although the hydrogenic model adequately describes the dipole

selection rules in conventional bulk semiconductors with Wannier-Mott-type excitons [116],

it fails to capture the selection rules for excitons that deviate from this type. For example,

excitons in monolayer transition metal dichalcogenides (TMDCs) are known to deviate signif-

icantly from the hydrogenic Rydberg series [19]. Moreover, the hydrogenic model is insuffi-

cient for studying selection rules in processes such as exciton-phonon scattering. Therefore,

more robust approaches are needed to understand the symmetries of all types of excitons.

In this chapter, we rigorously employ group theory methods to study the symmetry prop-

erties of the excitonic states obtained from the BSE. The contents of this chapter are planned

to be integrated into a publication [80].

Before we study the symmetries of excitonic states, we first examine the symmetries of
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the underlying electronic states.

3.1 Symmetries of electronic states in crystals

The set of all spatial symmetries that leave the crystal invariant forms a space group G. The

unitary operators Û(g), for all g ∈ G, form a projective representation (or a linear represen-

tation if spin is neglected) of G on the Hilbert space of electronic states [121, 118, 2]. It is

worthwhile to highlight that one can work with linear representations of a much larger group

instead of working with projective representations, which gives rise to the concept of double

point groups [25] when dealing with projective representations of point groups with spin-orbit

coupling in crystals. The electronic Hamiltonian Ĥ remains invariant under the action of g if

and only if Û(g) commutes with Ĥ, which is expressed as [Ĥ, Û(g)] = 0 [107].

Within the group G, the set of all pure translational symmetries forms a normal subgroup

T of G. The group T is abelian, as the group multiplication is commutative. The space

group G can be decomposed into unique left (or right) cosets of the subgroup T in G, which

is written as

G ≡
n⋃

i=1

giT , (3.1)

where gi are the coset representatives, giT represents the cosets of T in G, and n is the

index of T in G. Since T is a normal subgroup of G, it follows that the set of all left (or right)

cosets of T in G forms the quotient group, represented by G/T which is isomorphic to the

point group P of the crystal [29]. The point group P is the set obtained by removing the

translational components from the elements of the space group G. It can happen that P is

not be a subgroup of G.

Since the Hamiltonian Ĥ commutes with all elements in T , it follows that both Ĥ and

Û(g) for all g ∈ T can be simultaneously block-diagonalized, with each block classified by

the one-dimensional irreducible representations of T . Upon imposing the Born–von Karman

boundary condition [4], these irreducible representations are labeled by the wavevector k,

which is restricted to the first Brillouin zone of reciprocal space. This allows us to express

the eigenstates of Ĥ, which are Bloch states [107, 25, 29], as:
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ψk,m,σ(r) = eik·ruk,m,σ(r), (3.2)

where uk,m,σ(r) is the periodic part of the wavefunction, determined by the structure of the

potential. Here, m and σ denote the band and spin indices, respectively.

The set of all symmetries in G that leave the wavevector k unchanged (up to a reciprocal

lattice vector) forms the little group Gk of k, which is a subgroup of G. The quotient group

Gk/T is isomorphic to the little point group Pk of k, which is a subgroup of the point group

of the crystal, P.

Now, consider an element g = {R | τ} ∈ G, which transforms the position vector r as

r → Rr + τ , where R is an orthogonal matrix and τ is a translation, potentially a fractional

multiple of the lattice vectors. The operator Û(g) acts on the Bloch state ψk,m,σ(r) as [2, 29]:

Û(g)ψk,m,σ(r) = Sσ′σ(R)ψk,m,σ(R
−1(r− τ )), (3.3)

where S(R) = e−iϕ
2
n̂·σ⃗ is a 2 × 2 unitary matrix acting on the spinorial subspace of the

electronic wavefunction. Here, σ⃗ = (σx, σy, σz) denotes the Pauli matrices, and n̂ and ϕ

are the axis and angle of the orthogonal matrix R (we treat improper rotations as product

of proper rotation and inversion. As angular momentum is invariant under inversion, for

improper rotations, n̂ and ϕ correspond to the matrix −R). If spin is neglected, S(R) reduces

to the 1× 1 identity matrix.

Under the action of g, the wavefunction remains an eigenstate of Ĥ but transforms to a

wavevector k′ = Rk+G, where G is a reciprocal lattice vector ensuring that Rk lies within

the first Brillouin zone [25]. Throughout this work, we adopt the convention ψk(r) = ψk+G(r),

known as the periodic gauge.

Assuming that the wave functions ψk,m′,σ′ form an orthonormal set (for all k), the wave-

functions Û(g)ψk,m,σ(r) and ψRk,m,σ(r) represent the same physical state, differing only by

a phase (or a unitary rotation for degenerate states). This relation is expressed as:

Û(g)ψk,m,σ(r) =
∑
m′

Dk,m′m(g)ψRk,m′,σ′(r), (3.4)
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Figure 3.1: Feynman diagram for an arbitrary four-point function F (1, 2; 3, 4).

where Dk(g) =
⊕

iDk,i(g) is a block-diagonal unitary matrix, with each block Dk,i(g) cor-

responding to a degenerate subspace that is preserved under the action of all symmetry

operations (invariant subspace). The matrix Dk(g) is given by:

Dk,m′m(g) =
∑
σ,σ′

∫
ψ∗
Rk,m′,σ′(r)Sσ′σ(R)ψk,m,σ(R

−1(r− τ )) d3r. (3.5)

The unitary matrices Dk(g) for all g ∈ G and k-points are central to the analysis of electronic-

state symmetries in crystals. If g belongs to the little group of k, then Dk(g) corresponds to

the representation matrices of the symmetry operation, which can be further decomposed

into irreducible representations of the electronic states.

Furthermore, the matrices Dk can be extended to incorporate time-reversal symmetry

T , which is given by

Dk,m′m(T ) =
∑
σ,σ′

∫
ψ∗
−k,m′,σ′(r)Sσ′σ(T )ψ∗

k,m,σ(r) d
3r. (3.6)

where S(T ) = −iσy, or the 1× 1 identity matrix if spin is neglected.

3.2 Symmetries of excitons

Building on this foundation, we now examine the symmetries of excitonic states. The exciton

energies and eigenstates are obtained by solving the Bethe–Salpeter equation (BSE) [98, 1],

as shown in the previous chapter. To understand the symmetry properties of excitons, we

study the symmetries of the BSE itself. Rather than working directly with the BSE, we first

generalize the symmetry analysis to an arbitrary four-point function that is invariant under

symmetry operations. This general framework is then applied to the BSE as a special case.
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Consider a generic four-point function F (1, 2; 3, 4), represented by the Feynman dia-

gram shown in Fig. 3.1, where the indices denote position and time coordinates, e.g.,

1 → (r1σ1, t1). The Fourier transform of F (1, 2; 3, 4) in the time domain, denoted as F̃ =

F̃ (r1σ1, r2σ2; r3σ3, r4σ4;ω, ω
′, ω′′), can be expanded in terms of non-interacting one-electron

Bloch states ϕ(r), which form an orthonormal basis, and is given by [93, 105] 1:

F̃ =
∑

k1,k2,k3,k4
a,b,c,d

ϕk1,a,σ1(r1)ϕk4,d,σ4(r4)ϕ
∗
k2,b,σ2

(r2)ϕ
∗
k3,c,σ3

(r3)F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′),
(3.7)

where the matrix F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′) represents the Fourier transform F̃ in the basis of one-

electron Bloch states. Here, the indices a and c denote the band indices of the electron,

while b and d correspond to the band indices of the hole.

Now consider the action of Û(g) on the fourier transform of the four-point function, which

is given by

Û(g)F̃ = F̃ ′ = F̃ (r′1σ
′
1, r

′
2σ

′
2; r

′
3σ

′
3, r

′
4σ

′
4;ω, ω

′, ω′′) (3.8)

where r′i = R−1(ri − τ ) ∀i ∈ {1, 2, 3, 4}. Combining Eqs. (3.7) and (3.8), and employing

Eq. 3.4 we obtain

F̃ ′ =
∑

k1,k2,k3,k4

a′,b′,c′,d′

ϕRk1,a′,σ′
1
(r1)ϕRk4,d′,σ′

4
(r4)ϕ

∗
Rk2,b′,σ′

2
(r2)ϕ

∗
Rk3,c′,σ′

3
(r3)

×
∑
a,b,c,d

{
F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′)Dk1,a′a(g)D∗
k3,c′c(g)D∗

k2,b′b(g)Dk4,d′d(g)
}
.

(3.9)

If F̃ is invariant under the action of g, i.e F̃ = F̃ ′ then from Eq. (3.9) we get

F̃Rk1a′,Rk2b′
Rk3c′,Rk4d′

(ω, ω′, ω′′) =
∑
a,b,c,d

{
F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′)

Dk1,a′a(g)D∗
k3,c′c(g)D∗

k2,b′b(g)Dk4,d′d(g)
}
.

(3.10)

1Due to time-translation symmetry, the number of independent frequency variables in the Fourier transform
is reduced from four to three [105].
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Equation (3.10) motivates us to define the matrices U(g) for all g = {R | τ} ∈ G, given by

Uk′
1k

′
2a

′,b′

k1k2a,b

(g) = Dk1,a′a(g)D∗
k2,b′b(g)δRk1,k′

1
δRk2,k′

2
. (3.11)

Similarly, in the case of time-reversal symmetry, the matrix U(T ) is given by

Uk′
1k

′
2a

′,b′

k1k2a,b

(T ) = Dk1,a′a(T )D∗
k2,b′b(T )δ−k1,k′

1
δ−k2,k′

2
K̂ , (3.12)

where K̂ is the complex conjugation operator, which ensures the anti-unitary property of

time-reversal symmetry.

This allows us to conveniently express Eq. (3.10) as F = UFU†, where F represents

the matrix F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′). Here, we employ the closure property of the set of k-points

under space group operations. It is worthwhile to point out that if this closure property is not

respected (for example, in some shifted k-grids), the symmetry properties are destroyed,

leading to erroneous results such as breaking of degeneracies (see, for example, Ref. [122]).

An important point to note is that since the D matrices are unitary, the U matrices are

also unitary for spatial symmetries. To show this, let n = {k1,k2, a, b} and consider the

product U(g)U(g)†:

U(g)U(g)† =
∑
n

Un′,n(g)U∗
n′′,n(g)

=
∑

k1,k2,a,b

Dk1,a′a(g)D∗
k2,b′b(g)δRk1,k′

1
δRk2,k′

2
D∗

k1,a′′a(g)Dk2,b′′b(g)δRk1,k′′
1
δRk2,k′′

2

= δk′′
2 ,k

′
2
δk′′

1 ,k
′
1

∑
a,b

DR−1k′
1,a

′a(g)D∗
R−1k′

2,b
′b(g)D∗

R−1k′
1,a

′′a(g)DR−1k′
2,b

′′b(g)

= δk′′
2 ,k

′
2
δk′′

1 ,k
′
1
δa′′,a′δb′′,b′ = δn′,n′′ .

(3.13)

On the other hand, in the case of time-reversal symmetry, U is anti-unitary due to the

presence of the complex conjugation operator.

A central result of this work is that the set of all matrices U(g) for g ∈ G constitutes a
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unitary representation of the space group G.

To prove that the set {U(g)} forms a linear representation of the space group, let g1 =

{R1 | τ 1} and g2 = {R2 | τ 2} be two elements in G. The product of these two elements is

given by:

g1 · g2 = {R1R2 | R1τ 2 + τ 1}.

In order to show that the U(g) matrices form a linear representation of the space group, we

need to show that it is a group homomorphism, i.e.,

U(g1)U(g1) = U(g1 · g2) ∀g1, g2 ∈ G (3.14)

To prove Eq. (3.14), we consider U(g1)U(g2) and let n = {k1,k2, a, b},

(U(g1)U(g2))n′,n′′ =
∑
n

Un′,n(g1)Un,n′′(g2)

=
∑

k1,k2,a,b

{
Dk1,a′a(g1)D∗

k2,b′b(g1)δR1k1,k′
1
δR1k2,k′

2

×Dk′′
1 ,aa

′′(g2)D∗
k′′
2 ,bb

′′(g2)δR2k′′
1 ,k1

δR2k′′
2 ,k2

}
=

∑
a,b

{
DR2k′′

1 ,a
′a(g1)D∗

R2k′′
2 ,b

′b(g1)Dk′′
1 ,aa

′′(g2)D∗
k′′
2 ,bb

′′(g2)δR1R2k′′
1 ,k

′
1
δR1R2k′′

2 ,k
′
2

}
(3.15)

Now, consider the following product for the D matrices as given in Eq. (3.15)

∑
a

DR2k′′
1 ,a

′a(g1)Dk′′
1 ,aa

′′(g2)

=
∑
a

⟨R1R2k
′′
1, a

′|U(g1)|R2k
′′
1, a⟩⟨R2k

′′
1, a|U(g2)|k′′

1, a
′′⟩

= ⟨R1R2k
′′
1, a

′|U(g1)U(g2)|k′′
1, a

′′⟩

= ⟨R1R2k
′′
1, a

′|U(g1 · g2)eiϕ(g1,g2)|k′′
1, a

′′⟩

= eiϕ(g1,g2)Dk′′
1 ,a

′a′′(g1 · g2)

(3.16)

where it is assumed that the set of U(g) matrices forms a projective representation of the

space group, i.e., U(g1)U(g2) = eiϕ(g1,g2)U(g1 · g2). Substituing Eq. (3.16) in Eq. (3.15), we
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obtain
(U(g1)U(g2))n′,n′′ = δR1R2k′′

1 ,k
′
1
δR1R2k′′

2 ,k
′
2
eiϕ(g1,g2)e−iϕ(g1,g2)

×Dk′′
1 ,a

′a′′(g1 · g2)D∗
k′′
2 ,b

′b′′(g1 · g2)

= Un′,n′′(g1 · g2)

(3.17)

This implies that the set of U(g) ∀g ∈ G forms a linear representation of the space group G
An important consequence of Eq. (3.10) arises when considering the effect of pure lat-

tice translations. If g corresponds to a translation, i.e., r → r + τ , which belongs to the

translational subgroup T , then

Dk,m,n(g) = δm,ne
−ik·τ . (3.18)

Substituting into Eq. (3.10), we obtain that the matrix elements F̃k1a,k2b
k3c,k4d

(ω, ω′, ω′′) are nonzero

only if the following crystal momentum conservation condition is satisfied:

k3 − k4 = k1 − k2 +G = Q. (3.19)

Eq. (3.19) implies that the matrix F , along with the U matrices are block diagonal in the

basis of one-particle Bloch states, with each block labeled by the crystal momentum Q. This

momentum corresponds to a one-dimensional representation of the subgroup T (analogous

to the electronic Hamiltonian) and gives rise to the very well known concept of dispersion

(such as exciton dispersion) [33]. This implies that the each block of F can be written as:

F (Q) = F̃
(Q)
k1ab
k3cd

(ω, ω′, ω′′) = F̃k1a,k1−Qb
k3c,k3−Qd

(ω, ω′, ω′′).
(3.20)

Furthermore, from Eq .(3.10), block matrices F (Q) and F (RQ) are related by a similarity

transformation i.e,

F (RQ) = U (Q)F (Q)(U (Q))†, (3.21)
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where the U (Q)(g) matrices are defined as

U (Q) = U (Q)
k1ab
k3cd

(g) = Uk1,k1−RQ,ab
k3,k3−Q,cd

(g). (3.22)

If g belongs to the little group of q i.e Rq = q+G, then we obtain

F (Q) = U (Q)F (Q)(U (Q))†. (3.23)

Now, we apply the formalism developed above to the BSE. As written in Eq. (2.69) and

Eq. (2.70), the BSE is given by [98, 97, 48, 1, 93]

L(1, 2; 3, 4) = L0(1, 2; 3, 4)+

∫
d(5, 6, 7, 8)

{
L0(1, 2; 5, 6)

×K(5, 6; 7, 8)L(7, 8; 3, 4)
} (3.24)

and the electron-hole interaction kernel K(5, 6; 7, 8) is given by [105]

K(5, 6; 7, 8) = iW (5, 6)δ(5, 7)δ(6, 8)− iv(5, 7)δ(5, 6)δ(7, 8). (3.25)

From Eq. (2.67), by construction, the two-particle correlation function is invariant under

space group operations. The BSE kernel is also invariant under, which can be shown as

follows:

v(r1, r2) =
1

|r2 − r2|
(3.26)

Now, if we apply a space group opearation r′ = Rr+ τ

v(r′1, r
′
2) =

1

|Rr2 + τ −Rr2 − τ |
=

1

|R(r2 − r2)|
= v(r1, r2)

(3.27)

This implies that the bare exchange is invariant. Similarly, we can also show that the
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screened Coulomb interaction is invariant:

W (r1, r2, ω) =

∫
d3r′′ v(r1, r′′, ω)ε−1(r′′, r2, ω), (3.28)

The dielectric function is invariant under the crystal symmetry operation, i.e.,

ε−1(r′′, r2, ω) = ε−1(Rr′′ + τ , Rr2 + τ , ω).

