![]() Aleksic, Gabrijela ![]() Conference given outside the academic context (2013) Detailed reference viewed: 22 (0 UL)![]() Aleksic, Gabrijela ![]() Conference given outside the academic context (2013) Detailed reference viewed: 24 (1 UL)![]() ; ; et al in International Journal of Heat and Mass Transfer (2013), 67 The nonlinear heat transfer process occurring during hybrid laser welding was simulated using the Virtual-node Polygonal Element (VPE) method within the framework of the Finite Element Method (FEM). To ... [more ▼] The nonlinear heat transfer process occurring during hybrid laser welding was simulated using the Virtual-node Polygonal Element (VPE) method within the framework of the Finite Element Method (FEM). To achieve robustness in large-scale welding simulations, a dynamic mesh refinement with quadtree and octree data structures was used in the welding region. Accuracy, convergence and efficiency were verified by solving two and three dimensional problems. It is found that the present VPE can successfully simulate the hybrid laser welding process with good accuracy and convergence. The adaptive refined mesh box can synchronously move with the welding heat source, which dramatically reduces the number of field nodes. Compared with the standard FEM,the VPEM requires only approximately 42% of the total degrees of freedom used in standard FEM for the same accuracy. Furthermore, we compare the computational cost and accuracy of the method to that of the finite element method, the edge based virtual node polygonal element/virtual node method, the edge-based Smoothed Point Interpolation Meshless Method (ES-PIM), the edge-based Element (ES-PIM) the Element Free Galerkin (EFG) method and the Meshless Local Petrove-Galerkin Petrov-Galerkin (MLPG) method. Compared to all those methods, the proposed scheme is found competitive in terms of computational cost versus accuracy, and benefit from a simple implementation. © 2012 Elsevier B.V. All rights reserved. [less ▲] Detailed reference viewed: 498 (9 UL)![]() Beex, Lars ![]() Scientific Conference (2016, June) In this presentation, the formulation of the virtual-power-based QC framework will be outlined for an elastoplastic truss lattice. Subsequently, the framework is applied to an actual discrete material. Detailed reference viewed: 70 (3 UL)![]() Beex, Lars ![]() ![]() Scientific Conference (2016, June) Detailed reference viewed: 89 (2 UL)![]() ; ; et al in 32ND AUSTRALIAN CONFERENCE ON HUMAN-COMPUTER INTERACTION (2020) Workplace health interventions have predominantly been designed around visualizations of physical activity data in the work routine. Yet, contextual factors, such as computer-based activity, appears to be ... [more ▼] Workplace health interventions have predominantly been designed around visualizations of physical activity data in the work routine. Yet, contextual factors, such as computer-based activity, appears to be crucial to support healthier behaviors at work. In this research, we explore the effect of visualizing computer-based activity to prompt physical activity at work, through desktop-based ambient displays. Based on our prototypes Yamin and Apphia, we conducted an exploratory qualitative user study in a lab setting with office workers (N=16). Results showed that visualizing one’s computer-based activity could potentially increase the awareness, self-reflection, and social interactions for individuals to become physically active. With our findings, we discuss design implications for using computer activity data in a physical form as a motivational factor to encourage physically active workstyles. We present directions for future field studies to gain further insights on this topic. [less ▲] Detailed reference viewed: 44 (3 UL)![]() Danescu, Elena ![]() in Internet Histories: Digital Technology, Culture and Society (2020) The following pages are taken from a long interview (more than eight hours of footage in total) that Viviane Reding granted us in 2015 in connection with the “Pierre Werner and Europe” research project ... [more ▼] The following pages are taken from a long interview (more than eight hours of footage in total) that Viviane Reding granted us in 2015 in connection with the “Pierre Werner and Europe” research project. Drawing on more than 40 years’ experience in politics, Viviane Reding spoke about her career, the role of Luxembourg and Luxembourgers in the European integration process, and various key events in which she played a part. In these extracts, she discusses her role as a member of the first and second Barroso Commissions (2004-2009 and 2010-2014) and her efforts to help build an information and knowledge society in Europe, one that serves citizens and protects their rights and fundamental freedoms. Her achievements in this respect include capping mobile phone roaming charges (they were subsequently abolished in 2017), advocating for the introduction of a single emergency number (112) in all EU countries, launching the Europeana digital library, and spearheading a programme to use technological innovation for climate and energy solutions. She also describes the process of developing a Digital Agenda for Europe to improve the continent’s digital competitiveness compared with the United States, China and Japan – a complex and challenging task given the context of globalisation and the divergent interests of the various stakeholders (research, industry, consumers, etc.). Finally, she mentions the reform of personal data protection that she initiated (leading to the GDPR, adopted in April 2016). [less ▲] Detailed reference viewed: 103 (1 UL)![]() ; ; Hale, Jack ![]() in Computer Methods in Applied Mechanics and Engineering (2018), 341 We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and ... [more ▼] We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and is