![]() ![]() ; ; et al Scientific Conference (2011) Detailed reference viewed: 119 (0 UL)![]() Médard de Chardon, Cyrille ![]() Doctoral thesis (2016) This thesis evaluates the performance of bicycle sharing systems (BSS), autonomous systems of accessible bicycles that can be easily used for one way trips, and determines whether they are successful at ... [more ▼] This thesis evaluates the performance of bicycle sharing systems (BSS), autonomous systems of accessible bicycles that can be easily used for one way trips, and determines whether they are successful at achieving promoted social and environmental outcomes through quantitative and qualitative methods. Such systems are typically surrounded by positive narratives of success, health, environmental and social benefits. This work challenges these notions. This thesis begins with the formalisation of BSS station level and trip data revealing alternative data contained within. Combined with spatiotemporal data analysis, this allows the estimation of trips, a potential measure of success. Due to most operators not providing consistent or comparable metrics of usage this work opens this heavily promoted technological transport innovation’s performance for public scrutiny. Performance estimates of 75 case studies show a majority having less than two trips per day per bicycle, suggesting a poor investment, regardless of existing social justice issues and exaggerated environmental benefits. Using this metric this work determines which attributes impact performance. While station density and cycling infrastructure, among others, are found to impact performance, results challenge promoted practice. Formalisation yielded rebalancing, the moving of bicycles to adjust to demand exceeding supply. Spatiotemporal data analysis and interviews with operators provides the first description of applied rebalancing, providing an alternative perspective to the many theoretical optimisation models. Results show rebalancing is spatially selective and influencing BSS outcomes, potentially contrary to its purpose. Finally, this thesis, through a critical urban sustainability perspective, presents darker aspects of BSS, beyond the golden narratives, showing conflicts of interest, controversy and the commercialisation of an initially environmental and anti-consumerism concept. Existential questions are raised due to BSS, mostly privately operated, providing benefits to an already advantaged class while public space is privatised and urban advertising increased. This work concludes by suggesting that alternative investment to bicycle sharing systems, such as cycling infrastructure, may be more beneficial and just. [less ▲] Detailed reference viewed: 512 (26 UL)![]() Caruso, Geoffrey ![]() Presentation (2009) Detailed reference viewed: 70 (0 UL)![]() ; Bordas, Stéphane ![]() Scientific Conference (2019) Detailed reference viewed: 146 (15 UL)![]() ; ; Bordas, Stéphane ![]() in Engineering Fracture Mechanics (2008), 75(16), 4740-4758 A three-dimensional meshfree method for modeling arbitrary crack initiation and crack growth in reinforced concrete structure is presented. This meshfree method is based on a partition of unity concept ... [more ▼] A three-dimensional meshfree method for modeling arbitrary crack initiation and crack growth in reinforced concrete structure is presented. This meshfree method is based on a partition of unity concept and formulated for geometrically non-linear problems. The crack kinematics are obtained by enriching the solution space in order to capture the correct crack kinematics. A cohesive zone model is used after crack initiation. The reinforcement modeled by truss or beam elements is connected by a bond model to the concrete. We applied the method to model the fracture of several reinforced concrete structures and compared the results to experimental data. [less ▲] Detailed reference viewed: 111 (0 UL)![]() Shang, Lan ![]() ![]() in Acta Mechanica (2021), 232(12), 4847-4866 An electromechanical model for beam-like piezoelectric energy harvesters based on Reissner’s beam theory is developed in this paper. The proposed model captures first-order shear deformation and large ... [more ▼] An electromechanical model for beam-like piezoelectric energy harvesters based on Reissner’s beam theory is developed in this paper. The proposed model captures first-order shear deformation and large displacement/rotation, which distinguishes this model from other models reported in the literature. All governing equations are presented in detail, making the associated framework extensible to investigate various piezoelectric energy harvesters. The weak formulation is then derived to obtain the approximate solution to the governing equations by the finite element method. This solution scheme is completely coupled, and thus allows for two-way interaction between mechanical and electrical fields. To validate this model, extensive numerical examples are implemented in the linear and nonlinear regime. In the linear limit, this model produces results in excellent agreement with reference data. In the nonlinear regime, the large amplitude response of the piezoelectric beam induced by strong base excitation or fluid flow is considered, and the comparison of results with literature data is encouraging. The ability of this nonlinear model to predict limit cycle oscillations in axial flow is demonstrated. [less ▲] Detailed reference viewed: 25 (1 UL)![]() ; ; Bordas, Stéphane ![]() in Proceedings