This gives us

W (r′1, r
′
2, ω) =

∫
d3r′′ v(r′1, r

′′)ε−1(r′′, r′2, ω)

=

∫
d3r′′ v(r1, R−1(r′′ − τ ))ε−1(R−1(r′′ − τ ), r2, ω)

=

∫
d3r′′ v(r1, r′′, ω)ε−1(r′′, r2, ω)

=W (r1, r2, ω).

(3.29)

Due to the invariance of the four-point functions L(7, 8; 3, 4) and K(5, 6; 7, 8) under space

group operations, their Fourier transform in single-particle basis follows Eq. (3.10). This

implies that the effective two-particle BSE in the frequency domain can be solved separately

for each momentum transfer Q as shown in the previous chapter.

As given in Eq. (2.81) and Eq. (2.82), the BSE and the effective two-particle Hamiltonian

for each momentum transfer Q are written as

L̃
(Q)
k1ab
k3cd

(ω) =
i(fk3,c − fk3−Q,d)

ω − H̃
(Q)
k1ab
k3cd

, (3.30)

with the two-particle exciton Hamiltonian given by

H(Q) = H̃
(Q)
k1ab
k3cd

= δa,cδb,dδk1,k3(εk3,c − εk3−Q,d) + i(fk3,c − fk3−Q,d)K̃
(Q)
k1ab
k3cd

. (3.31)

An important point to note is that, unlike the LQ and KQ matrices, the H(Q) matrix does

not follow the similarity transformation given in Eq. (3.21) due to the presence of the factor
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(fk3,c − fk3−Q,d) in Eq. (3.31). To obtain a similarity transformation analogous to Eq. (3.21)

for the exciton Hamiltonian defined in Eq. (3.31), we use the block diagonal form of the BSE

Hamiltonian as given in Eq. (2.83):

H(Q)
2p =

 R(Q) C(Q)

−(C(Q))† −D(Q)

 (3.32)

The band transitions (c, d) → (a, b) for the R(Q) block are (c̃, ṽ) → (c̃′, ṽ′), for the D(Q) block

the transitions are (ṽ, c̃) → (ṽ′, c̃′), and for the C(Q) block the transitions are (c̃, ṽ) → (ṽ′, c̃′).

Using Eq. (3.21) for the kernel matrix elements, we obtain

H(RQ)
2p = U (Q)(g)H(Q)

2p (U (Q)(g))†, (3.33)

where U (Q)(g) is defined as

U (Q)(g) =

U (Q)
1 (g) 0

0 U (Q)
2 (g)

 , (3.34)

with U (Q)
1 (g) and U (Q)

2 (g) given in Eq. (3.22).

The band transitions (c, d) → (a, b) for the U (Q)
1 (g) block correspond to (c̃, ṽ) → (c̃′, ṽ′),

while for U (Q)
2 (g), they correspond to (ṽ, c̃) → (ṽ′, c̃′).

Similarly, for time-reversal symmetry T , Eq. (3.33) takes the following form:

H(−Q)
2p = U (Q)(T )H(Q)

2p (U (Q)(T ))†, (3.35)

where the matrix U (Q)(T ) is given by

U (Q)(T ) =

U (Q)
1 (T ) 0

0 U (Q)
2 (T )

 . (3.36)

An important consequence of Eqs. (3.33) and (3.35) is that the action of a symmetry op-

eration on an exciton wavefunction with momentum transfer Q yields an exciton wavefunc-
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tion with momentum transfer RQ with the same eigenvalue. This can be explicitly written by

considering an excitonic state with momentum transfer Q, given by [97, 98, 1]:

ΨQ
S (re, rh) =

∑
kij

A
S,(Q)
k,ij ϕki(re) ϕ

∗
k−Q,j(rh), (3.37)

where AS,(Q)
k,ij is the right eigenvector of the excitonic Hamiltonian H(Q)

2p given in Eq. (3.32),

and ϕki(re) and ϕ∗k−Q,j(rh) are the Bloch states corresponding to the electron and hole,

whose position coordinates are re and rh, respectively.

The action of a symmetry operator on ΨQ
S (re, rh) is given by

Û(g)ΨQ
S (re, rh) =

∑
kiji′j′k′

{
U

(Q)
k′i′j′,kijA

S,(Q)
k,ij

× ϕk′i′(re) ϕ
∗
k′−RQ,j′(rh)

}
.

(3.38)

Since Û(g)ΨQ
S (re, rh) and ΨRQ

S (re, rh) correspond to the same states, they must differ by a

phase (or by a rotation matrix), given by

Û(g)ΨQ
S (re, rh) = DQ,S′S(g)Ψ

RQ
S′ (re, rh), (3.39)

where DQ,S′S(g) is a rotation matrix which is block diagonal in degenerate space and is

given by
DQ,S′S(g) =

∑
kiji′j′k′

U
(Q)
k′i′j′,kijA

S,(Q)
k,ij (Ã

,S′(RQ)
k′,i′j′ )∗, (3.40)

where ÃS′(RQ) are the left eigenvectors. In Eq. (3.40), we assume that the overlap matrix

between the left and right eigenvectors is an identity matrix2.

Since the BSE Hamiltonian is non-Hermitian, its eigenvectors are not mutually orthogo-

nal, and consequently, its invariant subspaces may not be orthogonal either. However, within

the Tamm-Dancoff approximation, the Hamiltonian becomes Hermitian, and the eigenvec-

tors form an orthogonal set. Throughout the remainder of this thesis, we adopt the Tamm-
2We can always choose the left eigenvectors such that their overlap with the right eigenvectors yields the

identity matrix.
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Dancoff approximation, which enables the use of standard group-theoretical methods to

derive selection rules.

If g is in the little group of Q, then DQ,S′S(g) corresponds to a representation matrix of the

excitonic states (including the non-unitary case, where the representation is non-unitary). In

order to obtain the irreducible labels for the excitonic states, we decompose the little group

GQ of Q into left cosets of the subgroup T in GQ, i.e.,

GQ ≡
nQ⋃
i=1

gQi T , (3.41)

where gQi are the coset representatives, gQi T represents the cosets of T in GQ, and nQ is

the index of T in GQ. The quotient group GQ/T is isomorphic to the point group PQ [29, 25].

The set of coset representatives gQi is obtained by removing the lattice translational

part (excluding fractional translations) from the little group symmetries GQ. The set of coset

representatives does not necessarily form a group, which allows for a slight redefinition of the

representation matrices. The new, redefined exciton representation matrix for an element g

is given by

D̄Q(g) = DQ(g)eiQ·τ . (3.42)

The new representation matrices are identical for elements within a given coset. The

group multiplication rule for two elements g1 = {R1 | τ 1} and g2 = {R2 | τ 2} from two

different cosets is given by

D̄Q(g1)D̄Q(g2) = D̄Q(g1 · g2)e−iG0·τ2 , (3.43)

where G0 = R−1
1 Q −Q is reciprocal lattice vector. If G0 = 0, i.e., if there are no fractional

translations in the little group GQ, then D̄Q corresponds to a linear representation. Other-

wise, it corresponds to a projective representation of the point group PQ. For demonstration

purposes, we discuss only points where G0 = 0. i.e., symmorphic symmetries. Projective

representations can be worked out using the procedure laid out in Ref. [29].

To obtain the irreducible representations of the excitonic states, we decompose D̄Q into
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the irreducible representations of the little point group PQ, i.e.,

D̄Q =
⊕

clD̄
l
Q, (3.44)

where D̄ l
Q corresponds to the lth irreducible representation of the point group, and cl is its

multiplicity in the decomposition. We use the standard orthogonality relation [29, 25] for the

characters to obtain cl, which is given by

cl =
1

|G|
∑
g∈G

χ(l)(g)∗χ(g), (3.45)

where |G| is the order of the group, χ(l)(g) is the character of the lth irreducible representa-

tion, and χ(g) is the trace of D̄Q.

3.3 Symmetries of excitons in LiF

Now, we demonstrate the application of the above methods to understand the symmetries of

excitonic states in a widely studied material: LiF, which possesses Oh point group symmetry

and lacks non-symmorphic symmetries. This implies that we only need to work with linear

representations at every Q-point in the Brillouin zone.

We first assign irreducible representation labels to the excitonic states computed from

ab-initio approaches by solving the BSE within the Tamm-Dancoff approximation and then

reveal the underlying selection rules governing exciton-light interactions, as evidenced by

their signatures in optical absorption spectroscopy.

In Fig. 3.2, we show the computed exciton dispersion of LiF. The longitudinal-transverse

splitting at the Γ point was turned off (this is done by setting the G = 0 component of the bare

exchange term to 0), as it breaks the degeneracies due to the presence of a long-range ex-

change interaction. As shown in the figure, each excitonic state at the high-symmetry points

is labeled with the irreducible representations of the corresponding little group, computed

using the method described above.

Along the Γ → X path, the lowering of point group symmetry causes the lowest triply
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Figure 3.2: Exciton dispersion of LiF, computed using ab initio methods. Excitonic states at
high-symmetry points are labeled with their corresponding irreducible representation labels.

degenerate exciton to split into singly and doubly degenerate modes. As we proceed along

the X → W direction, further symmetry reduction leads to the additional splitting of the

previously degenerate Eu representation. Finally, along the W → L path, the degeneracy of

the lowest two bands is lifted when moving away from the W point, but they merge again at

the L point due to the higher point group symmetry present there.

Next, we focus our attention on the excitonic states at the Γ point, as only they participate

in the absorption of light by the material. In order to obtain the optical absorption spectrum,

we calculate the imaginary part of the dielectric tensor, which is given by [98]

ε2(ω) =
8π2e2

ω2

∑
S

∣∣∣ ⟨0| e · r |S⟩ ∣∣∣2δ(ω − ES) (3.46)

where e is the light polarization direction, r is the dipole operator, and ES are exciton ener-

gies.

In Fig. 3.3, we show the absorption spectrum of LiF, with red and blue vertical lines

representing the bright and dark excitons, respectively. As seen in Eq. (3.46), absorption is
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Figure 3.3: The absorption spectrum of LiF, computed using ab initio methods. The red and
blue vertical lines indicate the positions of optically bright and dark excitons, respectively.
The red and blue labels correspond to the irreducible representation labels for bright and
dark excitons. The second vertical red line at higher energy appears broader than the first
due to a slight breakdown of degeneracy among the excitons, introduced by numerical inac-
curacies in the single-precision diagonalization solver. Using double precision and enforcing
much stricter convergence criteria for the eigenvalues would reduce this error.
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directly proportional to the absolute square of the dipole matrix elements. So excitons with

finite exciton-photon matrix elements appear in the absorption spectrum.

As depicted in Fig. 3.3, the lowest bright excitons transform under the T1u representation.

The first dark exciton transforms under the T1g representation. Both T1u and T1g excitons

shown in Fig. 3.3 are triply degenerate. From the character table of the Oh point group, we

know that the dipole operators transform under the T1u representation. Therefore, excitons

that transform under the T1u representation are optically active (bright), as manifested in the

absorption spectrum.

Of course, one could perform a similar analysis on any other material without even plot-

ting the excitonic wavefunctions. In the next chapter, we will apply our formalism to more

complex systems, such as hBN, which possesses non-symmorphic symmetries, and mono-

layer MoSe2, which exhibits strong spin-orbit coupling effects.

3.4 Application of Symmetries in Computational Aspects

Before concluding this chapter, we briefly discuss or highlight how one can improve the

computation of the excitonic states using symmetries. Up to this point, we have focused on

the formalism and its application to understand the symmetries of excitonic states. However,

one of the most important uses of symmetry is its ability to greatly simplify the problem

and reduce the computational cost of quantities that can be obtained by applying symmetry

operations.

The first application of symmetry is to obtain the exciton wavefunctions across the en-

tire Brillouin zone by applying symmetry operations to the wavefunctions computed in the

irreducible part. In order to obtain the exciton wavefunction at a point RQ from Q using the

symmetry g = {R |τ}, one can use Eq. (3.38) i.e :

A
S,(RQ)
k,ij (re, rh) =

∑
k′,i′j′

U
(Q)
k′i′j′,kij(g)A

S,(Q)
k′,i′j′ . (3.47)

This completely avoids the need to construct the BSE kernel and diagonalize the two-

particle BSE Hamiltonian at the RQ point, as the full wavefunction information can be ob-

61



tained through symmetry operations.

The second application is to construct the full BSE Hamiltonian by explicitly computing

only a subset of the matrix elements, with the remainder obtained through symmetry opera-

tions. Suppose we want to construct a BSE Hamiltonian for a finite momentum transfer Q.

In this case, one could use the symmetries in the little group of Q to avoid computing matrix

elements by using Eq. (3.33), which can significantly speed up the calculation. It is impor-

tant to take into account the sparsity of the U (g) matrices rather than explicitly constructing

them and performing brute-force full matrix multiplication.

Of course, one can do much more with symmetries. For example, the BSE Hamiltonian

can be block-diagonalized by constructing symmetry-adapted bases using projection oper-

ators. This approach allows each block to correspond to an irreducible representation of

the symmetry group, thereby significantly reducing the size of the matrix that needs to be

diagonalized. However, a detailed implementation of this methodology is left for future work.
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Chapter 4

Symmetries in Exciton-phonon

interactions

In the previous chapter, we discussed the transformation properties of excitonic states un-

der symmetry operations. In this chapter, we use the developed formalism to understand

the selection rules governing exciton-phonon interactions. Moreover, we will see how these

selection rules manifest beautifully in optical scattering experiments such as resonant Ra-

man scattering and phonon-assisted luminescence. Additionally, we introduce the concept

of total crystal angular momentum, which is analogous to crystal momentum, and present

expressions for computing exciton-phonon matrix elements using symmetries. Parts of this

chapter will be published in Ref. [79].

We start by writing the effective two-particle Bethe-Salpeter Hamiltonian for finite-momentum

transfer within the Tamm-Dancoff approximation [22] as given by Eq. (2.84):

H(Q)
v′c′k′,vck = (εck − εvk−Q)δv′c′k′,vck +K

(Q)
v′c′k′,vck, (4.1)

whereK(Q)
v′c′k′,vck is the two-particle interaction kernel, and c/c′ denote conduction band in-

dices, while v/v′ represent valence band indices. The terms εck and εvk−Q correspond to

the single-particle energies of the Bloch states ϕck(r) and ϕvk−Q(r), respectively.

The exciton energies and eigenstates at a finite momentum transfer Q are obtained by
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diagonalizing the BSE Hamiltonian in Eq. (4.1), which is written as

∑
vck

H(Q)
v′c′k′,vckA

S,(Q)
vck = E(Q)

S A
S,(Q)
v′c′k′ , (4.2)

where E(Q)
S are the exciton energies, and AS,(Q)

vck are their corresponding eigenvectors in the

two-particle electron-hole basis [97, 98, 1].

Now consider a crystal symmetry operator g = {R | v}, which transforms the coordinates

as r → Rr + v. If g belongs to the little group GQ of Q, i.e., RQ = Q + G, where G is a

lattice vector, then the representation matrix of the excitonic states, DQ(g), for the symmetry

operation g, which is block diagonal in the degenerate subspace, is given by Eq. (3.40) and

is written as:

DQ,S′S(g) =
∑

k,cv,k′c′v′
(A

S′,(Q)
k′,c′v′ )

∗ U (Q)
k′c′v′,kcv(g)A

S,(Q)
k,cv . (4.3)

The unitary matrix U (Q)(g) is given by [79]:

U (Q)
k′c′v′,kcv(g) = Dk,c′c(g)D∗

k−Q,v′v(g) δRk,k′ . (4.4)

Here, Dk(g) represents the phase matrices, defined as in Eq. (3.5).

4.1 Total crystal angular momentum

Although, as shown in the previous chapter, one could derive selection rules from the ir-

reducible representations of the little group, it is often more intuitive to consider quantum

numbers analogous to total angular momentum. Due to the lack of continuous rotational

symmetries in crystals or molecules, the conservation of angular momentum is no longer

valid. This motivates us to define the total crystal angular momentum of an exciton or a

phonon, analogous to the crystal momentum for translations.

If the little point group of Q contains an n-fold rotational symmetry along the rotational

axis n̂ (in case of multiple rotations, we take the largest n), represented by Rn(n̂), the cor-
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responding unitary matrix U(Rn(n̂)) can be expressed as

U(Rn(n̂)) = exp

(
−2πiJn̂

n

)
, (4.5)

where Jn̂ is a Hermitian matrix, which we refer to as the total crystal angular momentum or

pseudo angular momentum operator along the rotation axis n̂ [106].

Since the order of the n-fold rotation symmetry is n, i.e., (Rn(n̂))
n = I, where I is the

identity operation, this implies that the corresponding unitary matrix U(Rn(n̂)) possesses

eigenvalues of the form exp
(
−2πij

n

)
. Furthermore, since [U(Rn(n̂)),H (Q)] = 0, where

H (Q) represents either the dynamical matrix for the phonon wavevector Q or the excitonic

Hamiltonian matrix for a transfer momentum Q, it follows that Jn̂ and H (Q) commute. Con-

sequently, they are simultaneously diagonalizable. This allows us to assign a quantum num-

ber j to each eigenstate of H (Q), which we refer to as the total crystal angular momentum

of the exciton or the phonon. It is important to emphasize that the total crystal angular mo-

mentum of the exciton or the phonon does not depend on the choice of basis or starting

point. This is because the eigenvalues corresponding to irreducible representations remain

invariant under similarity transformations, just like the character of a representation.

