Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailExtended Finite Element Method
Fries, T.-P.; Zilian, Andreas UL; Moës, N.

in International Journal for Numerical Methods in Engineering (2011), 86(4-5), 403

[No abstract available]

Detailed reference viewed: 113 (3 UL)
Full Text
Peer Reviewed
See detailExtended finite element method for dynamic fracture of piezo-electric materials
Nguyen-Vinh, H.; Bakar, I.; Msekh, M. A. et al

in Engineering Fracture Mechanics (2012), 92

We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and ... [more ▼]

We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. [less ▲]

Detailed reference viewed: 81 (0 UL)
Full Text
Peer Reviewed
See detailExtended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
Chen, L.; Rabczuk, T.; Bordas, Stéphane UL et al

in Computer Methods in Applied Mechanics & Engineering (2012), 209-212

This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting "edge-based" smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic ... [more ▼]

This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting "edge-based" smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, "super-convergence" and "ultra-accurate" solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction. [less ▲]

Detailed reference viewed: 95 (1 UL)
Full Text
Peer Reviewed
See detailExtended Finite Element Method with Global Enrichment
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane UL et al

Scientific Conference (2015, July)

A variant of the extended finite element method is presented which facilitates the use of enriched elements in a fixed volume around the crack front (geometrical enrichment) in 3D fracture problems. The ... [more ▼]

A variant of the extended finite element method is presented which facilitates the use of enriched elements in a fixed volume around the crack front (geometrical enrichment) in 3D fracture problems. The major problem associated with geometrical enrichment is that it significantly deteriorates the conditioning of the resulting system matrices, thus increasing solution times and in some cases making the systems unsolvable. For 2D problems this can be dealt with by employing degree of freedom gathering [1] which essentially inhibits spatial variation of enrichment function weights. However, for the general 3D problem such an approach is not possible since spatial variation of the enrichment function weights in the direction of the crack front is necessary in order to reproduce the variation of solution variables, such as the stress intensity factors, along the crack front. The proposed method solves the above problem by employing a superimposed mesh of special elements which serve as a means to provide variation of the enrichment function weights along the crack front while still not allowing variation in any other direction. The method is combined with special element partitioning algorithms [2] and numerical integration schemes [3] as well as techniques for the elimination of blending errors between the standard and enriched part of the approximation in order to further improve the accuracy of the produced results. Additionally, a novel benchmark problem is introduced which enables the computation of displacement and energy error norms as well as errors in the stress intensity factors for the general 3D case. Through this benchmark problem it is shown that the proposed method provides optimal convergence rates, improved accuracy and reduced computational cost compared to standard XFEM. [less ▲]

Detailed reference viewed: 619 (10 UL)
Full Text
Peer Reviewed
See detailExtended space-time finite elements for landslide dynamics
Pasenow, F.; Zilian, Andreas UL; Dinkler, D.

in International Journal for Numerical Methods in Engineering (2013), 93(3), 329-354

The paper introduces a methodology for numerical simulation of landslides experiencing considerable deformations and topological changes. Within an interface capturing approach, all interfaces are ... [more ▼]

The paper introduces a methodology for numerical simulation of landslides experiencing considerable deformations and topological changes. Within an interface capturing approach, all interfaces are implicitly described by specifically defined level-set functions allowing arbitrarily evolving complex topologies. The transient interface evolution is obtained by solving the level-set equation driven by the physical velocity field for all three level-set functions in a block Jacobi approach. The three boundary-coupled fluid-like continua involved are modeled as incompressible, governed by a generalized non-Newtonian material law taking into account capillary pressure at moving fluid-fluid interfaces. The weighted residual formulation of the level-set equations and the fluid equations is discretized with finite elements in space and time using velocity and pressure as unknown variables. Non-smooth solution characteristics are represented by enriched approximations to fluid velocity (weak discontinuity) and fluid pressure (strong discontinuity). Special attention is given to the construction of enriched approximations for elements containing evolving triple junctions. Numerical examples of three-fluid tank sloshing and air-water-liquefied soil landslides demonstrate the potential and applicability of the method in geotechnical investigations. © 2012 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 145 (2 UL)
Full Text
See detaileXtended Variational Quasicontinuum Methodology for Modelling of Crack Propagation in Discrete Lattice Systems
Rokos, Ondrej; Peerlings, Ron; Zeman, Jan et al

