Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailAssessing the performance of coordinated predictive control strategies on urban-motorway networks
Rinaldi, Marco UL; Viti, Francesco UL

in IFAC-PapersOnLine (2018, July), 51(9), 285-290

Coordination and integration of different traffic control policies have been of considerable interest in research in the last decades and, recently, have been object of large scale implementation trials ... [more ▼]

Coordination and integration of different traffic control policies have been of considerable interest in research in the last decades and, recently, have been object of large scale implementation trials. In the setting of peri-urban motorway systems, coordination of various kinds of controllers must however be accompanied by accurate prediction of both propagation of flows and queues in the network, as well as the users’ response in terms of route choice. In this paper, we showcase through a real-life case study how coordination and prediction are both essential when performing hybrid urban-motorway control. Simulation results of a Model Predictive Control application are compared to simpler local control approaches, and the impact of coordinated intersection control and, additionally, Ramp Metering is evaluated. [less ▲]

Detailed reference viewed: 78 (1 UL)
Full Text
Peer Reviewed
See detailAssessing the robustness of decentralized gathering: a multi‐agent approach on micro‐biological systems
Proverbio, Daniele UL; Gallo, Luca; Passalacqua, Barbara et al

in Swarm Intelligence (2020), 14

Adopting a multi-agent systems paradigm, we developed, tested and exploited a computational testbed that simulates gathering features of the social amoeba Dictyostelium discoideum. It features a tailored ... [more ▼]

Adopting a multi-agent systems paradigm, we developed, tested and exploited a computational testbed that simulates gathering features of the social amoeba Dictyostelium discoideum. It features a tailored design and implementation to manage discrete simulations with autonomous agents on a microscopic scale, thus focusing on their social behavior and mutual interactions. Hence, we could assess the behavioral conditions under which decentralized gathering could occur. We investigated the dependence of the model dynamics on the main physical variables, namely density and number of amoebas, gaining indications that the process strongly depends on both. This result integrates previous researches, where density is identified as the sole relevant variable. We determined a high-density and high-numerosity region where assuming a scale-free behavior is safe. We also estimated the systematic uncertainties arising from a number of amoebas off the scale-free region, when coping with limited computational resources. Finally, we probed the robustness of the simulated gathering process against both extrinsic and intrinsic noise sources. [less ▲]

Detailed reference viewed: 125 (5 UL)
Full Text
Peer Reviewed
See detailAssessing Two-way and One-way Carsharing: an Agent-Based Simulation Approach
Giorgione, Giulio UL; Bolzani, Luca UL; Viti, Francesco UL

in Transportation Research Procedia (2020), 52

Detailed reference viewed: 44 (2 UL)
Full Text
See detailAssessment of implicit and explicit algorithms in numerical simulation of granular matter
Samiei, Kasra UL

Doctoral thesis (2012)

The objectives of this dissertation are to investigate and demonstrate the potentials of implicit integration methods in predicting the dynamics of granular media and to describe the granular dynamics on ... [more ▼]

The objectives of this dissertation are to investigate and demonstrate the potentials of implicit integration methods in predicting the dynamics of granular media and to describe the granular dynamics on forward and backward acting grates by discrete element method. Traditionally, explicit integration methods are employed within the context of Discrete Element Method. Generally, explicit equations are simpler to solve than the implicit ones but they require a small time step to be utilized. In this study, an implicit Numerov integration scheme is employed to integrate the equations of motion. The implicit method is verified in different test cases starting from simple cases to more complicated cases including hundreds of particles. Comparing the results with the results of the explicit method, it is shown that the implicit method exhibits a distinguished advantage only at very large time steps. Taking into account the overhead of solving non-linear equations at each time step, it is concluded that implicit methods are computationally too expensive for their limited gains. Addressing the second objective of this study, the residence time distribution of granular particles on forward and backward acting grates are numerically predicted. Very good agreement between the predictions and the available experimental results is achieved. It can be concluded that the Discrete Element Method is highly capable of predicting the dynamics of solid fuel particles on grate systems. Future work shall include coupling of the method with computational fluid dynamics in order to account for thermal conversion of the fuel particles. [less ▲]