Now, consider a set {ΦQ,S′} of degenerate eigenstates of H (Q) that form an invariant

subspace under the action of the symmetry elements of the little group GQ. The action of

the symmetry operation Û(Rn(n̂)) on an eigenstate from this set can be expressed as

Û(Rn(n̂))ΦQ,S =
l∑

S′=1

ΓS′SΦQ,S′ , (4.6)

where ΓS′S is the l-dimensional representation matrix corresponding to the phonon (given

in Ref. [64]) or exciton (as defined in Eq. (3.42)) for the symmetry operation Rn(n̂).

If the basis {ΦQ,S′} does not form a simultaneous eigenbasis of Û(Rn(n̂)) and H (Q),

then the representation matrix ΓS′S is not diagonal. To obtain a simultaneous eigenbasis,

we diagonalize the unitary matrix ΓS′S . The unitary matrix that diagonalizes ΓS′S trans-

forms the basis {ΦQ,S′} into a new set of eigenstates that simultaneously diagonalize both

Jn̂ and H (Q), with the corresponding eigenvalues given by e−2πijn/n. The values jn ∈
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{0, 1, . . . , n−1} represent the total crystal angular momentum quantum numbers for phonons

or excitons. These quantum numbers are responsible for “chiral" behavior in excitons [50]

and phonons [125], particularly in hexagonal materials, as will be demonstrated in the next

section.

4.2 Chirality

Over the past few years, there has been significant interest in circularly polarized phonons,

known as chiral phonons [125, 115]. Similarly, the first bright excitons in TMDCs have been

shown to possess a form of chirality that selectively couples with left- and right-circularly

polarized light [50, 112]. A natural question to ask is: where does this chirality come from?

To answer this, consider a hexagonal lattice that possesses a three-fold rotational sym-

metry in the little groups of the Γ and K(′) points. This symmetry implies that the total crystal

angular momentum for excitons or phonons can take values {−1, 0, 1} (we use −1 instead

of 2, since the total crystal angular momentum is defined modulo n for an n-fold rotation).

Point groups with C3 symmetry contain an E representation, which can be single or double

degenerate and carry a total crystal angular momentum of ±1. This implies that the simul-

taneous eigenstates of excitons or phonons that transform under E modes will be chiral and

will selectively couple with other quasiparticles.

The phonon eigenvectors which are also eigenstates of the C3 rotation operator are

known as chiral phonons, and the total crystal angular momentum is referred to as the

“pseudo angular momentum” of phonons [125]. Similar to phonons, the first bright excitons

in TMDCs carry a total crystal angular momentum of ±1, which causes them to selectively

couple with left- or right-circularly polarized light. Due to spin-orbit coupling effects, these

excitons become even more interesting; a more detailed discussion is provided in the next

section. This total crystal angular momentum is sometimes also referred to as the valley

index, chiral index, or pseudospin [112].
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4.3 Exciton-phonon coupling

As discussed previously, the coupling of excitons with phonons plays an important role in

optical scattering processes such as resonant Raman scattering (which will be discussed

in the next section). One of the central ingredients required to compute physical properties

involving exciton-phonon scattering is the exciton-phonon matrix element. These matrix ele-

ments are analogous to the electron-phonon matrix elements that are essential for studying

phenomena involving electron-phonon interactions.

Unlike electron-phonon matrix elements, there are different definitions of exciton-phonon

matrix elements found in the literature. For example, Ref. [17] defines them as the expecta-

tion value of the directional derivative of the BSE Hamiltonian along the phonon eigenvector,

whereas Ref. [3] defines them as the expectation value of the Kohn-Sham deformation po-

tential with respect to excitonic states. Although the definitions differ in form, they yield the

same final expression. This is the same result obtained from a perturbative expansion of the

matrix elements involved in Raman scattering [95].

The exciton phonon matrix elements within the TDA are given by

Gλ
S′,S(Q,q) =

∑
kcc′v

(A
S′,(Q+q)

k+q,c′v
)∗AS,(Q)

k,cv
g̃λc′,c(k,q)

−
∑
kcvv′

(A
S′,(Q+q)

k,cv′
)∗AS,(Q)

k,cv
g̃λv,v′(k−Q− q,q).

(4.7)

The electron-phonon matrix elements g̃λc′,c(k,q) are given by

g̃λc′,c(k,q) = ⟨k+ q, c′| ∂λqV |k, c⟩ , (4.8)

where ∂λqV is the directional derivative of the total Kohn-Sham potential with respect to the

phonon displacement vector of mode index λ and momentum q.

The exciton-phonon matrix element in Eq. (4.7) can be interpreted as the quantum me-

chanical sum of two independent processes: (i) the scattering of an electron from momen-

tum k to k+q via absorption of a phonon with momentum q, while the hole remains at fixed
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momentum k−Q; and (ii) the scattering of a hole from momentum k−Q to k−Q− q via

emission of a phonon with momentum q, while the electron remains at fixed momentum k.

4.3.1 Bra-Ket notation for exciton phonon matrix elements

In this subsection, we demonstrate how the exciton-phonon matrix elements defined in

Eq. (4.7) can be written in compact Bra-Ket notation. This formulation will be useful later

when deriving selection rules.

We consider the following matrix element within the Tamm-Dancoff approximation [22]:

G̃λ
S′,S(Q,q) ≡ ⟨S′,q+Q |∂λqV | S,Q⟩ (4.9)

where Q is the transfer momentum of the initial exciton S, q is the momentum of the phonon

with mode index λ and deformation potential ∂λqV , and Q + q is the transfer momentum of

the outgoing exciton S′. The excitonic state |S,Q⟩ can be written as [97, 98, 1]:

|S,Q⟩ =
∑
kcv

AS,Q
k,cva

†
kcak−Qv|0⟩, (4.10)

where |0⟩ is the non-interacting ground state. Furthermore, the phonon deformation potential

can be expressed in terms of one-particle Bloch states as

∂λqV =
∑
m,n,k̃

⟨m,q+ k̃ |∂λqV | n, k̃⟩ a†k+qmakn

=
∑
m,n,k̃

a†
k̃+qm

a
k̃n
g̃λm,n(k̃,q),

(4.11)

where g̃λm,n(k̃,q) are the electron-phonon matrix elements. Substituting Eq. (4.10) and

Eq. (4.11) into Eq. (4.9) gives

G̃λ
S′,S(Q,q) =

∑
kk′k̃cc′vv′mn

{
(A

S′,(Q+q)

k′,c′v′
)∗AS,(Q)

k,cv
g̃λm,n(k̃,q)

×⟨0|a†
k′−Q−qv′

a
k′c′

a†
k̃+qm

a
k̃n
a†
kc
a
k−Qv

|0⟩
}
.

(4.12)
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Considering the correlation function in Eq. (4.12), and employing Wick’s contractions gives

⟨0|a†
k′−Q−qv′

a
k′c′

a†
k̃+qm

a
k̃n
a†
kc
a
k−Qv

|0⟩

=
{
− δk−Q,k̃+qδv,mδk′,kδc′,cδk̃,k′−Q−qδv′,n

+ δk′−Q−q,k−Qδv′,vδk′,k̃+qδc′,mδk̃,kδn,c

+ δk′−Q−q,k−Qδv′,vδk′,kδc′,cδk̃+q,k̃δm,n

}
.

(4.13)

Substituting Eq. (4.13) into Eq. (4.12), we obtain

G̃λ
S′,S(Q,q) = Gλ

S′,S(Q,q) + δq,0δS,S′
∑
m,k

g̃λm,m(k,q = 0), (4.14)

where Gλ
S′,S(Q,q) are the exciton-phonon matrix elements as defined in Eq. (4.7). The extra

term in Eq. (4.14) corresponds to a disconnected diagram and is canceled when performing

a perturbation expansion due to normalization (for example, see supplementary information

of Ref. [95] in the case of resonant Raman matrix elements).

4.3.2 Rotation of electron-phonon matrix elements

As electron-phonon matrix elements are one of the central ingredients when computing

exciton-phonon matrix elements, it would be beneficial to obtain them using symmetry rela-

tions without explicitly performing the computation of the bra-ket.

In this section, we demonstrate how electron-phonon matrix elements transform under

symmetry operations. The action of the symmetry operator Û(g) on the phonon deformation

potential is given by [39, 64]

Û(g)∂λqVscf(r)Û
†(g) =

∑
λ′

Γq,λ′λ(g)∂
λ′
RqVscf(r), (4.15)

where g represents a spatial crystal symmetry operation or time-reversal symmetry. If g is a

spatial crystal symmetry operation, it corresponds to a coordinate transformation r → Rr+v,

with R being an orthogonal matrix and v a translation vector.
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The term Γq,λ′λ(g) is the phase matrix (or representation matrix, if g belongs to the little

group of q) for the phonon modes, analogous to the D matrices for Bloch states. It is unitary

and block diagonal in degenerate subspaces when phonon eigenvectors are chosen to be

orthogonal. When g is a spatial symmetry, Γq,λ′λ(g) is given by [64]

Γq,λ′λ(g) = (dλ′
Rq)

†Û(g)dλ
q

=
∑

κ,β,κ̃,α

eiq·(g
−1τ κ̃−τκ)Rαβd

λ
q,κ,β(d

λ′
Rq,κ̃,α)

∗.
(4.16)

Here, dλ′
Rq and dλ

q are the phonon eigenvectors for q and Rq phonon crystal momenta. In

the case of time-reversal symmetry, we have

Γq,λ′λ(g) = (dλ′
−q)

†(dλ
q)

∗. (4.17)

If Rq ̸= q + G, where G is a reciprocal lattice vector, and the phonon eigenvector at Rq

is obtained by applying the symmetry operation g to the eigenvector at q, then Γq(g) is an

identity matrix.

It is important to note that the deformation potential is generally a 2×2 matrix in the spinor

subspace. Therefore, the symmetry operators Û(g) must include spin rotation matrices that

account for transformations in the spinor subspace.

Now, consider the following electron-phonon matrix elements:

g̃λ
′

m,n(Rk, Rq) =⟨m,Rq+Rk |
(
∂λ

′
RqV | n,Rk⟩

)
, (4.18)

where we use parentheses to distinguish the action of the operator on either the bra or the

ket, also taking time-reversal symmetry into account.

From the definition of the phase matrices in Eq (3.5), and using their unitary property, we

have:
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|n,Rk⟩ =
∑
n′

D∗
k,nn′(g)Û(g) |n′,k⟩ ,

|m,Rk+Rq⟩ =
∑
m′

D∗
k+q,mm′(g)Û(g) |m′,k+ q⟩ .

(4.19)

Substituting Eq. (4.19) into Eq. (4.18), and using Eq. (4.15), we obtain:

g̃λ
′

m,n(Rk, Rq) =
∑
m′,n′

{
Dk+q,mm′(g)D∗

k,nn′(g)

(
⟨m′,q+ k |Û †(g)

)(
Γ∗
q,λ′λ(g)Û(g)∂λqVscf(r)Û

†(g)Û(g)| n′,k⟩
)} (4.20)

If g is a normal spatial symmetry, we have:

g̃λ
′

m,n(Rk, Rq) =
{ ∑

m′,n′,λ′
Γ∗
q,λ′λ(g)Dk+q,mm′(g)

×D∗
k,nn′(g)g̃λm′,n′(k,q)

}
.

(4.21)

In the case where g is time-reversal symmetry which is anti-unitary, we need to conjugate

g̃λm′,n′(k,q) due to the transfer of the action of the leftmost Û †(g) from the bra to the ket in

Eq. (4.20), i.e.,

g̃λ
′

m,n(−k,−q) =
{ ∑

m′,n′,λ′
Γq,λ′λ(g)Dk+q,mm′(g)

×D∗
k,nn′(g)(g̃λm′,n′(k,q))∗

}
.

(4.22)

From Eqs. (4.22) and (4.21), we can obtain the electron-phonon matrix elements for

the Rq phonon wavevectors without explicitly evaluating the bracket. Furthermore, when g

belongs to the little group of q, we can also retrieve the Rk matrix elements from the k matrix

elements with the correct gauge consistency.

4.3.3 Rotation of exciton-phonon matrix elements

In this section, we show how exciton-phonon matrix elements transform within the Tamm-

Dancoff approximation [22] using symmetries, in a manner similar to electron-phonon matrix
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elements. Consider the following bracket:

G̃λ′
m,n(RQ, Rq) = ⟨m,Rq+RQ |

(
∂λ

′
RqV | n,RQ⟩

)
, (4.23)

where G̃ represents the exciton-phonon interaction matrix elements.

Similar to the phase matrices for Bloch states, the phase matrices for excitonic states

under symmetry operations are written as:

Û |S,Q⟩ = DQ,S′S(g) |S′, RQ⟩ , (4.24)

where DQ,S′S(g) is a unitary matrix when the excitonic states are chosen to be orthogonal.

This implies that

|n,RQ⟩ =
∑
n′

D∗
Q,nn′(g)Û(g) |n′,Q⟩ ,

|m,RQ+Rq⟩ =
∑
m′

D∗
Q+q,mm′(g)Û(g) |m′,Q+ q⟩ .

(4.25)

Following the procedure outlined for electron-phonon matrix elements in the previous sec-

tion, we obtain the following transformation rules. If g is a normal spatial symmetry, we

have:
G̃λ′
m,n(RQ, Rq) =

∑
m′,n′,λ′

Γ∗
q,λ′λ(g)DQ+q,mm′(g)

× D∗
Q,nn′(g)G̃λ

m′,n′(Q,q).

(4.26)

If g corresponds to time-reversal symmetry, we obtain:

G̃λ′
m,n(−Q,−q) =

∑
m′,n′,λ′

Γq,λ′λ(g)DQ+q,mm′(g)

× D∗
Q,nn′(g)(G̃λ

m′,n′(Q,q))∗.

(4.27)

Substituting Eq. (4.14) into Eqs. (4.27) and (4.26), we obtain an identical relation for the

exciton-phonon matrix elements, where G̃ is replaced with G.

From Eqs. (4.27) and (4.26), we conclude that the exciton-phonon matrix elements forRq
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phonon wavevectors can be determined without explicitly evaluating the bracket. Further-

more, when g belongs to the little group of q, we can also retrieve the RQ matrix elements

from the Q matrix elements, with the correct gauge.

4.4 Conservation of total crystal angular momentum

In this section, we derive a conservation rule for the total crystal angular momentum, analo-

gous to the conservation of the total angular momentum.

Suppose that there is an n-fold rotational symmetry along the rotational axis n̂ in both

the little point groups of Q (exciton transfer momentum) and q (phonon momentum); then

⟨S′,Q+ q| ∂νqV |S,Q⟩ = ⟨S′,Q+ q|U †U ∂νqV U †U |S,Q⟩

= ⟨S′,Q+ q| ∂νqV |S,Q⟩ e−i 2π
n
(jS+jν−jS′ )

(4.28)

where U is the unitary operator corresponding to the n-fold rotational symmetry, and jS ,

jν , and jS′ are the total crystal angular momenta of the S exciton, ν mode phonon, and S′

exciton, respectively. We assumed that we are in the simultaneous eigenbasis of the Hamil-

tonian (either phonon or exciton) and unitary matrix. If this is not the case, we transform to

a new basis such that they become simultaneous eigenbases.

From (4.28), we see that the matrix element ⟨S′,Q+ q| ∂νqV |S,Q⟩ can be non-zero only

if

jS + jν − jS′ = l n, (4.29)

where l is an integer. The disconnected term transforms similarly as the matrix elements

⟨S′,Q+ q| ∂νqV |S,Q⟩, which implies that the conservation rule in (4.29) is equally applicable

to exciton-phonon matrix elements.
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4.5 Resonant Raman scattering in MoSe2

We now demonstrate the application of the above methods to understand the symmetries of

excitonic states in two widely studied materials: monolayer MoSe2 and bulk hexagonal boron

nitride (hBN). In particular, we reveal the underlying selection rules governing exciton-photon

and exciton-phonon interactions, as evidenced by their optical spectroscopic signatures.

First, we examine the zero-momentum excitonic states of monolayer MoSe2, which be-

longs to the D3h point group. At the center of the Brillouin zone, the little group includes all

the symmetries of the crystal point group. This implies that the zero-momentum excitonic

states must transform under the representations of the crystal point group.

In Fig. 4.1a, we show the energies of the first few zero-momentum excitonic states,

calculated using GW-BSE [53, 98] on top of density functional theory (DFT) calculations.