Scientific Conference (2017, July 17)

Detailed reference viewed: 34 (0 UL)
Full Text
See detailExtension of 2D FEniCS implementation of Cosserat non-local elasticity to the 3D case
Sautot, Camille; Bordas, Stéphane UL; Hale, Jack UL

Report (2014)

The objective of the study is the extension of the existing 2D FEniCS implementation of Cosserat elasticity to the 3D case. The first step is the implementation of a patch-test for a simple problem in ... [more ▼]

The objective of the study is the extension of the existing 2D FEniCS implementation of Cosserat elasticity to the 3D case. The first step is the implementation of a patch-test for a simple problem in classical elasticity as a Timoshenko's beam - this study will show that DOLFIN could offer approximated solutions converging to the analytical solution. The second step is the computation of the stress in a plate with a circular hole. The stress concentration factors around the hole in classical and Cosserat elasticities will be compared, and a convergence study for the Cosserat case will be realised. The third step is the extension to the 3D case with the computation of the stress concentration factor around a spherical cavity in an infinite elastic medium. This computed value will be compare to the analytical solution described by couple-stress theory. [less ▲]

Detailed reference viewed: 229 (7 UL)
Full Text
See detailExtracting the spatio-temporal variations in the gravity field recovered from GRACE spatial mission: methods and geophysical applications
Prevost, Paoline Fleur UL

Doctoral thesis (2019)

Measurements of the spatio-temporal variations of Earth’s gravity field recovered from the Gravity Recovery and Climate Experiment (GRACE) mission have led to unprecedented insights into large spatial ... [more ▼]

Measurements of the spatio-temporal variations of Earth’s gravity field recovered from the Gravity Recovery and Climate Experiment (GRACE) mission have led to unprecedented insights into large spatial mass redistribution at secular, seasonal, and sub-seasonal time scales. GRACE solutions from various processing centers, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial and temporal patterns in the latter. In order to dampen the noise and enhance the geophysical signals in the GRACE data, several methods have been proposed. Among these, methods based on filtering techniques require a priori assumptions regarding the spatio-temporal structure of the errors. Despite the large effort to improve the quality of GRACE data for always finer geophysical applications, removing noise remains a problematic question as discussed in Chapter 1. In this thesis, we explore an alternative approach, using a spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA) described in Chapter 2. M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability. We perform an M-SSA simultaneously on 13 years of GRACE spherical harmonics solutions from five different processing centers. We show that the method allows for the extraction of common modes of variability between solutions, and removal of the solution-specific spatio-temporal errors arising from each processing strategies. In particular, the method filters out efficiently the spurious North-South stripes, most likely caused by aliasing of the imperfect geophysical correction models of known phenomena. In Chapter 3, we compare our GRACE solution to other spherical harmonics solutions and to mass concentration (mascon) solutions which use a priori information on the spatio-temporal pattern of geophysical signals. We also compare performance of our M-SSA GRACE solution with respect to others by predicting surface displacements induced by GRACE-derived mass loading and comparing results with independent displacement data from stations of the Global Navigation Satellite System (GNSS). Finally, in Chapter 4 we discuss the possible application of a refined GRACE solution to answer debated post-glacial rebound questions. More precisely, we focus on separating the post-glacial rebound signal related to past ice melting and the present ice melting in the region of South Georgia. [less ▲]

Detailed reference viewed: 78 (3 UL)
Full Text
Peer Reviewed
See detailFast Stochastic Non-linear Model Predictive Control for Electric Vehicle Advanced Driver Assistance Systems
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in 13th IEEE International Conference on Vehicular Electronics and Safety, Vienna, Austria 27-28 June 2017 (2017, June 27)

Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ... [more ▼]

Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ecologically advanced driver assistance system to extend the functionality of the adaptive cruise control system. A real-time stochastic non-linear model predictive controller with probabilistic constraints is presented to compute on-line the safe and energy-efficient cruising velocity profile. The individual chance-constraint is reformulated into a convex second-order cone constraint which is robust for a general class of probability distributions. Finally, the performance of proposed approach in terms of states regulation, constraints fulfilment, and energy efficiency is evaluated on a battery electric vehicle. [less ▲]

