Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software ; ; et al in European Journal of Computational Mechanics (2007), 16(2), 237-258 We explore the tradeoffs of using an internal mesher in a XFEM code. We show that it allows an efficient enrichement detection scheme, while retaining the ability to have welladapted meshes. We provide ... [more ▼] We explore the tradeoffs of using an internal mesher in a XFEM code. We show that it allows an efficient enrichement detection scheme, while retaining the ability to have welladapted meshes. We provide benchmarks highlighting the considerable gains which can be expected from a well designed architecture. The efficiency of the proposed algorithm is shown by solving fracture mechanics problems of densely micro-cracked bodies including adaptive mesh refinement. [less ▲] Detailed reference viewed: 110 (0 UL)Applying dynamic Bayesian networks to perturbed gene expression data ; ; Mizera, Andrzej et al in BMC Bioinformatics (2006), 7 Detailed reference viewed: 78 (6 UL)Regions of stability for limit cycle oscillations in piecewise linear systems Goncalves, Jorge in IEEE Transactions on Automatic Control (2005), 50(11), 1877-1882 Oscillations appear in numerous applications from biology to technology.However, besides local results, rigorous stability and robustness analysis of oscillations are rarely done due to their intrinsic ... [more ▼] Oscillations appear in numerous applications from biology to technology.However, besides local results, rigorous stability and robustness analysis of oscillations are rarely done due to their intrinsic nonlinear behavior. Poincarémaps associated with the system cannot typically be found explicitly and stability is estimated using extensive simulations and experiments. This paper gives conditions in the form of linear matrix inequalities (LMIs) that guarantee asymptotic stability in a reasonably large region around a limit cycle for a class of systems known as piecewise linear systems (PLS). Such conditions, based on recent results on impact maps and surface Lyapunov functions (SuLF), allow a systematic and efficient analysis of oscillations of PLS or arbitrarily close approximations of nonlinear systems by PLS. The methodology applies to any locally stable limit cycle of a PLS, regardless of the dimension and the number of switching surfaces of the system, and is illustrated with a biological application: a fourth-order neural oscillator, also used in many robotics applications such as juggling and locomotion. [less ▲] Detailed reference viewed: 149 (1 UL)Global analysis of piecewise linear systems using impact maps and quadratic surface Lyapunov functions Goncalves, Jorge ; ; in IEEE Transactions on Automatic Control (2003), 48(12), 2089-2106 This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely ... [more ▼] This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely by studying the behavior at switching surfaces associated with PLS. The main idea is to analyze impact maps, i.e., maps from one switching surface to the next switching surface. Such maps are known to be “unfriendly” maps in the sense that they are highly nonlinear, multivalued, and not continuous. We found, however, that an impact map induced by an linear time-invariant flow between two switching surfaces can be represented as a linear transformation analytically parametrized by a scalar function of the state. This representation of impact maps allows the search for surface Lyapunov functions (SuLF) to be done by simply solving a semidefinite program, allowing global asymptotic stability, robustness, and performance of limit cycles and equilibrium points of PLS to be efficiently checked. This new analysis methodology has been applied to relay feedback, on/off and saturation systems, where it has shown to be very successful in globally analyzing a large number of examples. In fact, it is still an open problem whether there exists an example with a globally stable limit cycle or equilibrium point that cannot be successfully analyzed with this new methodology. Examples analyzed include systems of relative degree larger than one and of high dimension, for which no other analysis methodology could be applied. This success in globally analyzing certain classes of PLS has shown the power of this new methodology, and suggests its potential toward the analysis of larger and more complex PLS. [less ▲] Detailed reference viewed: 173 (1 UL)Understanding the differences between how novice and experienced designers approach design tasks ; ; Blessing, Lucienne in Research in Engineering Design (2003), 14(1), 1-11 Research was undertaken to understand how to provide the most appropriate support for novice designers in engineering design. However, how designers apply their experience and knowledge is not understood ... [more ▼] Research was undertaken to understand how to provide the most appropriate support for novice designers in engineering design. However, how designers apply their experience and knowledge is not understood and further research