Detailed reference viewed: 194 (4 UL)
Full Text
Peer Reviewed
See detailAttack-tolerant Control and Observer-based Trajectory Tracking for Cyber-Physical Systems
Bezzaoucha, Souad UL; Voos, Holger UL; Darouach, Mohamed

in European Journal of Control (2018)

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber-Physicals Systems. A common scheme based on observers is designed and a state feedback ... [more ▼]

In the present paper, a model-based fault/attack tolerant scheme is proposed to cope with cyber-threats on Cyber-Physicals Systems. A common scheme based on observers is designed and a state feedback control based on an aperiodic event-triggered framework is given with control synthesis and condition on the switching time. Classical fault tolerant control with Bi-linear Matrix Inequality () approaches are used to achieve novel and better security strategy based on an event-triggered control implementation. The purpose of using the event-based implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. Simulation results on a real-time laboratory three tank system are given to show the attack-tolerant control ability despite data deception attacks on both actuators and sensors. A detection/isolation scheme based on residual observers bank is also proposed. [less ▲]

Detailed reference viewed: 303 (10 UL)
Full Text
Peer Reviewed
See detailAttitude consensus using networks of uncalibrated cameras
Thunberg, Johan UL; Hu, X.

in The proceedings of the 33rd Chinese Control Conference (2014)

This paper addresses the problem of consensus on SO(3) for networks of uncalibrated cameras. Under the assumption of a pinhole camera model, we prove convergence to the consensus manifold for two types of ... [more ▼]

This paper addresses the problem of consensus on SO(3) for networks of uncalibrated cameras. Under the assumption of a pinhole camera model, we prove convergence to the consensus manifold for two types of kinematic control laws, when only conjugate rotation matrices KRK-1 are available among the agents. In these conjugate rotations, the rotation matrices are distorted by the (unknown) intrinsic parameters of the cameras. For the conjugate rotations, we introduce distorted versions of well known local parameterizations of SO(3) and show consensus by using three types of control laws. The control laws are similar to the standard consensus protocol used for systems of agents with single integrator dynamics, where pairwise differences between the states of neighboring agents are used. By considering the restriction to the planar case (when all the rotations have the same rotational axes), we weaken the assumptions on the cameras in the system and consider networks where the camera matrices differ between agents. [less ▲]

Detailed reference viewed: 88 (0 UL)
Full Text
Peer Reviewed
See detailAugmented Reality in Manual Assembly Processes
Kolla, Sri Sudha Vijay Keshav UL; Sanchez, Andre UL; Minoufekr, Meysam UL et al

in Kolla, Sri Sudha Vijay Keshav; Sanchez, Andre; Minoufekr, Meysam (Eds.) et al Augmented Reality in Manual Assembly Processes (2020, September 23)

Augmented Reality (AR) is a novel technology that projects virtual information on the real world environment. With the increased use of Industry 4.0 technologies in manufacturing, AR has gained momentum ... [more ▼]

Augmented Reality (AR) is a novel technology that projects virtual information on the real world environment. With the increased use of Industry 4.0 technologies in manufacturing, AR has gained momentum across various stages of product life cycle. AR can benefit production operators in many manufacturing tasks such as quality inspection, work instructions for manual assembly, maintenance, and in training. This research presents not only a typical architecture of an AR system but also both its software and hardware functions. The architecture is then applied to display virtual assembly instructions in the form of 3D animations on to the real world environment. The chosen assembly task in this research is to assemble a planetary gearbox system. The assembly instructions are displayed on a mobile device targeting a static tracker placed in the assembly environment. [less ▲]

Detailed reference viewed: 74 (9 UL)
Full Text
See detailAutomated optimisation of stem cell-derived neuronal cell culture in three dimensional microfluidic device
Kane, Khalid UL

Doctoral thesis (2019)

This dissertation is a compilation of publications and manuscripts that aim 1) to integrate an automated platform optimised for long term in vitro cell culture maintenance for Parkinson’s disease, long ... [more ▼]