devoid of shear-locking. The proposed approach uses linear maximum-entropy approximations and is built variationally on a two-field potential energy functional wherein the shear strain, written in terms of the primitive variables, is computed via a volume-averaged nodal projection operator that is constructed from the Kirchhoff constraint of the three-field mixed weak form. The stability of the method is rendered by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark problems are presented to demonstrate the accuracy and performance of the proposed method for a wide range of plate thicknesses. [less ▲] Detailed reference viewed: 210 (21 UL)![]() ; Bezzaoucha, Souad ![]() ![]() in Vulnerability Analysis of Cyber Physical Systems under False-Data injection and disturbance attacks (2018, September) In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the ... [more ▼] In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The presented work deals with the so-called false data injection attacks and shows how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach. [less ▲] Detailed reference viewed: 131 (7 UL)![]() Rinaldi, Marco ![]() ![]() Scientific Conference (2018, January) Detailed reference viewed: 42 (0 UL)![]() van Dam, Tonie ![]() ![]() in Pan European Networks (2015), (14), 58-59 Detailed reference viewed: 283 (24 UL)![]() Ley, Christophe ![]() in Computational Statistics and Data Analysis (2022), 174 The prior distribution is a crucial building block in Bayesian analysis, and its choice will impact the subsequent inference. It is therefore important to have a convenient way to quantify this impact, as ... [more ▼] The prior distribution is a crucial building block in Bayesian analysis, and its choice will impact the subsequent inference. It is therefore important to have a convenient way to quantify this impact, as such a measure of prior impact will help to choose between two or more priors in a given situation. To this end a new approach, the Wasserstein Impact Measure (WIM), is introduced. In three simulated scenarios, the WIM is compared to two competitor prior impact measures from the literature, and its versatility is illustrated via two real datasets. [less ▲] Detailed reference viewed: 32 (1 UL)![]() ; ; et al in Tribology International (2019), 138 We present numerical computation of stresses under fretting fatigue conditions derived from closed form expressions. The Navier-Cauchy equations, that govern the problem, are solved with strong and weak ... [more ▼] We present numerical computation of stresses under fretting fatigue conditions derived from closed form expressions. The Navier-Cauchy equations, that govern the problem, are solved with strong and weak form meshless numerical methods. The results are compared to the solution obtained from well-established commercial package ABAQUS, which is based on finite element method (FEM). The results show that the weak form meshless solution exhibits similar behavior as the FEM solution, while, in this particular case, strong form meshless solution performs better in capturing the peak in the surface stress. This is of particular interest in fretting fatigue, since it directly influences crack initiation. The results are presented in terms of von Mises stress contour plots, surface stress profiles, and the convergence plots for all three methods involved in the study. [less ▲] Detailed reference viewed: 85 (3 UL)![]() Tomar, Satyendra ![]() Presentation (2016, June 07) In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry ... [more ▼] In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry representation of the domain, is employed for the numerical solution of the problem over the domain. However, there are situations where this tight integration is a bane rather than a boon. Such situations arise where, e.g., (1) the geometry of the domain is simple enough to be represented by low order NURBS, whereas the unknown (exact) solution of the problem is sufficiently regular, and thus, the numerical solution can be obtained with improved accuracy by using NURBS of order higher than that required for the geometry, (2) the constraint of using the same space for the geometry and the numerical solution is particularly undesirable, such as in the shape and topology optimization, and (3) the solution of the problem has low regularity but for the curved boundary of the domain one can employ higher order NURBS. Therefore, we propose to weaken this constraint. An extensive study of patch tests on various combinations of polynomial degree, geometry type, and various cases of varying degrees and control variables between the geometry and the numerical solution will be discussed. It will be shown, with concrete reasoning, that why patch test fails in certain cases, and that those cases should be avoided in practice. Thereafter, selective numerical examples will be presented to address some of the above-mentioned situations, and it will be shown that weakening the tight coupling between geometry and simulation offers more flexibility in choosing the numerical solution spaces, and thus, improved accuracy of the numerical solution. [less ▲] Detailed reference viewed: 182 (9 UL)![]() Bordas, Stéphane ![]() ![]() Scientific Conference (2016, June 05) In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry ... [more ▼] In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry representation of the domain, is employed for the numerical solution of the problem over the domain. However, there are situations where this tight integration is a bane rather than a boon. Such situations arise where, e.g., (1) the geometry of the domain is simple enough to be represented by low order NURBS, whereas the unknown (exact) solution of the problem is sufficiently regular, and thus, the numerical solution can be obtained with improved accuracy