of the 11th World Congress in Computational Mechanics (2014, July) We propose a discretization scheme where the spline spaces used for the geometry and the field variables can be chosen independently in spline-based FEM. he method is thus applicable to arbitrary domains ... [more ▼] We propose a discretization scheme where the spline spaces used for the geometry and the field variables can be chosen independently in spline-based FEM. he method is thus applicable to arbitrary domains with spline representation. (2) It is possible to flexibly choose between different spline spaces with different properties to better represent the solution of the PDE, e.g. the continuity of the solution field. (3) Refinement operations by knot insertion and degree elevation are performed directly on the spline space of the solution field, independently of the spline space of the geometry of the domain, i.e. the parameterization of the given geometry is not altered during the refinement process. Hence, the initial design can be optimized in the subsequent shape optimization stage without constraining the geometry discretization space to conform to the field approximation space. [less ▲] Detailed reference viewed: 616 (15 UL)![]() ; ; et al in Computer Methods in Applied Mechanics and Engineering (2014) In isogeometric analysis (IGA), the same spline representation is employed for both the geometry of the domain and approximation of the unknown fields over this domain. This identity of the geometry and ... [more ▼] In isogeometric analysis (IGA), the same spline representation is employed for both the geometry of the domain and approximation of the unknown fields over this domain. This identity of the geometry and field approximation spaces was put forward in the now classic 2005 paper [20] as a key advantage on the way to the integration of Computer Aided Design (CAD) and subsequent analysis in Computer Aided Engineering (CAE). [20] claims indeed that any change to the geometry of the domain is automatically inherited by the approximation of the field variables, without requiring the regeneration of the mesh at each change of the domain geometry. Yet, in Finite Element versions of IGA, a parameterization of the interior of the domain must still be constructed, since CAD only provides information about the boundary. The identity of the boundary and field representation decreases the flexibility in which this parameterization can be generated and somewhat constrains the modeling and simulation process, because an approximation able to represent the domain geometry accurately need not be adequate to also approximate the field variables accurately, in particular when the solution is not smooth. We propose here a new paradigm called Geometry-Independent Field approximaTion (GIFT) where the spline spaces used for the geometry and the field variables can be chosen and adapted independently while preserving geometric exactness and tight CAD integration. GIFT has the following features: (1) It is possible to flexibly choose between different spline spaces with different properties to better represent the solution of the problem, e.g. the continuity of the solution field, boundary layers, singularities, whilst retaining geometrical exactness of the domain boundary. (2) For multi-patch analysis, where the domain is composed of several spline patches, the continuity condition between neighboring patches on the solution field can be automatically guaranteed without additional constraints in the variational form. (3) Refinement operations by knot insertion and degree elevation are performed directly on the spline space of the solution field, independently of the spline space of the geometry of the domain, which makes the method versatile. GIFT with PHT-spline solution spaces and NURBS geometries is used to show the effectiveness of the proposed approach. Keywords : Super-parametric methods, Isogeometric analysis (IGA), Geometry-independent Spline Space, PHT-splines, local refinement, adaptivity [less ▲] Detailed reference viewed: 1153 (30 UL)![]() Stossel, Christian ![]() Doctoral thesis (2012) Detailed reference viewed: 120 (1 UL)![]() Kratochvil, Miroslav ![]() ![]() in GigaScience (2020), 9(11), Background: The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow the easy generation of data ... [more ▼] Background: The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow the easy generation of data with hundreds of millions of single-cell data points with >40 parameters, originating from thousands of individual samples. The analysis of that amount of high-dimensional data becomes demanding in both hardware and software of high-performance computational resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena. Results: We present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality reduction for flow and mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming language Julia makes it accessible to the scientific community and allows for efficient handling and processing of datasets with billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study. Conclusions: GigaSOM.jl facilitates the use of commonly available high-performance computing resources to process the largest available datasets within minutes, while producing results of the same quality as the current state-of-art software. Measurements indicate that the performance scales to much larger datasets. The example use on the data from a massive mouse phenotyping effort