This dissertation is a compilation of publications and manuscripts that aim 1) to integrate an automated platform optimised for long term in vitro cell culture maintenance for Parkinson’s disease, long term live cell imaging and the handling of many cell lines, 2) to combine physics principles with imaging techniques to optimise the seeding of Matrigel embedded human neuroepithelial stem cells into a three-dimensional microfluidic device, and 3) to combine engineering principles with cell biology to optimise the design of a three-dimensional microfluidic system based on phaseguide technology. In the first publication manuscript, we investigated Matrigel as a surrogate extracellular matrix in three-dimensional cell culture systems, including microfluidic cell culture. The study aimed at understanding and characterising the properties of Matrigel. Using classical rheological measurements of Matrigel (viscosity versus shear rate) in combination with fluorescence microscopy and fluorescent beads for particle image velocimetry measurements (velocity profiles), the shear rates experienced by cells in a microfluidic device for three-dimensional cell culture was characterised. We discussed how the result of which helped to mechanically optimise the use of Matrigel in microfluidic systems to minimise the shear stress experienced by cells during seeding in a microchannel. The second manuscript proposes a methodology to passively control the flow of media in a three-dimensional microfluidic channel. We used the fluid dynamic concept of similitude to dynamically replicate cerebral blood flow in a rectangular cross-sectional microchannel. This similarity model of a target cell type and a simple fluid flow mathematical prediction model was used to iterate the most optimum dimensions within some manufacturing constraints to adapt the design of the OrganoPlate, a cell culture plate fully compatible with laboratory automation, which allowed its re-dimension to achieve over 24h of flow for the culture of human neuroepithelial stem cells into midbrain specific dopaminergic neurons. In the third publication manuscript, we propose an automated cell culture platform optimised for long-term maintenance and monitoring of different cells in three-dimensional microfluidic cell culture devices. The system uses Standard in Laboratory Automation or SiLA, an open source standardisation which allows rapid software integration of laboratory automation hardware. The automation platform can be flexibly adapted to various experimental protocols and features time-lapse imaging microscopy for quality control and electrophysiology monitoring to assess cellular activity. It was biologically validated by differentiating Parkinson’s disease patient derived human neuroepithelial stem cells into midbrain specific dopaminergic neurons. This system is the first example of an automated Organ-on-a-Chip culture and has the potential to enable a versatile array of in vitro experiments for patient-specific disease modelling. Finally, the fourth manuscript initiates the assessment of the neuronal activity of induced pluripotent stem cell derived neurons from Parkinson’s Disease patients with LRRK2-G2019S mutations and isogenic controls. A novel image analysis pipeline that combined semi-automated neuronal segmentation and quantification of calcium transient properties was developed and used to analyse neuronal firing activity. It was found that LRRK2-G2019S mutants have shortened inter-spike intervals and an increased rate of spontaneous calcium transient induction than control cell lines. [less ▲]

Detailed reference viewed: 105 (8 UL)
Full Text
Peer Reviewed
See detailAvailability-based dynamic pricing on a round-trip carsharing service: an explorative analysis using agent-based simulation 
Giorgione, Giulio UL; Ciari, Francesco; Viti, Francesco UL

in Transportation Research Procedia (2019)

Carsharing companies aim to customize their service to increase fleet usage and revenues with different pricing schemes and offer types. Dynamic pricing policies can be designed to adjust and balance ... [more ▼]

Carsharing companies aim to customize their service to increase fleet usage and revenues with different pricing schemes and offer types. Dynamic pricing policies can be designed to adjust and balance temporally and spatially cars availability but may pose some question on customers’ fairness. In this paper, we propose an explorative analysis of how an availability-based dynamic pricing scheme impacts the demand and the supply performance. The policy is simulated in MATSim and compared to a fixed pricing policy scheme. This simulation consists of analyzing the behavior of a synthetic population of car-sharing members for Berlin and the surrounding region in which is applied an availability-based dynamic pricing in which price depends on vehicle availability in booking stations. Results show that when the dynamic pricing is applied there is a light decrease in the number of bookings and people with low value of time tend to abandon the carsharing mode in favor of other modes of transportation. [less ▲]

Detailed reference viewed: 105 (13 UL)
Full Text
See detailAWJC Nozzle simulation by 6-way coupling of DEM+CFD+FEM using preCICE coupling library
Adhav, Prasad UL; Besseron, Xavier UL; ROUSSET, Alban et al