The excitonic states are labeled with the irreducible representations of the point group, with

bright and dark excitons represented in red and blue, respectively. The first exciton, which

is doubly degenerate due to time-reversal symmetry, is spin-forbidden and optically dark for

in-plane light polarization as it transforms under A′′
1 + A′′

2 representation. Since the out-of-

plane dipole operator ẑ transforms under the A′′
2 representation, the first dark exciton can

possesses a finite out-of-plane dipole moment and is therefore optically bright for out-of-

plane light polarization. In contrast, dark excitons near ∼1.8 eV lack the A′′
2 representation

and, therefore, do not possess an in-plane or out-of-plane dipole moment. On the other

hand, the first bright exciton, which is doubly degenerate and commonly referred to as the

A1s exciton, transforms under the E′ irreducible representation. Since the in-plane dipole

operators x̂ and ŷ transform under the E′ representation, the A1s exciton possesses a finite

in-plane dipole moment, which makes it optically bright for in-plane light polarization.

One of the most intriguing properties of monolayer transition metal dichalcogenides

(TMDCs) is their ability to selectively populate the electron and hole densities of the A1s

exciton in the inequivalent K valleys using left- or right-circularly polarized light. To under-

stand this phenomenon, we analyze the total crystal angular momentum of the A1s exciton

along the principal axis, which takes the values j = ±1. These j values are obtained by diag-

74



  

1.60 1.65 1.70 1.75 1.80 1.85
Exciton energy (eV)

A
′′ 1

+
A
′′ 2

E ′ E ′′

A′2 A′1 E ′′

1.60 1.65 1.70 1.75
Incoming photon energy (eV)

0.0

0.5

1.0

1.5

R
am

an
in

te
ns

ity
(a

rb
.

un
its

)

× 100

A′1
E′

Exp. A′1 (T = 4K)

Im{α2D} (a.u)

a)

b)

c)

Figure 4.1: Excitons in monolayer MoSe2. (a) Exciton energy spectrum at the Γ point with
corresponding irreducible representations. The blue/red vertical lines indicate the positions
of dark/bright excitons, respectively. (b) Reciprocal space plot of the A1s exciton wavefunc-
tion in the simultaneous eigenstate of the total crystal angular momentum matrix and the
exciton Hamiltonian. (c) Resonant Raman spectrum as a function of incoming photon en-
ergy. The A′

1 and E′ Raman modes are represented by blue and orange lines, respectively.
The grey shading corresponds to the imaginary part of the 2D polarizability tensor, repre-
senting the absorption spectrum. The black dots denote experimental data for the A′

1 mode,
taken from Ref. [70].
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onalizing the two-dimensional representation matrix of the A1s exciton corresponding to the

three-fold rotational symmetry of the crystal. The unitary matrix obtained from this diagonal-

ization is then used to transform the energy eigenstates into the simultaneous eigenstates

of the exciton Hamiltonian matrix and the total crystal angular momentum matrix along the

principal axis.

Since circularly polarized light carries a total crystal angular momentum of ±1 along the

out-of-plane direction 1, the simultaneous eigenstates of the A1s exciton selectively couple

with left- or right-circularly polarized light upon absorption or emission, giving rise to the

concept of chirality in excitons of monolayer TMDCs.

In Fig. 4.1b, we plot the phase-space map of the A1s exciton, defined asA(k) =
∑

c,v |Akcv|2,
showing its simultaneous eigenstates along with the corresponding eigenvalue jz of the total

crystal angular momentum operator along the principal axis. For each jz, the A1s exciton is

localized in its corresponding K valley, thereby enabling the selective excitation of electron

and hole densities in a specific valley using circularly polarized light.

The properties of the A1s exciton, such as its lifetime, are strongly influenced by exciton-

phonon interactions [15]. These exciton-phonon interactions, in general, play an important

role in optical-scattering processes such as resonant Raman scattering [95]. To understand

the selection rules in these interactions, we look at phonon-mediated Stokes resonant Ra-

man scattering in monolayer MoSe2. Using the approach outlined in Refs. [94, 95], we

compute the resonant Raman intensities at zero temperature within the Tamm-Dancoff ap-

proximation [22]. It is given by:

Iλ ∝ ωL − ωλ

ωL

∣∣∣∑
S,S′

(
dνS′

)∗
(Gλ

SS′)∗d
µ
S

(ℏωL − ES + iγ) (ℏωL − ℏωλ − ES′ + iγ)

+
∑
S,S′

(
dµS

)∗ Gλ
SS′dνS′

(ℏωL + ES − iγ) (ℏωL − ℏωλ + ES′ − iγ)

∣∣∣2. (4.30)

1Applying an n-fold rotation operator to left- and right-circularly polarized light vectors, 1√
2

[
1
±i

]
, results in

e−i(±) 1√
2

[
1
±i

]
, implying that the total crystal angular momentum is ±1.
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Here, µ/ν indicate the polarizations of the incident and scattered light, ωL is the energy of the

incoming photon, and ωλ is the phonon frequency of mode λ. The sums run over excitonic

states S(S′) with energies ES(S′). The peak width is given by an empirical decay constant

γ. The term dµS represents the exciton-dipole matrix element along polarization µ for photon

absorption, while (Gλ
SS′)∗ denotes the exciton-phonon coupling matrix element for exciton S

scattering into S′ via phonon emission of mode λ [95] (see Eq. (4.7) for the expression of

exciton-phonon matrix elements).

In Fig. 4.1c, we show the calculated resonant Raman intensities (solid lines) for the A′
1

and E′ Raman modes of monolayer MoSe2 as a function of the incoming photon energy

near the A1s exciton energy. The black dots correspond to the experimental Raman inten-

sities of A′
1 measured at T = 4 K, taken from Ref. [70]. The grey shading represents the

imaginary part of the in-plane polarizability tensor (absorption spectrum). The most striking

observation is that the intensities of the A′
1 mode are orders of magnitude higher than the

E′ mode. In order to understand this observation, we look at the underlying selection rules.

From Eq. (4.30), we can notice that only excitons that have finite dµ/νS , i.e., bright excitons,

participate in one-phonon resonant Raman scattering. This implies that near the optical gap

of monolayer MoSe2, only the A1s excitons are responsible for the majority of the resonant

Raman scattering.

The A′
1 and E′ phonon modes possess total crystal angular momentum of 0 and ±1

along the principal axis, respectively. Similar to the excitons, these j values give rise to the

concept of chirality for these phonons. Since A1s excitons possess ±1 total crystal angular

momentum, we can use the conservation of total crystal momentum, which is given by

jS′ = jS + jλ + 3l (4.31)

where jS′ , jS , and jλ represent the total crystal angular momenta of the scattered exciton,

incoming exciton, and phonon, respectively, and l is an integer.

Clearly, from Eq. (4.31) and with the knowledge of total crystal angular momentum, we

see that the A′
1 modes do not change the total crystal angular momentum of excitons, but
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the E′ modes change it by ±1. This implies that the A′
1 mode allows only for intra-valley

scattering of the A1s exciton, while the E′ mode allows inter-valley scattering. However,

the intervalley scattering is largely forbidden due to spin conservation rules for electrons

and holes and the very minimal overlap of excitonic states localized at K/K ′, as seen in

Fig. 4.1c. This implies that the E′ mode has much less intensity than the A′
1 mode, as seen

in Fig. 4.1c. It should be noted that our analysis is more rigorous than the hand-waving

argument presented in the previous work [95, 73], which relied on the conservation of the

angular momentum based on the roughly circularly symmetric band structure near the K/K ′

points.

4.6 Phonon assisted luminescence in hBN

Next, we examine the selection rules in absorption and phonon-assisted luminescence of

bulk hBN, which possesses a D6h point group. In Fig. 4.2a, we present the absorption spec-

trum of hBN, where the vertical red and blue lines indicate the positions of in-plane bright

and in-plane dark excitons, respectively. The in-plane and out-of-plane dipoles transform

under the E1u and A2u representations of the D6h point group, respectively. In hBN, the first

exciton is dark as it transforms under the E2g representation, whereas the second exciton

is an in-plane bright exciton which transforms under the E1u representation. The first out-

of-plane dipole-active exciton appears around 6.5 eV and exhibits very weak dipole strength

along the out-of-plane direction.

When moving away from the Γ point, the symmetry of the system is reduced. As illus-

trated in Figs. 4.2b and c, the symmetry point group along the high-symmetry path Γ − K

is reduced to C2v. One of the defining symmetries of this C2v group is the horizontal mirror

symmetry of hBN. In the exciton dispersion, we observe that the E2g mode splits into A1

and B1 representations, both of which are even under horizontal mirror symmetry. Similarly,

in the case of phonons, the out-of-plane modes (ZA/ZO), marked in green, are odd under

horizontal mirror symmetry, while the in-plane modes (LA/TA or TO/LO) are even under hor-

izontal mirror symmetry.

78



  

Γ Ω K

5.9

6.0

6.1

6.2

6.3

E
xc

ito
n

en
er

gy
(e

V
)

D6h C2v D3h

E2g

B1

A1

A′1

A′2

6.0 6.1 6.2 6.3 6.4 6.5 6.6
Energy (eV)

0.0

0.5

1.0

Im
{ε
}(

ar
b.

un
its

)

E2g
E1u

A1g B1u E2g A1gA2u
E1u

Γ Ω K
0

500

1000

1500

Fr
eq

ue
nc

y
(c

m
−

1
)

D6h C2v D3h

ZA/ZO

TA/TO
LA/LO

5.70 5.75 5.80 5.85 5.90 5.95
Energy (eV)

0.00

0.25

0.50

0.75

1.00

1.25

Lu
m

in
es

ce
nc

e
In

te
ns

ity
(a

rb
.

un
its

)

LO
TO

LO/LA

TO/TA

In
di

re
ct

ex
ci

to
n

ZO/ZA

Theory
Exp. T = 8K

a)

b) c)

d)

B2

Figure 4.2: Excitons in bulk hBN. (a) Optical absorption spectrum of hBN. Blue/red ver-
tical lines represent the positions of in-plane dark/bright excitons with their corresponding
irreducible representations. (b) Exciton dispersion of the two lowest excitons of bulk hBN.
The labels correspond to the irreducible representations at the high-symmetry points. (c)
Phonon dispersion of bulk hBN. The green lines correspond to out-of-plane modes, which
are odd under horizontal mirror symmetry. (d) Experimental (dots, taken from Ref. [111])
and computed (solid blue line) phonon-assisted luminescence spectrum of hBN.
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One can also see the symmetries of excitons by visualizing their wavefunctions in real

space by fixing the position of either the hole or the electron. Typically, a single hole is

fixed at a position where the hole density is expected to be finite. For example, in the case

of the lowest excitons in hBN, a reasonable choice is to place the hole slightly above the

nitrogen atom, as the hole state is primarily composed of nitrogen pz orbitals [32]. However,

this placement breaks the horizontal mirror symmetry, since applying the horizontal mirror

operation would not map the hole back to the same position.

To restore mirror symmetry, we consider two hole positions [84]: one slightly above and

the other slightly below the nitrogen atom. These two positions are mirror images of each

other with respect to the horizontal mirror plane passing through the hBN layer. Once the

two holes are fixed, we define the following antisymmetrized wavefunction:

Ψ̃(r) = Ψ(r, z + zp)−Ψ(r, z − zp), (4.32)

where Ψ(r, z ± zp) is the excitonic wavefunction with the hole fixed at a vertical distance zp

above or below the horizontal mirror plane at z, and r is the electron position. We take the

difference between the excitonic wavefunctions at the two hole positions to account for the

fact that nitrogen pz orbitals are odd under horizontal mirror symmetry; a symmetric con-

struction would otherwise lead to an almost complete cancellation of the total wavefunction.

From Eq. (4.32), we see that the constructed function Ψ̃(r) is symmetric for antisymmet-

ric excitons and antisymmetric for symmetric excitons with respect to the horizontal mirror

plane.

We then define the electronic density for these excitons as:

ρexc(r) = sgn(Real{Ψ̃(r)}) · |Ψ̃(r)|2, (4.33)

where sgn denotes the sign function. The sign function is included to capture the phase

information of the wavefunction Ψ̃(r).

In Fig. 4.3(a,b) and Fig. 4.4(a-c), we plot the electronic density of the exciton as defined

in Eq. (4.33), by fixing two holes near a nitrogen atom, indicated by two black circles. In
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a) b)

Figure 4.3: Electronic density of excitons, as given in Eq. (4.33), at the Γ point (0, 0, 0) for
the first two in-plane bright excitons, which are degenerate and symmetric with respect to
the horizontal mirror plane. The hole is fixed near a nitrogen atom.

Fig. 4.3, we present the two lowest in-plane bright excitons at the Γ point that transform

under the E1u irreducible representation. Additionally, in Fig. 4.4(a, b), we show the exciton

wavefunctions at the Ω =
(
1
6 ,

1
6 , 0

)
point for the two lowest excitons, which transform under

B1 and A1 representations, respectively. These excitons are symmetric with respect to the

horizontal mirror plane of the hBN layer. On the other hand, in Fig. 4.4(c), we plot the lowest

antisymmetric exciton at Ω with respect to the horizontal mirror plane, which transforms

under the B2 representation.

At the Γ point, the bright excitons are symmetric with respect to the horizontal mirror

plane, leading to antisymmetric electron densities as shown in Fig. 4.3(a,b). It is important

to note that to obtain the fully symmetric excitonic wavefunction [122], one must perform an

average over the degenerate states. However, for bright excitons, the representation matrix

for the horizontal mirror symmetry is the identity, so the antisymmetry of the electron density

for the bright excitons is preserved regardless of whether such averaging is performed.

Similarly, for the lowest excitons at the Ω point, we observe antisymmetric electron den-

sities, consistent with symmetric exciton wavefunctions. The most intriguing case is the anti-

symmetric exciton shown in Fig. 4.4(c). The absence of electron density in the layer closest

to the fixed holes is a consequence of symmetry: since boron pz orbitals are antisymmetric,

any electron density in the nearby layer would render the overall exciton wavefunction sym-

metric. Thus, symmetry forbids such density near the hole, as both observed and expected
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B1 (5.32 eV)

A1 (5.34 eV)

a)

b)

c)
B2 (5.6 eV)

Figure 4.4: Electronic density of excitons, as given in Eq. (4.33), at Ω =
(
1
6 ,

1
6 , 0

)
: panels

(a) and (b) show the two lowest-energy excitons, which are symmetric with respect to the
horizontal mirror plane; panel (c) shows the first antisymmetric exciton with respect to the
horizontal mirror plane. The hole is fixed near a nitrogen atom, indicated by the black circle,
and the arrow denotes the direction of the Ω point.
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from our analysis.

The presence of horizontal mirror symmetry at the Ω point directly impacts the selection

rules of the exciton-phonon matrix elements, which are evident in the phonon-assisted lu-

minescence of hBN. To compute phonon-assisted luminescence, we follow the method in

Ref. [124], where the intensity is expressed as

I ∝
∑

S,Q,λ,µ

{e− (E
Q
S

−Em)

kBT (1 + nλ,Q)δ(ωL − EQ
S + ℏωλ,Q)

(EQ
S − ℏωλ,Q)

∣∣∣∑
S′

(dµS′Gλ
SS′(0,Q))∗

ES′ − EQ
S + ℏωλ,Q

∣∣∣2}, (4.34)

where Em is the lowest exciton energy, T is the exciton temperature, kB is the Boltzmann

constant, EQ
S represents the exciton energy at Q, nλ,Q is the Bose factor for a phonon of

mode λ with momentum Q, and the remaining indices are consistent with those used in

Eq. (4.30). The exciton-phonon matrix elements are given in Eq. (4.7).

Eq. (4.34) captures the indirect emission process mediated by phonons, where an ex-

citon S at finite momentum Q scatters to the bright exciton S′ via emission of a phonon of

mode index λ. The prefactor includes a Boltzmann factor exp[−(EQ
S −Em)/kBT ] accounting

for the exciton population at temperature T , and a Bose factor 1 + nλ,Q for the population

of the emitted phonon. The delta function enforces energy conservation between the laser

frequency ωL, the exciton energy, and the emitted phonon energy.

In Fig. 4.2d, we present the experimental and computed phonon-assisted luminescence

spectrum of hBN. The dominant phonons contributing to the transition matrix element in

Eq. (4.34) are located near the midpoint between Γ and K. This is due to the presence of

the Boltzmann factor in Eq. (4.34), which exponentially suppresses the matrix elements as

one moves away from the minimum exciton energy Em. As seen in Fig. 4.2b, the exciton

minimum occurs near the midpoint of Γ and K. Therefore, the majority of the phonons

involved in the luminescence process of hBN originate from regions close to mid point of Γ

and K.

Furthermore, in Fig. 4.2d, we observe that only in-plane phonon modes contribute to

the luminescence spectrum of hBN. Although some previous works have successfully re-

produced the luminescence spectrum of hBN [85, 124], the underlying selection rules are
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not well understood. Moreover, in all of these works, the symmetries were neglected during

the calculations, resulting in slower computations with larger storage requirements. On the

other hand, works such as Ref. [60], which attempted to use symmetries in their calcula-

tions, fail to account for the correct selection rules due to phase issues when computing the

exciton-phonon matrix elements. The results presented in this thesis were obtained without

breaking any symmetries, while also correctly reproducing the luminescence spectrum.