in this area is required. This paper describes an observational study to understand how novice and experienced designers approach design tasks. [less ▲] Detailed reference viewed: 158 (0 UL)L2-gain of double integrators with saturation nonlinearity Goncalves, Jorge in IEEE Transactions on Automatic Control (2002), 47(12), 2063-2068 This note uses quadratic surface Lyapunov functions (SuLFs) to efficiently check if a double integrator in feedback with a saturation nonlinearity has L -gain less than > 0. We show that for many such ... [more ▼] This note uses quadratic surface Lyapunov functions (SuLFs) to efficiently check if a double integrator in feedback with a saturation nonlinearity has L -gain less than > 0. We show that for many such systems, the L -gain is nonconservative in the sense that this is approximately equal to the lower bound obtained by replacing the saturation with a constant gain of 1. These results allow the use of classical analysis tools like -analysis or integral quadratic constraints to analyze systems with double integrators and saturations, including servo systems like some mechanical systems, satellites, hard disks, compact disk players, etc. [less ▲] Detailed reference viewed: 132 (0 UL)The Introduction of a Design Heuristics Extraction Method ; Blessing, Lucienne ; in Advanced Engineering Informatics (2002), 16 Detailed reference viewed: 80 (1 UL)Global stability of relay feedback systems Goncalves, Jorge ; ; in IEEE Transactions on Automatic Control (2001), 46(4), 550--562 For a large class of relay feedback systems (RFS) there will be limit cycle oscillations. Conditions to check existence and local stability of limit cycles for these systems are well known. Global ... [more ▼] For a large class of relay feedback systems (RFS) there will be limit cycle oscillations. Conditions to check existence and local stability of limit cycles for these systems are well known. Global stability conditions, however, are practically nonexistent. This paper presents conditions in the form of linear matrix inequalities (LMIs) that, when satisfied, guarantee global asymptotic stability of limit cycles induced by relays with hysteresis in feedback with linear time-invariant (LTI) stable systems. The analysis consists in finding quadratic surface Lyapunov functions for Poincaré maps associated with RFS. These results are based on the discovery that a typical Poincaré map induced by an LTI flow between two hyperplanes can be represented as a linear transformation analytically parametrized by a scalar function of the state. Moreover, level sets of this function are convex subsets of linear manifolds. The search for quadratic Lyapunov functions on switching surfaces is done by solving a set of LMIs. Although this analysis methodology yields only a sufficient criterion of stability, it has proved very successful in globally analyzing a large number of examples with a unique locally stable symmetric unimodal limit cycle. In fact, it is still an open problem whether there exists an example with a globally stable symmetric unimodal limit cycle that could not be successfully analyzed with this new methodology. Examples analyzed include minimum-phase systems, systems of relative degree larger than one, and of high dimension. Such results lead us to believe that globally stable limit cycles of RFS frequently have quadratic surface Lyapunov functions. [less ▲] Detailed reference viewed: 124 (0 UL)Necessary conditions for robust stability of a class of nonlinear systems Goncalves, Jorge ; in Automatica (1998), 34(6), 705-714 Input-output stability results for feedback systems are developed. Robust stability conditions are presented for nonlinear systems with nonlinear uncertainty defined by some function (with argument equal ... [more ▼] Input-output stability results for feedback systems are developed. Robust stability conditions are presented for nonlinear systems with nonlinear uncertainty defined by some function (with argument equal to the norm of the input) that bounds its output norm. A sufficient small gain theorem for a class of these systems is known. Here, necessary conditions are presented for the vector space (L- infinity ll . ll infinity). These results capture the conservatism of the small gain theorem as it is applied to systems that do not have linear gain. The theory is also developed for the case of L2 signal norms, indicating some difficulties which make this case less natural than L-infinity. [less ▲] Detailed reference viewed: 89 (2 UL)Minimum energy multiple crack propagation Part I: Theory. Sutula, Danas ; Bordas, Stéphane in Engineering Fracture Mechanics (n.d.) The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and ... [more ▼] The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and fracture energies, which stems directly from the Griffith's theory of cracks, is applied to the problem of arbitrary crack growth in 2D. The proposed formulation enables minimisation of the total energy of the mechanical system with respect to the crack extension directions