Scientific Conference (2021, June 16)

The objective of this work is to study the particle-laden fluid-structure interaction within an Abrasive Water Jet Cutting Nozzle. Such coupling is needed to study the erosion phenomena caused by the ... [more ▼]

The objective of this work is to study the particle-laden fluid-structure interaction within an Abrasive Water Jet Cutting Nozzle. Such coupling is needed to study the erosion phenomena caused by the abrasive particles inside the nozzle. So far, the erosion in the nozzle was predicted only through the number of collisions, using only a simple DEM+CFD[1] coupling. To improve these predictions, we extend our model to a 6-way Eulerian-Lagrangian momentum coupling with DEM+CFD+FEM to account for deformations and vibrations in the nozzle. Our prototype uses the preCICE coupling library[2] to couple 3 numerical solvers: XDEM[3] (for the particle motion), OpenFOAM[4] (for the water jet), and CalculiX[5] (for the nozzle deformation). XDEM handles all the particle motions based on the fluid properties and flow conditions, and it calculates drag terms. In the fluid solver, particles are modeled as drag and are injected in the momentum equation as a source term. CalculiX uses the forces coming from the fluid solver and XDEM as boundary conditions to solve for the displacements. It is also used for computing the vibrations induced by particle impacts. . The preliminary 6-way DEM+CFD+FEM coupled simulation is able to capture the complex particle-laden multiphase fluid-structure interaction inside AWJC Nozzle. The erosion concentration zones are identified and are compared to DEM+CFD coupling[1]. The results obtained are planned to be used for predicting erosion intensity in addition to the concentration zones. In the future, we aim to compare the erosions predictions to experimental data in order to evaluate the suitability of our approach. The FEM module of the coupled simulation captures the vibration frequency induced by particles and compares it with the natural frequency of the nozzle. Thus opening up opportunities for further investigation and improvement of the Nozzle design. [less ▲]

Detailed reference viewed: 32 (0 UL)
Full Text
Peer Reviewed
See detailB-Spline FEM for Time-Harmonic Acoustic Scattering and Propagation
Khajah, Tahsin; Antoine, Xavier; Bordas, Stéphane UL

in Journal of Theoretical and Computational Acoustics (2019), 27

We study the application of a B-splines Finite Element Method (FEM) to time-harmonic scattering acoustic problems. The infinite space is truncated by a fictitious boundary and second-order Absorbing ... [more ▼]

We study the application of a B-splines Finite Element Method (FEM) to time-harmonic scattering acoustic problems. The infinite space is truncated by a fictitious boundary and second-order Absorbing Boundary Conditions (ABCs) are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the numerical method, in particular of the size of the pollution error. Numerical results performed with high-order basis functions (third or fourth order) showed no visible pollution error even for very high frequencies. To prove the ability of the method to increase its accuracy in the high frequency regime, we show how to implement a high-order Padé-type ABC on the fictitious outer boundary. The above-mentioned properties combined with exact geometrical representation make B-Spline FEM a very promising platform to solve high-frequency acoustic problems. [less ▲]

Detailed reference viewed: 57 (1 UL)
Full Text
Peer Reviewed
See detailBalancing Shareability and Positive Interdependence to Support Collaborative Problem-Solving on Interactive Tabletops
Maquil, Valérie; Afkari, Hoorieh; Arend, Béatrice UL et al

in Advances in Human-Computer Interaction (2021)

To support collaboration, researchers from different fields have proposed the design principles of shareability (engaging users in shared interactions around the same content) and positive interdependence ... [more ▼]

To support collaboration, researchers from different fields have proposed the design principles of shareability (engaging users in shared interactions around the same content) and positive interdependence (distributing roles and information to make users dependent on each other). While, on its own, each principle was shown to successfully support collaboration in different contexts, these principles are also partially conflicting, and their combination creates several design challenges. This paper describes how shareability and positive interdependency were jointly implemented in an interactive tabletop-mediated environment called Orbitia, with the aim of inducing collaboration between three adult participants. We present the design details and rationale behind the proposed application. Furthermore, we describe the results of an empirical evaluation focusing on joint problem-solving efficiency, collaboration styles, participation equity, and perceived collaboration effectiveness. [less ▲]

Detailed reference viewed: 53 (6 UL)
Peer Reviewed
See detailBatch control of the master equation: a linear programming approach
Goncalves, Jorge UL; Martins, N.