confirms the applicability of GigaSOM.jl to huge-scale studies. [less ▲] Detailed reference viewed: 94 (8 UL)![]() Goncalves, Jorge ![]() in IEEE Transactions on Automatic Control (2003), 48(12), 2089-2106 This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely ... [more ▼] This paper presents an entirely new constructive global analysis methodology for a class of hybrid systems known as piecewise linear systems (PLS). This methodology infers global properties of PLS solely by studying the behavior at switching surfaces associated with PLS. The main idea is to analyze impact maps, i.e., maps from one switching surface to the next switching surface. Such maps are known to be “unfriendly” maps in the sense that they are highly nonlinear, multivalued, and not continuous. We found, however, that an impact map induced by an linear time-invariant flow between two switching surfaces can be represented as a linear transformation analytically parametrized by a scalar function of the state. This representation of impact maps allows the search for surface Lyapunov functions (SuLF) to be done by simply solving a semidefinite program, allowing global asymptotic stability, robustness, and performance of limit cycles and equilibrium points of PLS to be efficiently checked. This new analysis methodology has been applied to relay feedback, on/off and saturation systems, where it has shown to be very successful in globally analyzing a large number of examples. In fact, it is still an open problem whether there exists an example with a globally stable limit cycle or equilibrium point that cannot be successfully analyzed with this new methodology. Examples analyzed include systems of relative degree larger than one and of high dimension, for which no other analysis methodology could be applied. This success in globally analyzing certain classes of PLS has shown the power of this new methodology, and suggests its potential toward the analysis of larger and more complex PLS. [less ▲] Detailed reference viewed: 178 (1 UL)![]() Goncalves, Jorge ![]() in Proceedings of the European Control Conference (ECC) 2001 (2001) In this paper we develop an entirely new constructive global analysis methodology for a class of hybrid systems known as Piecewise Linear Systems (PLS). This methodology consists in inferring global ... [more ▼] In this paper we develop an entirely new constructive global analysis methodology for a class of hybrid systems known as Piecewise Linear Systems (PLS). This methodology consists in inferring global properties of PLS solely by studying their behavior at switching surfaces associated with PLS. The main idea is to analyze impact maps, i.e., maps from one switching surface to the next switching surface, by constructing quadratic Lyapunov functions on switching surfaces. We found that an impact map induced by an LTI flow between two switching surfaces can be represented as a linear transformation analytically parameterized by a scalar function of the state. This representation of impact maps allows the search for quadratic surface Lyapunov functions to be done by simply solving a set of LMIs. Global asymptotic stability, robustness, and performance of limit cycles and equilibrium points of PLS can this way be efficiently checked. These new results were successfully applied to certain classes of PLS. Although this analysis methodology yields only sufficient criteria of stability, it has shown to be very successful in globally analyzing a large number of examples with a locally stable limit cycle or equilibrium point. In fact, it is still an open problem whether there exists an example with a globally stable limit cycle or equilibrium point that cannot be successfully analyzed with this new methodology. Examples analyzed include systems of relative degree larger than one and of high dimension, for which no other analysis methodology could be applied. [less ▲] Detailed reference viewed: 108 (0 UL)![]() Goncalves, Jorge ![]() in Proceedings of the 15th IFAC World Congress (2003) This paper explores a new methodology based on quadratic surface Lyapunov functions to globally analyze oscillations with sliding modes in relay feedback systems (RFS). The method consists in efficiently ... [more ▼] This paper explores a new methodology based on quadratic surface Lyapunov functions to globally analyze oscillations with sliding modes in relay feedback systems (RFS). The method consists in efficiently construct quadratic Lyapunov functions on switching surfaces that can be used to show that impact maps, i.e., maps from one switch to the next, are contracting. This, in turn, shows that the system is globally stable. Several classes of piecewise linear systems (PLS) were previously successfully analyzed with this methodology. In this paper, we consider PLS whose trajectories switch between subsystems of different dimensions. We present and discuss distinct relaxations leading to sufficient conditions of different conservatism and computationally complexity. The results in this paper open the door to the analysis of other, more complex classes of PLS. [less ▲] Detailed reference viewed: 114 (0 UL)![]() ; ; Goncalves, Jorge ![]() in Proceedings of the 17th IFAC World Congress (2008) Conditions in the form of linear matrix inequalities (LMIs) are used in this paper to guarantee the global asymptotic stability of a limit cycle oscillation for a class of piecewise linear (PWL) systems ... [more ▼] Conditions in the form of linear matrix