and crack extension lengths to solve for the evolution of the mechanical system over time. The three parts focus, in turn, on (I) the theory of multiple crack growth including competing cracks, (II) the discrete solution by the extended finite element method using the minimum-energy formulation, and (III) the aspects of computer implementation within the Matlab programming language. The key contributions of Part-I of this three-part paper are: (1) formulation of the total energy functional governing multiple crack behaviour, (2) three solution methods to the problem of competing crack growth for different fracture front stabilities (e.g. stable, unstable, or a partially stable configuration of crack tips), and (3) the minimum energy criterion for a set of crack tip extensions is posed as the criterion of vanishing rotational dissipation rates with respect to the rotations of the crack extensions. The formulation lends itself to a straightforward application within a discrete framework for determining the crack extension directions of multiple finite-length crack tip increments, which is tackled in Part-II, using the extended finite element method. In Part-III, we discuss various applications and benchmark problems. The open-source Matlab code, documentation, benchmark/example cases are included as supplementary material. [less ▲] Detailed reference viewed: 3547 (199 UL)A mass conservative Kalman filter algorithm for thermo-computational fluid dynamics ; Baroli, Davide ; et al in Materials (n.d.) Computational fluid-dynamics (CFD) is of wide relevance in engineering and science, due to its capability of simulating the three-dimensional flow at various scales. However, the suitability of a given ... [more ▼] Computational fluid-dynamics (CFD) is of wide relevance in engineering and science, due to its capability of simulating the three-dimensional flow at various scales. However, the suitability of a given model depends on the actual scenarios which are encountered in practice. This challenge of model suitability and calibration could be overcome by a dynamic integration of measured data into the simulation. This paradigm is known as data-driven assimilation (DDA). In this paper, the study is devoted to Kalman filtering, a Bayesian approach, applied to Reynolds-Averaged Navier-Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator into the PISO segregated scheme was recently investigated by (1). In this work, this approach is extended to the PIMPLE segregated method and to the ther- modynamic analysis of turbulent flow, with the addition of a sub-stepping procedure that ensures mass conservation at each time step and the com- patibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporat- ing also temperature observations, comparing the augmented prediction of the Kalman filter with the CFD solution obtained on a very fine grid. [less ▲] Detailed reference viewed: 131 (6 UL)Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Sutula, Danas ; Bordas, Stéphane in Engineering Fracture Mechanics (n.d.) The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and ... [more ▼] The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and fracture energies, which stems directly from the Griffith's theory of cracks, is applied to the problem of arbitrary crack growth in 2D. The proposed formulation enables minimisation of the total energy of the mechanical system with respect to the crack extension directions and crack extension lengths to solve for the evolution of the mechanical system over time. The three parts focus, in turn, on (I) the theory of multiple crack growth including competing cracks, (II) the discrete solution by the extended finite element method using the minimum-energy formulation, and (III) the aspects of computer implementation within the Matlab programming language. The key contributions of Part-III of the three-part paper are as follows: (1) implementation of XFEM in Matlab with emphasis on the design of the code to enable fast and efficient computational times of fracture problems involving multiple cracks and arbitrary crack intersections, (2) verification of the minimum energy criterion and comparison with the maximum tension criterion via multiple benchmark studies, and (3) we propose a numerical improvement to the crack growth direction criterion that gives significant improvements in accuracy and convergence rates of the fracture paths, especially on coarse meshes. The comparisons of the fracture paths obtained by the maximum tension (or maximum hoop-stress) criterion and the energy minimisation approach via a multitude of numerical case studies show that both criteria converge to virtually the same fracture solutions albeit from opposite directions. In other words, it is found that the converged fracture path lies in between those obtained by each criterion on coarser meshes. Thus, a modified crack growth direction criterion is proposed that assumes the average direction of the directions obtained by the maximum tension and the minimum energy criteria. The