Scientific Conference (2008)

Detailed reference viewed: 56 (0 UL)
Full Text
Peer Reviewed
See detailA Bayesian framework to identify random parameter fields based on the copula theorem and Gaussian fields: Application to polycrystalline materials
Rappel, Hussein UL; Wu, Ling; Noels, Ludovic et al

in Journal of Applied Mechanics (in press)

For many models of solids, we frequently assume that the material parameters do not vary in space, nor that they vary from one product realization to another. If the length scale of the application ... [more ▼]

For many models of solids, we frequently assume that the material parameters do not vary in space, nor that they vary from one product realization to another. If the length scale of the application approaches the length scale of the micro-structure however, spatially fluctuating parameter fi elds (which vary from one realization of the fi eld to another) can be incorporated to make the model capture the stochasticity of the underlying micro-structure. Randomly fluctuating parameter fields are often described as Gaussian fields. Gaussian fi elds however assume that the probability density function of a material parameter at a given location is a univariate Gaussian distribution. This entails for instance that negative parameter values can be realized, whereas most material parameters have physical bounds (e.g. the Young's modulus cannot be negative). In this contribution, randomly fluctuating parameter fi elds are therefore described using the copula theorem and Gaussian fi elds, which allow di fferent types of univariate marginal distributions to be incorporated, but with the same correlation structure as Gaussian fields. It is convenient to keep the Gaussian correlation structure, as it allows us to draw samples from Gaussian fi elds and transform them into the new random fields. The bene fit of this approach is that any type of univariate marginal distribution can be incorporated. If the selected univariate marginal distribution has bounds, unphysical material parameter values will never be realized. We then use Bayesian inference to identify the distribution parameters (which govern the random fi eld). Bayesian inference regards the parameters that are to be identi fied as random variables and requires a user-defi ned prior distribution of the parameters to which the observations are inferred. For the homogenized Young's modulus of a columnar polycrystalline material of interest in this study, the results show that with a relatively wide prior (i.e. a prior distribution without strong assumptions), a single specimen is su ciffient to accurately recover the distribution parameter values. [less ▲]

Detailed reference viewed: 137 (8 UL)
Full Text
See detailBayesian inference for the stochastic identification of elastoplastic material parameters: Introduction, misconceptions and insights
Rappel, Hussein UL; Beex, Lars UL; Hale, Jack UL et al

E-print/Working paper (n.d.)

We discuss Bayesian inference (BI) for the probabilistic identification of material parameters. This contribution aims to shed light on the use of BI for the identification of elastoplastic material ... [more ▼]

We discuss Bayesian inference (BI) for the probabilistic identification of material parameters. This contribution aims to shed light on the use of BI for the identification of elastoplastic material parameters. For this purpose a single spring is considered, for which the stress-strain curves are artificially created. Besides offering a didactic introduction to BI, this paper proposes an approach to incorporate statistical errors both in the measured stresses, and in the measured strains. It is assumed that the uncertainty is only due to measurement errors and the material is homogeneous. Furthermore, a number of possible misconceptions on BI are highlighted based on the purely elastic case. [less ▲]

Detailed reference viewed: 362 (104 UL)
Full Text
Peer Reviewed
See detailBayesian inference to identify parameters in viscoelasticity
Rappel, Hussein UL; Beex, Lars UL; Bordas, Stéphane UL

in Mechanics of Time-Dependent Materials (2017)

This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii ... [more ▼]

This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii) to show that this influence decreases for an increasing number of measurements and (iii) to show how different types of experiments influence the identified parameters and their uncertainties. The standard linear solid model is the material description of interest and a relaxation test, a constant strain-rate test and a creep test are the tensile experiments focused on. The experimental data are artificially created, allowing us to make a one-to-one comparison between the input parameters and the identified parameter values. Besides dealing with the aforementioned issues, we believe that this contribution forms a comprehensible start for those interested in applying BI in viscoelasticity. [less ▲]

Detailed reference viewed: 503 (171 UL)