Now, with knowledge of the symmetries of the excitons, we can now understand the se-

lection rules that govern the phonon-assisted luminescence process. Similar to the Raman

case, Eq. (4.34) indicates that the outgoing excitons (denoted by the S′ index in Eq. (4.34))

must be bright excitons to have a finite contribution to the scattering matrix element. Due to

the presence of the Boltzmann factor, only the lowest-energy states significantly participate

in the luminescence process. Since both the initial and final excitonic states (we only con-

sider the first in-plane dipole-active excitonic states, as the out-of-plane dipole is very weak)

are even under horizontal mirror symmetry, the exciton-phonon matrix elements are finite

only when the phonon modes are also even under this symmetry operation. As a result,

out-of-plane phonon modes do not couple to the lowest-energy excitonic scattering states,

leading to their absence or very low intensity in the luminescence spectrum, as shown in

Fig. 4.2d. In contrast, the in-plane phonon modes are even under horizontal mirror symme-

try and therefore contribute to the luminescence.
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Chapter 5

Interlayer exciton-phonon coupling

In the previous chapter, we looked at the intralayer exciton-phonon coupling, where both the

excitons and phonons originate from the same layer or material. In this chapter, we focus on

interlayer exciton-phonon coupling, which occurs when an exciton in one layer couples with

phonons from another layer.

The coupling between excitons and phonons across adjacent layers has been exper-

imentally observed in various heterostructures of layered materials. However, the pre-

cise mechanism underlying this phenomenon remains elusive. Using the WSe2@hBN het-

erostructure as an example, we study the origin of the interlayer exciton-phonon coupling

and its signature in resonant Raman scattering through first-principles calculations. Our

study emphasizes the central role of crystal symmetries in the interlayer exciton-phonon

scattering processes, which are responsible for the anomalous resonant Raman intensities

of the in-plane and the out-of-plane hBN phonon modes. We find that the deformation poten-

tial induced by the hBN phonon interacts with the hybridized hole density of WSe2 excitons

near the hBN interface, leading to interlayer exciton-phonon coupling. This work is taken

directly from Ref. [81]
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5.1 Introduction

In recent years, the interfacing of two-dimensional (2D) materials with different layers or

substrates [34] has revealed fascinating properties that are difficult to achieve with individ-

ual layers. For example, interlayer electron-electron interactions can give rise to diverse

phenomena such as moiré excitons [96], superconducting phases [13], and Mott insulat-

ing states [92]. Similarly, interlayer electron-phonon interactions can have profound effects

on carrier mobilities [18] and even influence superconducting critical temperatures [114],

further underscoring the importance of these interactions in tailoring the properties of 2D

heterostructures.

Recent optical scattering measurements have revealed that excitons (electron-hole bound

states) in one layer can couple with phonons in the adjacent layer [55, 62, 54, 28, 27,

20]. This remarkable interlayer exciton-phonon coupling was first demonstrated in mono-

layer WSe2 encapsulated in hexagonal boron nitride (hBN) using Raman spectroscopy [55].

Subsequent Raman and photoluminescence [20, 54] measurements on various other het-

erostructures such as Black phosphorus@SiO2, metal phosphorus trichalcogenides@SiO2 [16],

WS2@Bi2Se3 [51] confirmed the existence of interlayer exciton-phonon coupling, indicating

that the observed phenomenon is robust and is not limited to WSe2@hBN heterostructure.

The interlayer exciton-phonon coupling can play a key role in exciton dynamics, their

lifetimes, and decoherence times [15], and has recently been used to study phonon polari-

tons in neighboring layers [110, 126]. Therefore, understanding the origin of these interlayer

exciton-phonon interactions is crucial to leverage these interactions for future applications.

Although the signatures of interlayer exciton-phonon coupling in these measurements pro-

vided an ideal setting to study this phenomenon, the microscopic mechanism remains elu-

sive. A speculative mechanism was proposed in Ref. [20], suggesting that two polar phonon

modes, one from each layer, couple via a dipole-dipole interaction. This mechanism as-

sumes that the bond polarity in one layer and the intralayer exciton-phonon interaction in

the other layer play a fundamental role in these interactions [27]. Although this argument

seemed plausible initially, it failed to explain the resonant Raman intensities of non-polar
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modes in these heterostructures [27]. Furthermore, the proposed mechanism could not ac-

count for the sensitive dependence of the exciton-phonon coupling strength on the interlayer

distance [62].

In this thesis, we use WSe2@hBN as an example to unveil the microscopic mecha-

nism of exciton-phonon coupling across layers. Using ab initio methods, we compute res-

onant Raman intensities, which provide a detailed atomistic view of the interlayer exciton-

phonon scattering process. We demonstrate the selection rules in interlayer exciton-phonon

scattering, which are responsible for the anomalous resonant Raman intensities: When in

resonance with the A exciton of WSe2, the out-of-plane hBN phonon mode (which is Ra-

man forbidden in pure hBN) exhibits a much higher intensity in the heterostructure than the

Raman-allowed in-plane mode [55]. Our main findings reveal that the deformation potential

of the hBN phonon scatters the hybridized part of the WSe2 exciton-hole in the vicinity of the

hBN layer, giving rise to interlayer exciton-phonon coupling. We show that this coupling is

extremely sensitive to the interlayer distance and that the bond polarity of the phonon layer

is not required to observe this effect [54, 28, 27, 20].

5.2 Results and Discussion

5.2.1 Resonant Raman scattering

We start our discussion by looking at the resonant Raman scattering in a monolayer WSe2@hBN

heterostructure. We follow Refs. [94, 95] and calculate the differential cross section for

Stokes Raman scattering mediated by one phonon:

dσ

dΩ
∝ ωL − ωλ

ωL
|Mλ

µν(ωL, ωλ)|2. (5.1)

Here, µ and ν denote the polarization of the incoming and outgoing light, respectively, while

ωL and ωλ denote the frequencies of the incoming light and the created phonon of branch

λ, respectively. Within the Tamm-Dancoff approximation [22], the Raman scattering matrix

87



element Mλ
µν at zero temperature takes on the simple form

Mλ
µν (ωL, ωλ) =

∑
S,S′

(
dνS′

)∗
(Gλ

SS′)∗d
µ
S

(ℏωL − ES + iγ) (ℏωL − ℏωλ − ES′ + iγ)

+
∑
S,S′

(
dµS

)∗ Gλ
SS′dνS′

(ℏωL + ES − iγ) (ℏωL − ℏωλ + ES′ − iγ)
.

(5.2)

The sums run over all excitonic states S and S′ with energies ES(′) and decay constant

γ. The quantity dµS is the coupling matrix element between an exciton S and a photon of

polarization µ, while (Gλ
SS′)∗ represents the exciton-phonon coupling matrix element related

to the scattering of an exciton S to an exciton S′ via emission of one phonon of branch λ [95].

The exciton-phonon matrix element gλSS′ for the state |S′⟩ scattering to the state |S⟩ via

absorption of phonon of zero momentum is given by Eq. (4.7) which can be simplified as

Gλ
SS′ =

∑
kcv

{AS∗
kcv

(∑
c′
gλkcc′A

S′
kc′v −

∑
v′
gλkv′vA

S′
kcv′

)
}, (5.3)

where gλkmn = ⟨km|∂λV |kn⟩ corresponds to the electron-phonon matrix element between

the single electron states |kn⟩ and |km⟩, with ∂λV representing the deformation potential due

to the phonon mode λ. If an exciton is mostly composed of one valence and one conduction

band at each k-point (like 1s/2s excitons in WSe2), we can approximate the diagonal exciton-

phonon matrix element in Eq. (5.3) as

Gλ
SS ≈

∑
k

{|AS
k |2

(
gλkc̃c̃ − gλkṽṽ

)
}, (5.4)

where c̃/ṽ are the band indices of the conduction/valence band indices that contribute the

most to the envelope wave function at a given k-point.

The exciton-photon (dipole) matrix elements dµS are given by

dµS =
∑
kcv

(
AS

kcv

)∗ ⟨ck|v̂|vk⟩ · eµ, (5.5)

where v̂ is the velocity operator, eµ is the polarization vector of the incoming photon, and
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the sums run over all k-points in the first Brillouin zone, over all conduction bands (c) and

valence bands (v). ⟨ck|v̂|vk⟩ represents the dipole matrix elements, and AS
k,cv is the exciton

envelope wave function for the single-electron transition |k, v⟩ → |k, c⟩. Detailed derivation

of these expressions can be found in the supplementary information of Ref. [95].

6.65

W

Se

B

N

5 
 

Figure 5.1: Top and side view of crystal structure of monolayer WSe2 on top of single layer
hBN used in the ab-initio calculations. Figures were created with the VESTA software [76]

We obtained all quantities required for the evaluation of Eq. (5.2) from first principle meth-

ods using the GW-BSE [53, 98] formalism on density functional theory (see supplementary

information section 5.3 for details of the ab initio methods). Experimental evidence [126]

shows that the interlayer exciton-phonon phenomenon persists even for a single layer of

hBN placed on top of WSe2. Therefore, we considered a heterostructure consisting of one

layer of hBN and one layer of WSe2 as shown in Fig 5.1 in this study. This is sufficient to

understand the underlying mechanism. Additional calculations for different structural config-

urations, including a sandwiched structure, are provided in the supplementary information

section 5.3.

In Fig. 5.2a, we show the calculated Raman intensities for the different phonon branches

as a function of the energy of the incoming photon at normal incidence (ωL). We define

the Raman intensity as the differential cross section, averaged over the polarization of the

incoming light at normal incidence, and summed over the in-plane polarization of the out-

going light. The blue line denotes the Raman intensities for the out-of-plane optical (ZO)
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Figure 5.2: Raman intensities of the ZO and LO/TO modes of hBN in a heterostructure of
single layers of hBN and WSe2 as a function of energy of the incoming photon at normal
incidence. (ωL). a) Computed resonant Raman intensities of the ZO mode (blue line) and
LO/TO mode (orange line). The gray shaded area denotes the imaginary part of the in-
plane polarizability of the heterostructure. Blue triangles represent experimental data of the
ZO mode Raman intensities at 4 K, taken from Ref. [70]. (b) and (c) Computed Raman
intensities for (b) the ZO mode and (c) the LO/TO mode, considering all scattering channels
(red lines) or retaining only intra-exciton scattering channels (blue line).
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phonon of the hBN layer. We compare the Raman intensity profiles to the imaginary part of

the in-plane polarizability (absorption coefficient) of the heterostructure (shaded area) and

to experimental Raman intensities from McDonnell et al. [70](blue triangles, see supporting

information section 5.3 for further details). The most striking features of the ZO-mode in-

tensity profile are the two strong resonances at ωL ≈ 1.72 eV and ωL ≈ 1.82 eV, labeled “I”

and “II” in Fig. 5.2a. The first of these two peaks coincides with a resonance in the absorp-

tion coefficient which corresponds to the well-known 1s state of the “A”-exciton [5] of WSe2

and can thus be interpreted as the resonant excitation of the 1s A-exciton in WSe2, which

then couples to the hBN ZO mode. The second peak, in contrast, does not have such a

counterpart in the absorption spectrum. It is the quantum of one ZO mode away from the

first resonance peak and corresponds to the resonant recombination of the 1s exciton under

phonon emission (when ωL = E1s +ωZO), compare Eq. (5.2). Finally, Peak III coincides with

the 2s-A-exciton of the absorption coefficient and is due to the resonant excitation of the 2s

state. The results of our calculation match the experimental data of McDonnell et al. [70]

well in terms of the local peak intensities. We note that the 2s exciton is blue-shifted in our

calculation with respect to experiment, as we consider a heterostructure of one layer WSe2

on top of one layer of hBN vs. a system of monolayer WSe2 sandwiched in bulk hBN in

experiment (where screening is stronger and, thus, the energy difference between 1s and 2s

excitons reduced. See Fig. 5.8 in supporting information section 5.3) [5].

Compared to the ZO mode of hBN, its in-plane LO/TO mode displays a Raman intensity

three orders of magnitude lower, yet with a qualitatively similar resonance structure as a

function of ωL. This anomalous behavior, where the ZO and LO/TO phonon modes of the

hBN layer couple differently when the incident light is in resonance with the WSe2 layer,

was reported in Ref. [55], which offered a speculative explanation for the underlying Raman

scattering process. Using our atomistic first-principles approach, we can now scrutinize

the Raman scattering pathways and understand them in terms of symmetry and involved

scattering events.

From Eq. (5.2), it is evident that any contributing scattering pathway requires non-zero

optical matrix elements dµS and dνS′ as well as a non-vanishing exciton-phonon coupling ma-

91



trix element gλS,S′ . Monolayer WSe2 and monolayer/bulk hBN individually possess D3h and

D3h/D6h point groups, respectively. However, when combined into a heterostructure, the

symmetry is reduced to C3, which is crucial for observing valley effects and preserving the

isotropic properties in these systems [26].

In order to infer the corresponding selection rules, we note that the underlying C3 point

group symmetry of the hBN@WSe2 heterostructure allows the classification of zero-momentum

phonons and excitons with total crystal angular momentum m = +1, 0, or −1. Each value of

m corresponds to an irreducible representation of the C3 point group, with characters given

by e
2πim

3 for the 3-fold rotation symmetry. A finite optical strength dµS for light polarized par-

allel to the heterostructure is only possible for excitons S with mS = ±1. Meanwhile, the

exciton-phonon matrix elements gλS,S′ are non-zero only if m is conserved up to modulo 3:

mS −mS′ −mλ ≡ 0 (mod 3). (5.6)

For the ZO-phonon (mZO = 0), this implies that active scattering pathways necessarily have

mS = mS′ . In contrast, for the LO/TO phonon (mLO/TO = ±1), we need to havemS = mS′±1

(mod 3).

The combination of the optical and phonon-specific selection rules allows us then to

understand the nature of the resonance features I, II, and III in Fig. 5.2a. As the 1s exciton

of WSe2 is the dominant optically active low energy exciton available, resonance I and II

are associated with the scattering process 1s→ 1s, which gives rise to resonances for both

incoming (I) and outgoing (II) light. However, while this resonance structure is seen in both

the ZO and the LO/TO mode, the latter is three orders of magnitude less intense, although

formally allowed by symmetry. To understand this enormous difference between the phonon

modes, we first note that the 1s exciton of WSe2 is in fact doubly degenerate due to time-

reversal symmetry [50]. The two members of the doublet are located at different inequivalent

corners K and K′ of the first Brillouin zone and carry the opposite m value, i.e. m1s,K(′) =

+(−)1. For the ZO mode, this implies that 1s→ 1s scattering is allowed within a valley (intra-

valley scattering), while for the LO/TO mode with m value, 1s→ 1s scattering is only allowed
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between 1s states in opposite valleys (inter -valley scattering). However, due to the strong

localization of the 1s exciton wave function in momentum space (see Fig. 5.7 of supporting

information section 5.3), there is only a miniscule overlap between wave functions centered

in different valleys and, as a result, the inter-valley scattering required for the LO/TO mode

is strongly suppressed and, consequently, the Raman intensity.

In order to substantiate this, we recalculate the Raman intensities by considering only

intra-exciton scattering channels, , i.e., by restricting the double sum in Eq. (5.2) to S = S′.

As shown in Figs. 5.2b and c, we can indeed numerically confirm that intra-exciton scattering

is absent for the LO/TO mode while being the dominant scattering process for the ZO mode.

In terms of the three most prominent resonances in the ZO mode Raman intensities, we can

thus conclude that resonances I and II stem from 1s-to-1s intra-valley exciton scattering and

III from 2s-to-2s intra-valley scattering. We note that this finding is in contrast to previous

assumptions [55] that identified peaks II and III to the two resonances associated with the

inter-exciton scattering process 1s→ 2s.

However, for the LO/TO mode, we confirm that intra-valley scattering plays no role, and

the suppressed but finite Raman intensity around the 1s exciton arises solely from weak

inter-exciton scattering. Along with the 1s exciton, these weak inter-exciton scattering pro-

cesses include finite-momentum excitonic states of pristine WSe2, which are folded onto the

Γ point due to the supercell and are weakly brightened as a result of the reduced symmetry

of the heterostructure. Unlike the 1s and 2s excitons, these finite-momentum excitons of

pristine WSe2 are not localized in the K valleys due to exchange interaction, as reported

in Ref. [91]. This suggests that, in addition to inter-valley scattering between degenerate

1s excitons, the 1s excitons can also scatter to these weakly brightened excitons, and vice

versa. Collectively, these inter-exciton scattering channels result in the very weak Raman

intensities observed for the LO/TO phonon mode between the 1s and 2s exciton energies.