numerical results show significant improvements in accuracy (especially on coarse discretisations) and convergence rates of the fracture paths. Finally, the open-source Matlab code, documentation, benchmarks and example cases are included as supplementary material. [less ▲] Detailed reference viewed: 1603 (122 UL)Minimum energy multiple crack propagation. Part II: Discrete Solution with XFEM. Sutula, Danas ; Bordas, Stéphane in Engineering Fracture Mechanics (n.d.) The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and ... [more ▼] The three-part paper deals with energy-minimal multiple crack propagation in a linear elastic solid under quasi-static conditions. The principle of minimum total energy, i.e. the sum of the potential and fracture energies, which stems directly from the Griffith's theory of cracks, is applied to the problem of arbitrary crack growth in 2D. The proposed formulation enables minimisation of the total energy of the mechanical system with respect to the crack extension directions and crack extension lengths to solve for the evolution of the mechanical system over time. The three parts focus, in turn, on (I) the theory of multiple crack growth including competing cracks, (II) the discrete solution by the extended finite element method using the minimum-energy formulation, and (III) the aspects of computer implementation within the Matlab programming language. This Part-II of our three-part paper examines three discrete solution methods for solving fracture mechanics problems based on the principle of minimum total energy. The discrete solution approach is chosen based on the stability property of the fracture configuration at hand. The first method is based on external load-control. It is suitable for stable crack growth and stable fracture configurations. The second method is based on fractured area-control. This method is applicable to stable or unstable fracture growth but it is required that the fracture front be stable. The third solution method is based on a gradient-descent approach. This approach can be applied to arbitrary crack growth problems; however, the gradient-descent formulation cannot be guaranteed to yield the optimal solution in the case of competing crack growth and an unstable fracture front configuration. The main focus is on the gradient-descent solution approach within the framework of the extended finite element discretisation. Although a viable solution method is finally proposed for resolving competing crack growth in the case of an unstable fracture front configuration, the method is not implemented within the present XFEM code but rather exists as a separate proof-of-concept algorithm that is tested against several fabricated benchmark problems. The open-source Matlab code, documentation and example cases are included as supplementary material. [less ▲] Detailed reference viewed: 1699 (135 UL)A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture ; ; Bordas, Stéphane et al in International Journal for Numerical Methods in Engineering (n.d.) A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and ... [more ▼] A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and enriched elements in order to achieve higher accuracy, optimal convergence rates and improved conditioning for two and three dimensional crack problems. A bespoke benchmark problem is introduced to determine the method's accuracy in the general 3D case where it is demonstrated that the proposed approach improves the accuracy and reduces the number of iterations required for the iterative solution of the resulting system of equations by 40% for moderately refined meshes and topological enrichment. Moreover, when a fixed enrichment volume is used, the number of iterations required grows at a rate which is reduced by a factor of 2 compared to standard XFEM, diminishing the number of iterations by almost one order of magnitude. [less ▲] Detailed reference viewed: 337 (11 UL)Real-time error controlled adaptive mesh refinement in surgical simulation: Application to needle insertion simulation ; Tomar, Satyendra ; et al in IEEE Transactions on Biomedical Engineering (n.d.) This paper presents the first real-time discretisation-error-driven adaptive finite element approach for corotational elasticity problems involving strain localisation. We propose a hexahedron-based ... [more ▼] This paper presents the first real-time discretisation-error-driven adaptive finite element approach for corotational elasticity problems involving strain localisation. We propose a hexahedron-based finite element method combined with local oct-tree $h$-refinement, driven by a posteriori error estimation, for simulating soft tissue deformation. This enables to control the local error and global error level in the mechanical fields during the simulation. The local error level is used to refine the mesh only where it is needed, while maintaining a coarser mesh elsewhere. We investigate the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. [less ▲] Detailed reference viewed: 664 (63 UL) |
||