Detailed reference viewed: 172 (9 UL)
Full Text
Peer Reviewed
See detailA fast, certified and "tuning free" two-field reduced basis method for the metamodelling of affinely-parametrised elasticity problems
Hoang, K. C.; Kerfriden, P.; Bordas, Stéphane UL

in Computer Methods in Applied Mechanics & Engineering (2016), 298

This paper proposes a new reduced basis algorithm for the metamodelling of parametrised elliptic problems. The developments rely on the Constitutive Relation Error (CRE), and the construction of separate ... [more ▼]

This paper proposes a new reduced basis algorithm for the metamodelling of parametrised elliptic problems. The developments rely on the Constitutive Relation Error (CRE), and the construction of separate reduced order models for the primal variable (displacement) and flux (stress) fields. A two field greedy sampling strategy is proposed to construct these two fields simultaneously and in an efficient manner: at each iteration, one of the two fields is enriched by increasing the dimension of its reduced space in such a way that the CRE is minimised. This sampling strategy is then used as a basis to construct goal-oriented reduced order modelling. The resulting algorithm is certified and “tuning free”: the only requirement from the engineer is the level of accuracy that is desired for each of the outputs of the surrogate. It is also shown to be significantly more efficient in terms of computational expense than competing methodologies. [less ▲]

Detailed reference viewed: 127 (17 UL)
Full Text
Peer Reviewed
See detailA fast, certified and "tuning-free" two-field reduced basis method for the metamodelling of parametrised elasticity problems
Hoang, Khac Chi; Kerfriden, Pierre; Bordas, Stéphane UL

in Computer Methods in Applied Mechanics & Engineering (2015)

This paper proposes a new reduced basis algorithm for the metamodelling of parametrised elliptic problems. The developments rely on the Constitutive Relation Error (CRE), and the construction of separate ... [more ▼]

This paper proposes a new reduced basis algorithm for the metamodelling of parametrised elliptic problems. The developments rely on the Constitutive Relation Error (CRE), and the construction of separate reduced order models for the primal variable (displacement) and flux (stress) fields. A two-field Greedy sampling strategy is proposed to construct these two fields simultaneously and efficient manner: at each iteration, one of the two fields is enriched by increasing the dimension of its reduced space in such a way that the CRE is minimised. This sampling strategy is then used as a basis to construct goal-oriented reduced order modelling. The resulting algorithm is certified and "tuning-free": the only requirement from the engineer is the level of accuracy that is desired for each of the outputs of the surrogate. It is also one order of magnitude more efficient in terms of computational expenses than competing methodologies. [less ▲]

Detailed reference viewed: 371 (11 UL)
Full Text
Peer Reviewed
See detailFastMotif: Spectral Sequence Motif Discovery
Colombo, Nicolo UL; Vlassis, Nikos UL

in Bioinformatics (2015)

Motivation: Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms ... [more ▼]

Motivation: Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms are computationally demanding, and they may not be able to support the increasingly large datasets produced by modern high-throughput sequencing technologies. Results: We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments. Based on spectral decompositions, our method is robust to model misspecifications and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. On HT-Selex data, FastMotif extracts motif profiles that match those computed by various state-of- the-art algorithms, but one order of magnitude faster. We provide a theoretical and numerical analysis of the algorithm’s robustness and discuss its sensitivity with respect to the free parameters. [less ▲]

Detailed reference viewed: 131 (9 UL)
Full Text
Peer Reviewed
See detailFinding surface Lyapunov functions through sum-of-squares Programming
Spanos, D.; Goncalves, Jorge UL

in Proceedings of the American Control Conference 2004 (2004)

This work presents a sum-of-squares method to construct polynomial surface Lyapunov functions (SuLF) of arbitrary order for the impact maps of limit cycles in piecewise linear systems (PLS). This work ... [more ▼]

This work presents a sum-of-squares method to construct polynomial surface Lyapunov functions (SuLF) of arbitrary order for the impact maps of limit cycles in piecewise linear systems (PLS). This work extends previous results on stability analysis of such limit cycles, which utilized quadratic SuLFs. This paper also discusses an initial study of hierarchical jump linear systems where the switching is driven by feedback of low-level dynamical system states and a Markovian process. [less ▲]