5.2.2 Interlayer exciton-phonon coupling

While these symmetry considerations explain the difference between Raman intensities of

the LO/TO- and ZO-modes, a complementary analysis is required to understand the precise
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mechanism for interlayer exciton-phonon coupling. In order to elucidate the microscopic

mechanism, we consider the 1s → 1s scattering pathway for the ZO mode, which is the

dominant Raman scattering channel in the region ωL ≲1.8 eV. The 1s exciton is mostly

composed of one conduction and one valence band state 5.3, therefore we can approximate

the 1s → 1s exciton-phonon matrix element as (see supplementary information section 5.3

for details)

GZO
1s,1s ≈

∑
k

∣∣A1s
kcv

∣∣2 (gZO
kc − gZO

kv

)
, (5.7)

where A1s
kcv is the exciton envelope wave function for the single-electron transition |k, v⟩ →

|k, c⟩. The diagonal electron-phonon matrix elements gZOkn for a single-electron state |kn⟩
within the framework of DFT are given by [38]

gZOkn =

∫
d3r |ψkn(r)|2∂ZOVKS(r). (5.8)

Here, ψkn(r) denotes the one-electron wave function for state |kn⟩, VKS(r) corresponds

to the total self-consistent Kohn-Sham (KS) potential, and ∂ZO represents the directional

derivative along the ZO phonon mode displacement vector [38]. Combining Eqs. (5.7) and

(5.8), we obtain

GZO
1s,1s ≈

∫
d3r

[
n1sc (r)− n1sv (r)

]
∂ZOVKS(r), (5.9)

where n1sc(v)(r) =
∑

k,v(c) |A1s
kcv|2|ψkc(v)(r)|2 denotes an “exciton-averaged” electron (c) or

hole (v) density for the 1s exciton.

Previous studies [54, 28, 27, 20] have suggested that the polar nature of the ZO phonon

is responsible for the origin of the interlayer exciton-phonon coupling. To verify this claim,

we decompose the total perturbed potential in Eq. (5.9) into macroscopic and microscopic

components [109]: ∂ZOVKS(r) = ∂ZOVmicro(r)+∂ZOVmacro(r). These macroscopic and micro-

scopic fields are also referred to as the long-range and short-range components of the defor-

mation field, respectively, in the literature [38, 104, 109]. In polar materials, the macroscopic

component predominantly arises from a macroscopic dipole field generated by the presence

of Born effective charges and is often termed the Fröhlich field [109]. It also includes mi-
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nor contributions from fields generated by quadrupole moments[11] and other higher-order

multipole terms for both polar and non-polar materials [42]. The microscopic component of

the perturbed potential is obtained by subtracting the macroscopic component from the total

perturbed potential. In this work, we only considered dipole terms in the macroscopic part,

as higher-order multipole terms are negligible.

In Figure 5.3, we illustrate the different components of the 1s → 1s exciton-phonon ma-

trix element, as described by Eq. (5.9). We plot the in-plane average of the change in KS

potential (divided into microscopic and macroscopic part) and the integrated electron and

hole densities as a function of the out-of-plane spatial coordinate (z). We distinguish be-

tween the region close to the hBN layer, the near field (grey shading), and the remaining

area, the far field. Figure 5.3a shows the in-plane average of the microscopic (magenta

line) and macroscopic (blue line) components of the total field (see supplementary informa-

tion section 5.3 for computational details). The macroscopic component attains a constant

value on both sides of the hBN layer and extends entirely along the out-of-plane direction,

resembling the field generated by a uniformly charged plate. Conversely, the microscopic

component vanishes asymptotically due to the charge neutrality of the system. Interestingly,

the microscopic part exhibits two prominent features: (i) a large and rapidly varying part in

the near field, and (ii) a tiny part in the far field that is localized within the WSe2 layer, as

depicted in the inset of Fig. 5.3b. The former arises from the change in lattice potential due

to the displacement of nuclei and the induced field of the hBN electron density; the latter is

due to the induced field generated by the WSe2 electron density [38].

The different components of the total field are felt by the 1s exciton charge density of

the WSe2 layer. In Fig. 5.3b, we depict the in-plane integrated electron and hole densities

(n1sc/v(r)) of the 1s exciton (see supplementary information section 5.3 for similar plots corre-

sponding to different stackings and encapsulated heterostructures). Both the electron and

hole densities of the 1s exciton are mostly made up of tungsten d orbitals [112]. However,

while the electron density of the 1s exciton is completely localized within the WSe2 layer, the

hole density also has a small, but finite component in the hBN layer (see inset of Fig. 5.3b).

This component corresponds to the hybridization of the pz orbitals of the hBN layer with
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the d orbitals of the WSe2 layer, i.e., to the weak chemical bond between the two layers. It

is noteworthy that the hybridization only occurs for the valence, i.e., bonding orbitals, and

not for the conduction band orbitals, owing to the favourable or unfavorable band alignment

between the hBN and WSe2 valence and conduction bands, respectively. This hybridization

has been experimentally observed and reported in Ref. [63].

Finally, we consider the interaction of the electron and hole densities of the 1s exciton

with the total field to gain atomistic insight on the exciton-phonon interaction across layers.

The 1s → 1s exciton-phonon matrix element can a priori receive contributions from three

different channels: (i) the constant, macroscopic part interacting with the electron and hole

densities over all space (ii) the large near field interacting with the small hybridized hole

density in the near-field, and (iii) The small far field in the WSe2 layer interacting with the
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large electron and hole densities.

To quantify the contribution of each channel to the overall exciton-phonon interaction, we

define the cumulative work W (z) along the z axis for a field ∂V (r) as

W (z) =

∫ z

−∞
d3r

(
n1sc (r)− n1sv (r)

)
(∂V (r)− ∂V (r → ∞)). (5.10)

The cumulative work for the total field asymptotically reaches the diagonal exciton-phonon

matrix of the 1s exciton as given in Eq. 5.9 (see cumulative work section in supplementary

information section 5.3 for more details).

In Fig. 5.4, we depict the cumulative work done by the total field and its constituents,

denoting their asymptotic values with dashed, vertical lines. The cumulative work for the total

field starts from zero and reaches its asymptotic value by the end of the near-field region

as shown in Fig. 5.4a. This implies that the coupling of the 1s exciton to the ZO phonon

arises almost entirely from the electric fields in the near-field region and their interaction

with the hybridized part of the charge density of the 1s exciton. Given that only the hole

of the 1s exciton hybridizes with the hBN orbitals, the 1s → 1s exciton-phonon scattering

can be interpreted as being primarily due to the scattering of the hybridized-hole by the ZO

phonon, thereby making it a near-field effect.

To better understand the nature of this near-field effect, we further examine the con-

tributions of each individual field to the total exciton-phonon coupling by considering the

cumulative work of the macroscopic and microscopic components separately. Since the ZO

phonon is antisymmetric about the hBN plane, both the macroscopic and microscopic fields

flip their sign at the hBN layer (see Fig. 5.3a). At the same time, due to lowering of sym-

metry in the heterostructure, the hybridized-hole density around the hBN layer is not mirror

symmetric with respect to the hBN plane. In combination with the large microscopic and

macroscopic fields, this asymmetry leads to a finite amount of work in the near-field region

(see Fig. 5.4b and c). By contrast, in the far-field regime, the electron and hole distribution

are mirror symmetric with respect to the W-layer and in consequence, the net work done by

the ZO mode to the exciton cancels out.
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1.6 1.7 1.8 1.9

LO/TO
5 Å 6 Å
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Figure 5.5: Resonant Raman intensities of ZO (left) and LO/TO (right) phonons of hBN at
an interlayer spacing (between tungsten and hBN layer) of 5 Å (orange) and 6 Å (blue)

Further insights can be drawn from the behavior of the macroscopic component. While

the macroscopic part interacts with the entire electron and hole densities, the cumulative

work reaches its asymptotic value already at the interface of the hBN layer and the re-

gion around the WSe2 layer does not yield a net contribution. Given that the macroscopic

component is nearly constant, the work done by the electron and by the hole compensate

each other almost perfectly in the far-field, as a consequence of the exciton being a charge-

neutral excitation. However, the macroscopic part does contribute a finite amount of work to

the exciton-phonon coupling through its interaction with the hybridized part of the hole den-

sity (Fig. 5.4c). This implies that, similar to the microscopic contribution, the macroscopic

contribution also depends heavily on the hybridized density, thereby making it a near-field

effect (see cumulative work section in supplementary information section 5.3 for more de-

tails).

Given the near-field nature of interlayer exciton-phonon coupling, it is highly sensitive to

interlayer distance, as increasing the separation between layers exponentially decreases the

interfacial hybridization and, consequently, the coupling strength. To qualitatively validate

this, we computed the resonant Raman intensities for the same heterostructure with two

different interlayer distances of 5 Å and 6 Å. As shown in Fig. 5.5, the Raman intensities

decrease by two orders of magnitude when the interlayer spacing is increased by 20%. This
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qualitatively agrees with the experimental observations in Ref. [62] and confirms the near-

field effect of this phenomenon.

Finally, it is important to emphasize the fundamental distinction between interlayer elec-

tron-phonon and exciton-phonon couplings. Unlike the interlayer electron-phonon coupling,

which is very strong and is predominantly caused by the macroscopic component in the

far-field region [104], the interlayer exciton-phonon coupling is much weaker and originates

in the near-field region, with nearly equal contributions coming from both macroscopic and

microscopic components. Remarkably, exciton-phonon scattering takes place even in the

absence of the macroscopic component. This implies that bond polarity is not a prerequisite

for the occurrence of the interlayer exciton-phonon scattering, contrary to current specula-

tions [54, 28, 27, 20], which hypothesized a macroscopic dipole-dipole coupling mechanism.

5.3 Supporting information

5.3.1 Computational details

All the ground state properties presented in the paper are obtained from density functional

theory calculations (DFT) within the generalized gradient approximation [86] as implemented

in the QUANTUM ESPRESSO Code [37]. We use the Perdew-Burke-Ernzerhof (PBE) func-

tional [86] and fully relativistic norm-conserving pseudo-potentials (SG15 database) to per-

form all the DFT calculations [46, 100]. A plane-wave energy cutoff of 120 Ry is used to

expand the wave functions. The heterostructure used for all the ab-initio calculations is

shown in Fig. 5.1. This heterostructure is generated using the CELLMATCH software [58],

with the same parameters as mentioned in Ref.[35]. We then relax the structure with a con-

vergence threshold of 10−5 Ry and 10−5 Ry/Bohr for total energy and forces, respectively.

After the relaxation, the obtained interlayer distance between the Tungsten and hBN layers

is 5 Å which is in good agreement with Ref. [35]. In order to avoid spurious effects of out-

of-plane periodicity, we set the vacuum separation to 20 Å and employ a Coulomb cutoff in

all our ab-initio calculations [103]. We then obtain phonons and electron-phonon coupling

matrix elements within density functional perturbation theory as implemented in the PH.x
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code of QUANTUM ESPRESSO. A Γ centered 9×9×1 uniform k point grid is used to converge

the ground state density, and we employ the same k-grid for the phonon calculations.

To obtain the total change in the Kohn-Sham potential, ∂ZOVKS(r), for plotting purposes,

we construct the change in the local part of the total ionic potential from the pseudopotentials

as described in Ref. [103]. This is then added to the perturbed Hartree and exchange-

correlation potentials obtained from DFPT calculations.

The macroscopic part is computed using an analytical expression from Ref. [23], given

in atomic units as

∂ZOVmacro(r∥, z) =
2πi

A

∑
κ

∑
Q=G∥

e−|Q||z−zκ|eiQ·(r−τκ)

[
Q̂+ iẑ sgn(z − zκ)

]
· Z∗

κ · uZO
κ

1 + 2πQ̂ ·α2D · Q̂|Q|
.

(5.11)

Here, A is the unit cell area, G∥ is the in-plane reciprocal vector, Q̂ and ẑ are unit vectors

along Q and z, respectively, sgn is the sign function, and α2D is the polarizability tensor

which is given by

α2D =
c

4π
(ϵ∞ − 1), (5.12)

where ϵ∞ is the static dielectric tensor, and c is the out-of-plane lattice constant. The quantity

Z∗
κ is the Born effective charge tensor of atom κ. The displacement vector for the ZO phonon

mode, uZO
κ , is

uZO
κ =

1√
2MκωZO

eκZO, (5.13)

where eκZO is the phonon eigenvector, ωZO is the frequency of the ZO phonon mode, and

Mκ is the atomic mass of atom κ.

All the many-body perturbation theory calculations are performed on top of DFT calcu-

lations with the YAMBO code [65, 99]. In order to correct the Kohn-Sham band structure,

we perform a G0W0 calculation on a uniform Γ centred 12 × 12 × 1 grid with a total of 2600

Kohn-Sham states. A plane wave cutoff of 2 Ry is used for the dielectric tensor to obtain

the converged band gap. The frequency dependence of the dielectric tensor is calculated

with the plasmon-pole approximation [40]. We also use a G-terminator [10] and RIM-W

technique [44] to accelerate the convergence of the bandgap with respect to bands and k
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points respectively. We interpolate the quasiparticle corrections to a finer k-point grid with

the Wannier90 code [89].

We solve the Bethe–Salpeter equation (BSE) within the Tamm-Dancoff approximation

[22] starting from our previous mean field calculations with the YAMBO code. In order to

obtain the converged absorption spectrum, we use a uniform Γ centered 48 × 48 × 1 grid

with a total of 600 bands. We include the top eight valence and bottom eight conduction

bands in constructing the kernel matrix. A plane wave cutoff of 25 Ry and 2 Ry is used for

the exchange and the screened Coulomb part of the kernel. We use the Elemental library

[90] to diagonalize the entire BSE Hamiltonian.

Finally, we employ Eqs. (2), (5.5) and (5.3) to compute the Raman scattering matrix ele-

ments from the dipoles, electron-phonon matrix elements and BSE envelope wave-functions.

The summation in the Raman scattering matrix element is performed over the first 48000 ex-

citonic states and the decay constant (γ) is set to 5 meV. We define the Raman intensity as

the differential cross-section, averaged over the polarization of the incoming light at normal

incidence and summed over the in-plane polarization of the outgoing light.

5.3.2 GW Band structure and exciton wave functions

In Fig. 5.6, we show the GW band structure for monolayer WSe2 placed over a single layer of

hBN. We interpolated the GW corrections on the high symmetry path using the Wannier90

code

In Fig. 5.7, we plot the excitonic wave functions in reciprocal space (“envelope wave

function”) defined as

ΨS(k) :=
∑
cv

∣∣AS
kcv

∣∣2 . (5.14)
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Figure 5.6: GW band structure of WSe2/hBN heterostructure used in the main paper
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Figure 5.7: Envelope wavefunctions for the 1s and the 2s excitons located at two inequivalent
K valleys

104



5.3.3 Cumulative work

In the main text, we introduced the term cumulative work. The cumulative work, W (z),

does not have a direct physical interpretation, although its asymptotic value for the total field

corresponds to the diagonal exciton-phonon matrix element. This quantity is introduced to

serve two purposes:

• To quantify the contributions of microscopic and macroscopic fields to the exciton-

phonon strength.

• To identify the contributions from different spatial regimes to the interlayer exciton-

phonon interaction, providing insight into whether the interlayer exciton-phonon cou-

pling is microscopic or macroscopic.

To this end, W (z) is defined by replacing the upper bound of the integral in Eq. (6) of the

main text with the out-of-plane coordinate z. Since it represents an integrated charge density

multiplied by the change in potential, we label it as “cumulative work”.

Furthermore, according to Eq. (6) of the main text, the exciton-phonon matrix element

remains unchanged when a constant field E0 is added to the total field due to the charge

neutrality of an exciton:

∫
d3r

[
n1sc (r)− n1sv (r)

]
(∂ZOVKS(r) + E0) = GZO

1s,1s +

∫
d3r

[
n1sc (r)− n1sv (r)

]
E0

= GZO
1s,1s + E0 ×

[∫
d3rn1sc (r)−

∫
d3rn1sv (r)

]
= GZO

1s,1s.

This implies that we have the freedom to add or subtract a constant field in Eq. (6). Based

on this, we subtract the constant asymptotic field (∂V (r → ∞)) on the right-hand side of

Eq. (7) to isolate and discard its interaction with the electron and hole densities, as it does

not contribute to exciton-phonon coupling.

By discarding the constant asymptotic field, the cumulative work of the macroscopic field

reaches its asymptotic value when approaching the hBN interface, as shown in Fig. 3b. This
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indicates that the macroscopic contribution arises from the interaction of the macroscopic

field with only the interfacial hybridization. Therefore, the macroscopic contribution is directly

related to the extent of interfacial hybridization.

Alternatively, this can be shown from Eq. (6):

GZO
1s,1s ≈

∫
d3r

[
n1sc (r)− n1sv (r)

]
∂ZOVKS(r) =

∫
d3r

[
n1sc (r)− n1sv (r)

]
(∂ZOVmacro(r)+∂ZOVmicro(r))

GZO
1s,1s ≈ GZO,micro

1s,1s +

∫
d3r

[
n1sc (r)− n1sv (r)

]
∂ZOVmacro(r)

Due to the ZO phonon mode being approximately anti-symmetric with respect to the hori-

zontal mirror plane of hBN (i.e., it changes sign about the hBN plane), we can express the

macroscopic field as ∂ZOVmacro(r) ≈ E0 sgn(z − zhBN ) (see Fig. 2a of the main text), where

zhBN is the out-of-plane coordinate of the hBN layer, and sgn is the signum function.