inequalities (LMIs) are used in this paper to guarantee the global asymptotic stability of a limit cycle oscillation for a class of piecewise linear (PWL) systems defined as the feedback interconnection of a saturation controller with a single input, single output (SISO) linear time-invariant (LTI) system. The proposed methodology extends previous results on impact maps and surface Lyapunov functions to the case when the sets of expected switching times are arbitrarily large. The results are illustrated on a PWL version of the Goodwin oscillator. [less ▲] Detailed reference viewed: 246 (0 UL)![]() ; Bordas, Stéphane ![]() Report (2013) Detailed reference viewed: 168 (3 UL)![]() ; Bordas, Stéphane ![]() Presentation (2014, July 24) Detailed reference viewed: 231 (12 UL)![]() Bordas, Stéphane ![]() Scientific Conference (2014, April 02) We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic solid based on the principle of minimum potential elastic energy in the framework of the extended ... [more ▼] We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic solid based on the principle of minimum potential elastic energy in the framework of the extended finite element method. The technique enables a minimization of the potential energy with respect to all crack increment directions. Results show that the maximum hoop stress criterion and the energy minimization approach converge to the same fracture path. It is found that the converged solution lies in between the fracture paths obtained by each criterion for coarser meshes. This presents an opportunity to estimate an upper and lower bound of the true fracture path as well as an error on the crack path [less ▲] Detailed reference viewed: 335 (15 UL)![]() ; Bordas, Stéphane ![]() Report (2013) Detailed reference viewed: 241 (5 UL)![]() Rinaldi, Marco ![]() ![]() in Transportation Research Procedia (2017) Developing traffic control strategies taking explicitly into account the route choice behavior of users has been widely recognized irregularities in the solution space shape, such as non-convexity and non ... [more ▼] Developing traffic control strategies taking explicitly into account the route choice behavior of users has been widely recognized irregularities in the solution space shape, such as non-convexity and non-smoothness. In this work, we propose an extended as a very challenging problem. Furthermore, the inclusion of user behavior in optimization based control schemes introduces strong decomposition scheme for the anticipatory traffic control problem, based upon our previous contributions, which aims at i) reducing irregularities in the solution space shape, such as non-convexity and non-smoothness. In this work, we propose an extended the computational complexity of the problem by approaching it in a controller-by-controller fashion, and ii) internalizing specific decomposition scheme for the anticipatory traffic control problem, based upon our previous contributions, which aims at i) reducing constraints in the objective function, guiding the optimization process away from non-significant minima, such as flat regions. the computational complexity of the problem by approaching it in a controller-by-controller fashion, and ii) internalizing specific Through two small scale test networks and different, randomly chosen initial points, we compare how the proposed extension constraints in the objective function, guiding the optimization process away from non-significant minima, such as flat regions. influences optimization results with respect to our previously developed decomposed approach, as well as centralized schemes. Through two small scale test networks and different, randomly chosen initial points, we compare how the proposed extension influences optimization results with respect to our previously developed decomposed approach, as well as centralized schemes. [less ▲] Detailed reference viewed: 77 (2 UL)![]() Goncalves, Jorge ![]() in Proceedings of the 39th IEEE Conference on Decision and Control (2000) This paper considers quadratic surface Lyapunov functions in the study of global stability analysis of on/off systems (OFS), including those OFS with unstable nonlinearity sectors. In previous work ... [more ▼] This paper considers quadratic surface Lyapunov functions in the study of global stability analysis of on/off systems (OFS), including those OFS with unstable nonlinearity sectors. In previous work, quadratic surface Lyapunov functions were successfully applied to prove global asymptotic stability of limit cycles of relay feedback systems. In this work, we show that these ideas can be used to prove global asymptotic stability of equilibrium points of piecewise linear systems (PLS). We present conditions in the form of LMI that, when satisfied, guarantee global asymptotic stability of an equilibrium point. A large number of examples was successfully proven globally stable. These include systems with an unstable affine linear subsystem, systems of relative degree larger than one and of high dimension, and systems with unstable nonlinearity sectors, for which all classical fail to analyze. In fact, existence of an example with a globally stable equilibrium point that could not be successfully analyzed with this new methodology is still an open problem. This work opens the door to the possibility that more general PLS can be systematically globally analyzed using quadratic surface Lyapunov functions. [less ▲] Detailed reference viewed: 128 (1 UL) |
||