Detailed reference viewed: 76 (0 UL)
Full Text
Peer Reviewed
See detailFinite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts
Lengiewicz, Jakub UL; de Souza, Mariana; Lahmar, Mohamed A. et al

in Journal of the Mechanics and Physics of Solids (2020), 143

Solid contacts involving soft materials are important in mechanical engineering or biomechanics. Experimentally, such contacts have been shown to shrink significantly under shear, an effect which is ... [more ▼]

Solid contacts involving soft materials are important in mechanical engineering or biomechanics. Experimentally, such contacts have been shown to shrink significantly under shear, an effect which is usually explained using adhesion models. Here we show that quantitative agreement with recent high-load experiments can be obtained, with no adjustable parameter, using a non-adhesive model, provided that finite deformations are taken into account. Analysis of the model uncovers the basic mechanisms underlying anisotropic shear-induced area reduction, local contact lifting being the dominant one. We confirm experimentally the relevance of all those mechanisms, by tracking the shear-induced evolution of tracers inserted close to the surface of a smooth elastomer sphere in contact with a smooth glass plate. Our results suggest that finite deformations are an alternative to adhesion, when interpreting a variety of sheared contact experiments involving soft materials. [less ▲]

Detailed reference viewed: 78 (8 UL)
Full Text
Peer Reviewed
See detailFinite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces
Moumnassi, M.; Belouettar, S.; Béchet, T. et al

in Computer Methods in Applied Mechanics & Engineering (2011), 200(5-8), 774-796

In this paper, we present some novel results and ideas for robust and accurate implicit representation of geometric surfaces in finite element analysis. The novel contributions of this paper are threefold ... [more ▼]

In this paper, we present some novel results and ideas for robust and accurate implicit representation of geometric surfaces in finite element analysis. The novel contributions of this paper are threefold: (1) describe and validate a method to represent arbitrary parametric surfaces implicitly; (2) represent arbitrary solids implicitly, including sharp features using level sets and boolean operations; (3) impose arbitrary Dirichlet and Neumann boundary conditions on the resulting implicitly defined boundaries. The methods proposed do not require local refinement of the finite element mesh in regions of high curvature, ensure the independence of the domain's volume on the mesh, do not rely on boundary regularization, and are well suited to methods based on fixed grids such as the extended finite element method (XFEM). Numerical examples are presented to demonstrate the robustness and effectiveness of the proposed approach and show that it is possible to achieve optimal convergence rates using a fully implicit representation of object boundaries. This approach is one step in the desired direction of tying numerical simulations to computer aided design (CAD), similarly to the isogeometric analysis paradigm. © 2010 Elsevier B.V. [less ▲]

Detailed reference viewed: 448 (8 UL)
Full Text
Peer Reviewed
See detailFinite-time road grade computation for a vehicle platoon
Yang, Tao; Yuan, Ye; Li, Kezhi et al

in IEEE (2014)

Given a platoon of vehicles traveling uphill, this paper considers the finite-time road grade computation problem. We propose a decentralized algorithm for an arbitrarily chosen vehicle to compute the ... [more ▼]

Given a platoon of vehicles traveling uphill, this paper considers the finite-time road grade computation problem. We propose a decentralized algorithm for an arbitrarily chosen vehicle to compute the road grade in a finite number of time-steps by using only its own successive velocity measurements. Simulations then illustrate the theoretical results. These new results can be applied to real-world vehicle platooning problems to reduce fuel consumption and carbon dioxide emissions. [less ▲]

Detailed reference viewed: 419 (6 UL)
Full Text
Peer Reviewed
See detailFleet readiness: Stocking spare parts and high tech assets
Basten, Rob; Arts, Joachim UL

in IISE Transactions (2017), 49(4), 429-441

Detailed reference viewed: 179 (6 UL)
Full Text
See detailFLEXCAP – Cost competitive flexible process for highly aesthetic closures manufacturing
Kakogiannos, Ioannis UL; Hichri, Bassem UL; Plapper, Peter UL

in Kakogiannos, Ioannis; Hichri, Bassem; Plapper, Peter (Eds.) Robotix-Academy Conference for Industrial Robotics (RACIR) 2018 (2018, November)

Detailed reference viewed: 167 (2 UL)