GZO
1s,1s ≈ GZO,micro

1s,1s −
∫ zhBN

−∞
d3r

[
n1sc (r)− n1sv (r)

]
E0 +

∫ ∞

zhBN

d3r
[
n1sc (r)− n1sv (r)

]
E0

GZO
1s,1s ≈ GZO,micro

1s,1s +

∫ ∞

−∞
d3r

[
n1sc (r)− n1sv (r)

]
E0 − 2

∫ zhBN

−∞
d3r

[
n1sc (r)− n1sv (r)

]
E0

GZO
1s,1s ≈ GZO,micro

1s,1s − 2

∫ zhBN

−∞
d3r

[
n1sc (r)− n1sv (r)

]
E0

which implies that the macroscopic component only arises from the macroscopic field in-

teracting with the interfacial hybridization density. We would like to highlight that this holds

even for an encapsulated heterostructure.

5.3.4 Resonant Raman spectra of other possible heterostructures

In this section, we show the resonant Raman spectra and the averaged electron and hole

densities of the 1s exciton for different stacking configurations. To reduce computational

costs, we omit the computation of GW corrections to the band structure and instead ap-

ply a scissor operator to match the experimental optical gap. Applying a scissor operator

instead of the GW corrections induces an asymmetry in peaks I and II; nevertheless, the
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only purpose of this section is to show that our conclusions remain valid when choosing dif-

ferent heterostructures. Unless explicitly stated, all calculations use the same convergence

parameters as mentioned in the computational details. All Raman intensities are scaled by

the same factor; therefore, Raman intensities from different plots are comparable.

Encapsulated monolayer WSe2
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Figure 5.8: Absorption spectra of the single-layer hBN heterostructure (red) and the encap-
sulated heterostructure (blue). The 2s exciton energy is red-shifted by an energy of ∼ 30
meV when encapsulated with two layer of hBN on both sides.

Firstly, we compare the absorption spectrum of the encapsulated heterostructure with

that of the single hBN heterostructure. Experimentally, the energy difference between the

1s and 2s excitons is approximately 150 meV for the sandwiched structure, while our calcu-

lations indicate that this energy difference is approximately 200 meV for monolayer WSe2

on a single layer of hBN. However, as shown in Fig. 2a of Ref. [5], the 1s − 2s energy

difference for a suspended monolayer of WSe2 (which closely resembles our structure) is

approximately 200 meV, while on a substrate the difference is reduced to approximately 160

meV. This confirms that the difference ∼ 50 meV between peaks II and III is probably due

to insufficient dielectric screening. We further confirm this by computing and comparing
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the absorption spectra of the single-layer hBN heterostructure with that of the encapsulated

heterostructure (with two layers of hBN on both sides), as shown in Fig. 5.8.

Next, in Fig. 5.9a, we show the resonant Raman intensities for different out-of-plane

modes in monolayer WSe2 encapsulated with two layers of hBN on both sides. The ZO1 and

ZO2 modes exhibit higher intensities than the others, as both microscopic and macroscopic

fields interact with the higher hole density near the closest hBN layers, as shown in the inset

of Fig. 5.9c. We note that the (small) difference in coupling to the 1s exciton between the

ZO1 and ZO2 modes arises from the difference in stacking with respect to the WSe2 layer.

The ZO4 mode gains Raman intensity through the interaction of its finite macroscopic field

(generated by the out-of-phase motion of atoms) with the hybridized density at the nearest

layers. In contrast, the macroscopic field generated by the ZO3 mode is antisymmetric

with respect to the tungsten layer within the outermost hBN layers. This symmetry causes

contributions from both sides to nearly cancel out, resulting in vanishing Raman intensity.

Dependence on twist angle

In the main text, we present the calculations on a heterostructure with a rotation angle of

approximately 100° between the hBN and WSe2 layers. In Fig. 5.10, we show the resonant

Raman spectrum and the electron and hole densities for the 1s exciton of the WSe2 mono-

layer in heterostructures with different stacking angles. Differences between the spectra as

well as between the electron and hole densities are minor. This confirms our assumption

in the main text that the physical mechanism of interlayer exciton phonon coupling is rather

insensitive to the twist angle of the interface.
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Figure 5.10: (Left) Resonant Raman intensities for the LO/TO and ZO modes of the hBN
layer as a function of incoming light energy for heterostructures with different stacking an-
gles. (Right) Averaged electron and hole densities of the 1s exciton.
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Resonant Raman spectra and averaged electron-hole densities of 1s exciton for com-

plex heterostructures

In Appendix Ref C, we present the resonant Raman spectrum and the averaged electron-

hole densities for several heterostructures obtained by laterally shifting the hBN layer in the

structure shown in Fig. 5.1 (the same structure as used in the main text).

5.3.5 Experimental Data

The experimental Raman intensities for the hBN ZO mode were obtained by analyzing the

raw data recorded for a hBN-encapsulated monolayer WSe2 heterostructure, which was

provided in the supplementary information of Ref. [70, 69]. While the experimental Raman

spectrum features multiple Raman peaks between 750-820 cm−1, we take the intensities of

the peak near 815 cm−1 as the ZO mode intensities.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In conclusion, we show how crystal symmetries act on excitonic states and demonstrate

that the induced representation is linear, similar to that of phonons. Moreover, we develop a

robust ab-initio method to compute representations of the excitonic state. Unlike previously

existing methods, which require a manual analysis of each state, the method introduced in

this thesis to compute excitonic representations can be applied to a wide range of materials,

even when they deviate from the conventional Wannier or Frenkel exciton picture.

We then apply our developed formalism to understand the symmetries in exciton-photon

and exciton-phonon interactions. In particular, we study the underlying selection rules that

govern the coupling of light with excitons and the scattering pathways of excitons by phonons.

In order to demonstrate these selection rules, we apply our method to a wide range of ma-

terials such as LiF, transition metal dichalcogenides (TMDCs), and hBN.

Beyond fundamental insights, our work introduces practical computational advances.

While symmetries are widely used in density functional theory (DFT), their role in exciton-

phonon calculations has been largely ignored due to phase mismatch issues. We have

developed a methodology to systematically restore symmetry considerations in state-of-the-

art exciton-phonon calculations, leading to substantial reductions in computational cost while

preserving accuracy. These improvements enable efficient calculations of exciton-phonon
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coupling in complex systems.

In the final part of this thesis, we theoretically and computationally investigat the coupling

of excitons and phonons across layers and its signature in resonant Raman scattering. Using

symmetries, we identify the main exciton-phonon scattering channel in the Raman process

of a prototypical WSe2@hBN heterostructure. We find that the exciton-phonon coupling is

due to the scattering of the hybridized hole part of the WSe2 exciton with the deformation

potential of the hBN phonon. This finding sheds light on the nature of the exciton-phonon

coupling, which previously was hypothesized to be due to a macroscopic, polar dipole-dipole

interaction, but which we actually find to be a near-field effect. We provide the first micro-

scopic explanation for this phenomenon, resolving a long-standing question in the field. This

understanding of the interlayer exciton-phonon coupling in two-dimensional heterostructures

can be a valuable guide for tailoring inter-layer interactions in such systems.

Finally, I present three newly developed computational tools that have made it possible

to perform the calculations presented in this thesis:

• Lëtzebuerg Electron-Phonon Code (LetzElPhC): A software developed to compute

electron-phonon matrix elements. LetzElPhC is written in C with multiple levels of par-

allelization, enabling efficient execution on large-scale high-performance computing

(HPC) systems. This code fully exploits all symmetry operations in a crystal, sig-

nificantly reducing both computational time and storage requirements. Moreover, it

computes the representations of electronic states, which are a central ingredient for

constructing the excitonic representation matrix. By leveraging symmetry operations,

LetzElPhC enables exciton-phonon calculations without symmetry breaking, making it

possible to study much larger systems than previously feasible. Additionally, it fixes

the longstanding issue with phases when computing exciton-phonon matrix elements

using symmetries, a problem that has plagued computations over the last few years.

• Ydiago: A library developed for efficient diagonalization of large Bethe-Salpeter equa-

tion (BSE) matrices, which is essential for excitonic calculations. Before this work,

diagonalizing these matrices in Yambo was a major computational bottleneck. Ydiago

113



provides an efficient and scalable solution to this problem, allowing the treatment of

significantly larger systems and enhancing the overall performance of BSE calcula-

tions.

• PhdScripts: Set of Python scripts that allow us to compute the irreducible represen-

tation labels for the excitonic states, exciton-phonon matrix elements with full crys-

tal symmetries, as well as resonant Raman intensities and phonon-assisted lumines-

cence intensities. Due to the use of symmetries, these scripts enable a more efficient

computation of exciton-phonon properties compared to existing implementations.

6.2 Outlook

The findings of this thesis offer valuable insight into the symmetry properties of excitons

and their implications for optical processes across various material systems. The method-

ologies developed herein establish a robust framework for understanding selection rules

in resonant Raman scattering and phonon-assisted luminescence, which can also be eas-

ily extended to other processes. Moreover, the computational tools developed to compute

resonant Raman scattering, phonon-assisted luminescence, irreducible representations of

excitons, and exciton-phonon lifetimes, which exclusively employ symmetries to reduce com-

putational costs, makes it now possible to apply these methods to much larger systems and

allows for high-throughput calculations. One could use these methods and tools on a wide

range of materials, such as magnetic insulators (e.g., CrI3, BiFeO3) and hBN defect systems,

thereby deepening our understanding of their optical responses.

A key direction for future research involves the leveraging of the symmetry properties

of excitons described in this thesis to reduce computational costs. Currently, the use of

symmetry operations in exciton calculations within publicly available many-body codes re-

mains limited. By incorporating the expressions developed here, computations of excitons

and exciton-phonon interactions could be significantly accelerated, thereby enhancing exist-

ing computational frameworks, particularly for high-throughput exciton calculations. More-

over, an important application of the proposed methodology is to block diagonalize the BSE
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Hamiltonian, where each block corresponds to an irreducible representation. In order to

block digonalize, we need to construct the symmetry adapted basis which can be done us-

ing projection operators. This greatly reduces the time for BSE kernel construction, time for

diagonalization of BSE Hamiltonian, local storage, and RAM memory requirements when

performing BSE calculations.

Additionally, while this thesis has focused primarily on excitons and their interactions with

phonons, the study of magnons in magnetic insulators represents another important direc-

tion for future research. Magnons are known to appear in optical spectroscopic measure-

ments, such as in Raman spectra of magnetic materials which are important when study-

ing magnetic properties of materials. Recently, a new method was developed to compute

magnons with the BSE formalism [82]. A logical extension of this work would be to under-

stand their symmetries and their coupling with other quasiparticles, such as phonons [59].

Finally, it is important to highlight that although symmetries drastically reduce the compu-

tational cost of exciton-phonon calculations, there remains a need for interpolation methods

for excitons and exciton-phonon interactions, such as Wannier interpolation [68]. Wannier

interpolation of electrons [68], phonons, and electron-phonon matrix elements [39] has sig-

nificantly reduced the computational time required to compute properties such as carrier

mobilities [61]. Similarly to the electron-phonon case, fine Q-point grids are required to

compute exciton-phonon lifetimes and phonon-assisted luminescence or absorption spec-

tra accurately, because of their high sensitivity to the location of the exciton minima. A

promising direction for future work is to utilize the recently developed Wannier functions for

excitons [45] and extend them to interpolate exciton-phonon matrix elements. This would

enable for more efficient and converged exciton-phonon calculations, making large-scale

simulations feasible.
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Appendix A

Lëtzebuerg Electron-Phonon Code

(LetzElPhC)

This appendix is taken from the documentation of the LetzElPhC code [78] that was written

by me.

A.1 About the Code

LetzElPhC is a C code designed to compute electron-phonon coupling matrix elements from

the outputs of standard Density Functional Theory (DFT) and Density Functional Perturba-

tion Theory (DFPT) calculations. Currently, it only supports the Quantum Espresso code,

but we have long plans to support the Abinit code as well. The main objective of this coding

project is to facilitate electron-phonon related calculations within the YAMBO code (version

5.2 and above), and it works only with norm-conserving pseudo-potentials. The code is

released under the MIT license and hosted on GitHub [link].

A.1.1 Main Features

• Utilizes full crystal symmetries, ensuring compatibility with the YAMBO code, without

encountering phase issues.
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• Implements multiple levels of parallelization, including OpenMP, plane-wave, k-point,

and q-point parallelization.

• Utilizes fully parallel IO via parallel NetCDF-4/HDF5 libraries.

• Highly portable. The code can be compiled on various CPU architectures and operat-

ing systems with minimal to no changes in the source code.

A.2 Installing the Code

A.2.1 Mandatory Requirements

• GNU Make

• C99 compiler with complex number support, such as GCC, Clang, ICC, AMD C-

Compiler, MinGW (for Windows), PGI, or Arm C compilers.

• MPI implementation supporting at least MPI-standard 2.1 standard, such as Open-

MPI, MPICH and its variants, Intel MPI compiler, or Microsoft MPI (for Windows).

• FFTW-3 or Intel-MKL.

• HDF5 and NETCDF-4 libraries with Parallel IO support (compiled with MPI).

• A BLAS library, such as OpenBLAS, BLIS, Intel-MKL, or Atlas.

A.2.2 Installation Process

LetzElPhC employs a standard make build system. Sample make files are available in the

sample_config directory. Copy one to the src directory and rename it as make.inc. Navigate

to the src directory and edit make.inc according to your requirements. Then, in the same

directory, execute the following commands:

1 $ make

2 #### To compile the code in parallel, use the -j option

3 $ make -j n
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4 #### where n is the number of processes.

Upon successful compilation, you should find the lelphc executable located in the src di-

rectory. If you encounter difficulties in locating the required libraries, go to the YAMBO code

installation directory and open the report file in the config directory, which lists all necessary

libraries and include paths.

Below are the list of variables in the make.inc file with explanations.

1 CC := mpicc

2 #### MPI C compiler mpicc/mpiicc (for intel),

3 CFLAGS := -O3

4 #### -O3 is to activate compiler optimizations

5 LD_FLAGS :=

6 #### use this to pass any flags to linker

7

8 #### **** OPENMP BUILD ***

9 #### If you wish to build the code with openmp support

10 #### uncomment the below line

11 # OPENMP_FLAGS := -DELPH_OMP_PARALLEL_BUILD

12 #### Aditionally, you need to add openmp compiler flag to

13 #### CFLAGS and LD_FLAGS.

14 #### Also uncomment the below two lines

15 # CFLAGS += -fopenmp ## use -qopenmp for intel

16 # LD_FLAGS += -fopenmp ## use -qopenmp for intel

17

18 #### FFTW3 include and libs (see FFT flag in yambo config/report)

19 FFTW_INC := -I/opt/homebrew/include

20 FFTW3_LIB := -L/opt/homebrew/lib -lfftw3_threads -lfftw3f -lfftw3f_omp

-lfftw3_omp -lfftw3

21 #### Note if using FFTW

22 #### Yambo uses double precision FFTW regardless of the precision with which

Yambo is built. In contrast, you need to link single (double) precision FFTW

for single (double) precision LetzElPhC. please refer to https://www.fftw.org

/fftw3_doc/Precision.html . Also you refer to https://www.fftw.org/fftw3_doc/

Multi_002dthreaded-FFTW.html if compiling with openmp support.

23
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24 #### If you want to compile the code in double precession, uncomment the below

25 #CFLAGS += -DCOMPILE_ELPH_DOUBLE

26

27 #### Blas and lapack libs (see BLAS and LAPACK flag in yambo config/report)

28 BLAS_LIB := -L/opt/homebrew/opt/openblas/lib -lopenblas

29 #### you need to add both blas and lapack libs for ex : -lblas -llapack

30

31 #### netcdf libs and include

32 #### (see NETCDF flag in yambo config/report)

33 NETCDF_INC := -I/Users/murali/softwares/core/include

34 NETCDF_LIB := -L/Users/murali/softwares/core/lib -lnetcdf

35

36 #### hdf5 lib (see HDF5 flag in yambo config/report)

37 HDF5_LIB := -L/opt/homebrew/lib -lhdf5

38

39 #### incase if you want to add additional include dir and libs

40 INC_DIRS :=

41 LIBS :=

42

43

44 #### Notes Extra CFLAGS

45 ### add -DCOMPILE_ELPH_DOUBLE if you want to compile the code in double

precession

46 ### if you are using yambo <= 5.1.2, you need to add "-DYAMBO_LT_5_1" to cflags

47 ### for openmp use -DELPH_OMP_PARALLEL_BUILD in CFLAGS and set -fopenmp in

LD_FLAGS and CFLAGS

A.3 Running the Code

A.3.1 Running DFT and DFPT (Step 0)

Before using LetzElPhC, ensure you have obtained the following quantities:

• Kohn-Sham wavefunctions (obtained from a non-self-consistent calculation after ob-

taining the ground state density of the system).
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• Phonon eigenvectors and perturbed Hatree and Exchange potentials due to phonon

modes (obtained from a DFPT run after finding the ground state).

With the Quantum Espresso code, follow these steps (an example is provided in exam-

ples/qe/silicon):

• Perform a self-consistent field (SCF) calculation to obtain the ground state.

• Perform a DFPT calculation using the ph.x executable to obtain dynamical matrices

and changes in potentials on a uniform q-point grid.

• Perform a non-self-consistent field (NSCF) calculation to obtain the wavefunctions on

a uniform k-point grid. The k-grid and q-grid of phonons must be commensurate.

Note: Set the dvscf flag in the ph.x input to save the change in potentials. If you forget to set

this varaible, you have to rerun the entire calculation. Additionally, make sure that the q-grid

is commensurate with the k-grid used in the NSCF calculation (Although, the choice of kgrid

to converge the SCF calculation is irrelevant). Once these steps are completed successfully,

go to the NSCF folder and enter the prefix.save directory, where the wavefunctions are

stored. Then, execute p2y followed by yambo to generate the SAVE folder:

1 $ p2y

2 #### Generates the YAMBO SAVE directory

3 $ yambo

4 #### Further processing creates additional files

Upon successful completion of these steps, we are ready to use LetzElPhC.

A.3.2 Running the Preprocessor (Step 1)

Once the SAVE directory is obtained, we need to create the ph_save folder. Navigate to the

phonon calculation directory and run the preprocessor with the -pp flag:

1 $ cd /path/to/phonon calculation directory

2 #### Run the preprocessor

3 $ lelphc -pp --code=qe -F PH.X_input_file
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4 #### Where PH.X_input_file is the input file of ph.x code used for computing

phonons

Upon successful execution, the ph_save directory will be created, containing all necessary

files. If you wish to change the name of the ph_save directory, you can set the following

environment variable:

1 $ export ELPH_PH_SAVE_DIR=ph_save_name_you_want

Remarks:

• The new format XML dynamical matrix files are currently not supported.

A.3.3 Performing the ELPH Calculation (Final Step)

Once both the SAVE and ph_save folders are created, the ELPH calculation can be exe-

cuted. Run the following command with the LetzElPhC input file in any directory where you

wish to perform the calculation:

1 $ mpirun -n 4 lelphc -F LetzElPhC_input_file

2 ## Here, we are using 4 MPI processes.

A detailed description of the input file is provided below:

1 nkpool = 1

2 # k point parallelization (number of kpools)

3

4 nqpool = 1

5 # q point parallelization (number of qpools)

6

7 ## note (nkpool*nqpool) must divide total number of cpus.

8

9 ## For example, if you run the code on 12 processess,

10 ## and set nkpool = 3 and nqpool = 2

11 ## then, we have 2 sets of cpus working subset of qpoints

12 ## with each group having 3 sub groups which that work on

13 ## subset of kpoints. So in total, we have 6 subgroups, each

14 ## having 2 cpus that distribute plane waves
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15

16 ## {1,2,3,4,5,6,7,8,9,10,11,12} (total cpus)

17 ## ____________|________________

18 ## | divided in to 2 qpools |

19 ## (qpool 1) {1,2,3,4,5,6} (qpool 2) {7,8,9,10,11,12}

20 ## ________|________ ________|_________

21 ## | | | | | |

22 ## kp1 kp2 kp3 kp1 kp2 kp3

23 ## where kp1 are kpools each containg 2

24 ## cpus work on subset of plane waves

25

26 start_bnd = 1

27 # starting band to consider in elph calculation

28

29 end_bnd = 40

30 # last band to consider in elph calculation

31

32 save_dir = SAVE

33 # SAVE dir you created with yambo

34

35 ph_save_dir = ph_save

36 # ph_save directory that was created with preprocessor

37

38 kernel = dfpt

39

40 ## 1) dfpt (default): Uses the total change in the Kohn-Sham potential (

DFPT screening).

41 ## 2) dfpt_local : Excludes the contribution from the non-local part

of the pseudopotentials (p.p.).

42 ## 3) bare : No screening; includes only contributions from the

local and non-local parts of the pseudopotentials.

43 ## 4) bare_local : Includes only the contribution from the local part

of the pseudopotential.

44

45 convention = standard

46 # standard/yambo, If standard (default)
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47 # <k+q|dV|k> is computed. if yambo, <k|dV|k-q> is outputed

48

49 ### ##, !, ; are considered as comments
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Appendix B

Ydiago

In this appendix, we discuss the Ydiago library code that was written during my Ph.D. to

allow efficient diagonalization in the YAMBO code. This text is taken directly from a section

that I have contributed to Ref. [72]

We present a specialized algorithm for diagonalizing the BSE Hamiltonian without TDA,

which is given as  R C

−C† −D

XI

YI

 = ωI

XI

YI

 (B.1)

We are particularly interested when D = R∗ and C = CT , as outlined in Ref. [102].

Throughout this section, we assume the conditions D = R∗ and C = CT . The first step

in solving the BSE Hamiltonian with this specific structure is to construct a real symmetric

matrix Mr of the same dimension, which satisfies the following equation:

Q†

 R C

−C∗ −R∗

Q = −iJMr (B.2)

where J is a real skew-symmetric matrix and Q is a unitary matrix, defined as:

Q =
1√
2

I −iI
I iI

 , J =

 0 I

−I 0

 . (B.3)

The expression for Mr is:
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Mr =

 Re(A+B) Im(A−B)

−Im(A+B) Re(A−B)

 . (B.4)

It has been shown that ifM is positive definite in this special case, Mr will also be positive

definite [102]. If Mr is positive definite (which is highly probable), we can perform a Cholesky

decomposition on the real symmetric matrix Mr, i.e.,

Mr = LLT (B.5)

where L is a real lower triangular matrix. This transforms the original eigenvalue problem

into the following form:

−iWLT

X̄I

ȲI

 = ωIL
T

X̄I

ȲI

 (B.6)

where W = LTJL is a real skew-symmetric matrix, and −iW is Hermitian, sharing

the same eigenvalues as the original BSE Hamiltonian. From Eq. (B.6), it is evident that

the eigenvalues of W differ from those of the BSE matrix by a factor of −i. Since the

eigenvalues of a skew-symmetric matrix occur in pairs and are purely imaginary, this means

that the eigenvalues of the BSE matrix must be real and occur in pairs, i.e., (−ωI , ωI). Thus,

the entire BSE problem in this special case can be interpreted as a real skew-symmetric

eigenvalue problem.

The most computationally demanding step in diagonalization is often the tridiagonaliza-

tion of a symmetric or Hermitian matrix. The algorithm presented here allows for the tridiag-

onalization of a real matrix instead of a Hermitian one, significantly reducing both floating-

point operations and storage requirements. However, not all eigensolver libraries support

a real skew-symmetric solver. For example, the ELPA library provides this functionality in

newer versions, while the Scalapack library does not. Nonetheless, the tridiagonalization

routines for symmetric matrices can be adapted slightly to handle skew-symmetric matrices,

as both largely share the same computational operations. Once the tridiagonal form of the

skew-symmetric matrix is obtained, multiplying the result by −i enables the use of Hermitian
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tridiagonal solvers to compute the eigenvectors of W . Solving the tridiagonal eigenvalue

problem is typically not the main computational bottleneck, as efficient algorithms like the

MRRR method, which scales as O(n2) [24], or the divide-and-conquer approach, which

scales as O(n3) but uses highly optimized General Matrix-Matrix Multiplication (GEMM) op-

erations.

After calculating the eigenvectors, a back-transformation is applied to recover those of

the BSE matrix. Due to the specific structure of the Q matrix in Eq. (B.3), explicit GEMM

operations with it can be avoided, further optimizing the procedure. Furthermore, the left

eigenvectors for positive eigenvalues and the left/right eigenvectors corresponding to their

negative partners can be determined without explicit computation [102]. Consequently, we

only need to compute the right eigenvectors associated with positive eigenvalues. The left

and right eigenvectors of the positive and negative eigenvalues for the BSE matrix are re-

lated as follows [102]:



Right eigenvector for ω Left eigenvector for ωXI

YI

  XI

−YI


Right eigenvector for − ω Left eigenvector for − ωY ∗

I

X∗
I

 −Y ∗
I

X∗
I




(B.7)

where ω > 0.

It is important to emphasize that, in contrast to standard generalized Hermitian eigen-

value solvers, this method reduces floating-point operations for the most computationally

expensive steps. Additionally, using a direct standard generalized Hermitian eigenvalue

solver on the BSE matrix may destroy the special properties of this matrix and potentially

break degeneracies [102], which is undesirable in such calculations. This approach not only

improves efficiency but also ensures robustness against such errors.

We now describe the implementation of the previously discussed algorithm within the

Yambo code. Before delving into the diagonalization procedure, we first address the chal-
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lenges encountered while optimizing the diagonalization routines in Yambo. Despite both the

Yambo code and Scalapack being in existence for over two decades, effectively interfacing

them posed significant challenges due to Yambo’s choice not to adopt the standard block-

cyclic data layout for the BSE matrix. While Scalapack provides data redistribution routines,

they are primarily designed to convert between different block-cyclic layouts, offering limited

flexibility for Yambo’s matrix structure.

A primary reason for Yambo not adopting a block-cyclic layout is the high computational

cost involved in constructing the BSE matrix. The construction of the BSE matrix generally

scales as O(n5), which is substantially more computationally intensive than the diagonal-

ization routines. Each matrix element requires performing a Fast Fourier Transform (FFT)

convolution followed by a GEMM operation, making data distribution a crucial factor for op-

timizing performance. Furthermore, in most instances, the FFT data size fits within CPU

caches, which limits the parallelization of these operations across a large number of CPUs.

Additionally, Yambo must store large wavefunction arrays to compute these matrix elements,

leading to significant memory consumption.

To mitigate these challenges, Yambo leverages symmetries to reduce the number of op-

erations. Most computations are performed within the same MPI rank to avoid redundant

calculations and minimize memory usage as well as communication overhead due to MPI

latency and synchronization. This approach results in significant improvements in computa-

tional efficiency, leading to faster execution times and better scalability. However, this comes

at the cost of not being able to adopt block-cyclic layouts. Consequently, the first step in en-

hancing diagonalization in Yambo is optimizing the data distribution routines, which involve

transforming a matrix arbitrarily distributed across MPI processes into a standard block-

cyclic layout. This transformation allows the use of most standard linear algebra libraries.

In Yambo, the redistribution of data from an arbitrary distribution to a block-cyclic layout

occurs in two main stages. First, the matrix elements are locally grouped along with their

corresponding global indices according to their destination rank. Then, a single AlltoAllv

operation is used to transfer the data to their appropriate destinations according to the block-

cyclic layout.

127



Although this redistribution process may seem memory-intensive, the peak memory foot-

print is relatively small when compared to the memory required for constructing the BSE

matrix. Moreover, the redistribution can be executed in multiple batches to further reduce

peak memory usage, ensuring scalability even for large-scale calculations.

Once the matrix has been appropriately redistributed, standard functions from linear al-

gebra libraries can be used to perform efficient computations. For the TDA case, where the

BSE matrix is Hermitian, standard Hermitian eigensolvers from ELPA or Scalapack are em-

ployed. ELPA offers two types of Hermitian solvers, with type-2 being the default in Yambo.

Users have the option to modify the solver selection via input parameters. In Scalapack, the

p?heevr solver is used. Both solvers allow for the computation of the lowest part of the

spectrum. Additionally, Scalapack provides functionality for extracting eigenvectors within a

specified range of eigenvalues or indices. If eigenvectors for more than 5% of the spectrum

are required, direct diagonalization routines are recommended. For smaller fractions of the

spectrum, iterative solvers, which will be discussed in the next section, are preferred.

For the special case of the BSE matrix, the algorithm described earlier is implemented. A

key difference between ELPA and Scalapack is that ELPA includes a dedicated solver for real

skew-symmetric matrices, whereas Scalapack lacks this feature. As a result, when using

Scalapack, we rely on its Hermitian solver, which generally results in slower diagonalization

compared to ELPA.

With the new implementation of the diagonalization solver, which can be used to obtain

either the full or partial eigenspectrum, we address the long-standing bottleneck associated

with the diagonalization of BSE matrices in the Yambo code.
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Appendix C

Resonant Raman spectra and

averaged electron-hole densities of

the 1s exciton for other possible

stackings of the hBN@WSe2

heterostructure

In this appendix, we present the resonant Raman spectrum and the averaged electron-

hole densities for several heterostructures obtained by laterally shifting the hBN layer in the

structure shown in Fig. 5.1 (the same structure as used in the main text). These calculations

have been performed to demonstrate that the interlayer exciton-phonon coupling mechanism

is insensitive to details of the hybridization (which depend on twist angle and translations).

To reduce computational costs for these test calculations, we used a uniform Γ-centered

k-grid of 6 × 6 × 1 and disabled spin-orbit coupling during the self-consistency cycle to

obtain the ground state density, as well as to compute dynamical matrices and Hartree-

exchange deformation potentials. A denser k-grid of 18 × 18 × 1 was used for the BSE

calculations. Although spin-orbit effects were neglected during the calculation of the static
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dielectric function (where 300 bands were used instead of 600), they were explicitly included

when constructing the BSE kernel and evaluating the electron-phonon matrix elements. All

other parameters are identical to those detailed in the computational methods section. In

figure C.1, we show resonant Raman spectra and averaged electron-hole densities for the 1s

exciton. As seen in the subfigures, the structural details play a negligible role in the resonant

Raman spectrum and the hybridization of the hole density. The interlayer distance was kept

the same in all cases.

Figure C.1: Resonant Raman spectra (left column) and averaged electron-hole densities of
1s exciton(right column) for different heterostructures obtained by laterally shifting the hBN
layer in the structure shown in Fig. 5.1. The grey shading represents the imaginary part of
the 2D polarizability tensor. The coordinates on each sub-figure denote the shift in crystal
units, i.e., (l1, l2, l3) corresponds to a shift of l1a⃗+ l2⃗b + l3c⃗, where a⃗, b⃗, and c⃗ are the lattice
vectors of the heterostructure shown in Fig. 5.1.
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b) (0.0, 0.0, 0.0)

c) (0.0, 0.2, 0.0)

d) (0.0, 0.4, 0.0)
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e) (0.0, 0.6, 0.0)

f) (0.0, 0.8, 0.0)

g) (0.2, 0.0, 0.0)
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h) (0.2, 0.2, 0.0)

i) (0.2, 0.4, 0.0)

j) (0.2, 0.6, 0.0)
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k) (0.2, 0.8, 0.0)

l) (0.4, 0.0, 0.0)

m) (0.4, 0.2, 0.0)
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n) (0.4, 0.4, 0.0)

o) (0.4, 0.6, 0.0)

p) (0.4, 0.8, 0.0)
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q) (0.6, 0.0, 0.0)

r) (0.6, 0.2, 0.0)

s) (0.6, 0.4, 0.0)
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t) (0.6, 0.6, 0.0)

u) (0.6, 0.8, 0.0)

v) (0.8, 0.0, 0.0)
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w) (0.8, 0.2, 0.0)

x) (0.8, 0.4, 0.0)

y) (0.8, 0.6, 0.0)
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Density of states

Since it is computationally very expensive to perform BSE calculations for other stackings,

we examine the atom-projected density of states (DOS) at the valence band edge for dif-

ferent twist angles. As the hole wave function for the 1s state is composed of states near

the valence edge, any presence of hBN states near the valence edge confirms interfacial

hybridization. If the heterostructure contains n1 × n2 × 1 WSe2 unit cells, then we choose

the k-grid as {⌈ 12
n1
⌉ × ⌈ 12

n2
⌉ × 1}.

In Fig. C.2, we show the total density of states and atom-projected density of states

for tungsten and nitrogen atoms near the valence band edge. In all stackings, we observe

robust hybridization between nitrogen pz orbitals and the d orbitals of tungsten atoms. There-

fore, we expect that, for all of these stackings, the interlayer exciton-phonon coupling mech-

anism remains intact.

We would like to emphasize that a relatively coarse grid was used to compute the DOS

due to limitations in computational resources. This leads to some quantitative differences

in the DOS across different structures. These discrepancies arise from the incomplete in-

clusion of same-energy states during the summation in the DOS calculation. For example,

when n1 and n2 are factors of 12, the same states are included in the summation, resulting in

nearly identical DOS for different twist angles, even though the configurations have different

numbers of atoms (see plots (c) and (d) in Fig. C.2).

139



°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

a) Angle = 00

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

b) Angle = 100

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

c) Angle = 200

140



°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

d) Angle = 300

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

e)
Angle = 400

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

f)
Angle = 500

141



°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

g) Angle = 600

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

h)
Angle = 700

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

i) Angle = 800

142



°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

j) Angle = 900

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

k)
Angle = 1000

°0.6 °0.5 °0.4 °0.3 °0.2 °0.1 0.0
Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

D
O

S
/u

.c
(e

V
°

1
)

£ 200

W
N
full

l) Angle = 1100

Figure C.2: Total density of states and atom projected density of states near the valance
band edge for different stacking angles
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