by using NURBS of order higher than that required for the geometry, (2) the constraint of using the same space for the geometry and the numerical solution is particularly undesirable, such as in the shape and topology optimization, and (3) the solution of the problem has low regularity but for the curved boundary of the domain one can employ higher order NURBS. Therefore, we propose to weaken this constraint. An extensive study of patch tests on various combinations of polynomial degree, geometry type, and various cases of varying degrees and control variables between the geometry and the numerical solution will be discussed. It will be shown, with concrete reasoning, that why patch test fails in certain cases, and that those cases should be avoided in practice. Thereafter, selective numerical examples will be presented to address some of the above-mentioned situations, and it will be shown that weakening the tight coupling between geometry and simulation offers more flexibility in choosing the numerical solution spaces, and thus, improved accuracy of the numerical solution. Powered by [less ▲] Detailed reference viewed: 156 (5 UL)![]() ; Tomar, Satyendra ![]() in International Journal for Numerical Methods in Engineering (2018) This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution ... [more ▼] This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution field. The method inherits the main advantage of isogeometric analysis, i.e. preserves the original, exact CAD geometry (for example, given by NURBS), but allows pairing it with an approximation space which is more suitable/flexible for analysis, for example, T-splines, LR-splines, (truncated) hierarchical B-splines, and PHT-splines. This generalization offers the advantage of adaptive local refinement without the need to re-parameterize the domain, and therefore without weakening the link with the CAD model. We demonstrate the use of the method with different choices of the geometry and field splines, and show that, despite the failure of the standard patch test, the optimum convergence rate is achieved for non-nested spaces. [less ▲] Detailed reference viewed: 225 (8 UL)![]() Hild, Paula ![]() Scientific Conference (2011, August 30) Several commercial software tools for Life Cycle Assessment (LCA) are already available on the market and recently included ad-hoc extensions to calculate carbon footprints. Unfortunately, these software ... [more ▼] Several commercial software tools for Life Cycle Assessment (LCA) are already available on the market and recently included ad-hoc extensions to calculate carbon footprints. Unfortunately, these software tools are often too complex and require too much specific expertise to be used by SMEs, consultants and others. For companies without any experience in the field of environmental assessment, the analysis of company-related CO2 emissions within a regional context is often an impossible task. The presented easy-to-use CO2 screening tool, adapted to their needs, was designed to support these companies. The web-based tool, ‘Lux screen CO2’ is able to assess and report site related direct and indirect greenhouse gas emissions, including the whole supply chain of the company and food-related impacts of the company restaurant. [less ▲] Detailed reference viewed: 140 (1 UL)![]() Agathos, Konstantinos ![]() Scientific Conference (2016, June) A three-dimensional (3D) version of the vector level set method [1] is combined to a well conditioned and optimally convergent XFEM variant in order to deal with non-planar three dimensional crack ... [more ▼] A three-dimensional (3D) version of the vector level set method [1] is combined to a well conditioned and optimally convergent XFEM variant in order to deal with non-planar three dimensional crack propagation problems. The proposed computational fracture method achieves optimal convergence rates by using tip enriched elements in a fixed volume around the crack front (geometrical enrichment) while keeping conditioning of the resulting system matrices in acceptable levels. Conditioning is controlled by using a three dimensional extension of the degree of freedom gathering technique [2]. Moreover, blending errors are minimized and conditioning is further improved by employing weight function blending and enrichment function shifting [3,4]. As far as crack representation is concerned, crack surfaces are represented by linear quadrilateral elements and the corresponding crack fronts by ordered series of linear segments. Level set values are obtained by projecting points at the crack surface and front respectively. Different criteria are employed in order to assess the quality of the crack representation. References [1] Ventura G., Budyn E. and Belytschko T. Vector level sets for description of propagating cracks in finite elements. Int. J. Numer. Meth. Engng. 58:1571-1592 (2003). [2] Laborde P., Pommier J., Renard Y. and Salaün M. High-order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng. 64:354-381 (2005). [3] Fries T.P. A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Meth. Engng. 75:503-532 (2008). [4] Ventura G., Gracie R. and Belytschko T. Fast integration and weight function blending in the extended finite element method. Int. J. Numer. Meth. Engng. 77:1-29 (2009). [less ▲] Detailed reference viewed: 184 (15 UL)![]() ; ; Bordas, Stéphane ![]() in International Journal for Numerical Methods in Engineering (n.d.) A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and ... [more ▼] A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and enriched elements in order to achieve higher accuracy, optimal convergence rates and improved conditioning for two and three dimensional crack problems. A bespoke benchmark problem is introduced to determine the method's accuracy in the general 3D case where it is demonstrated that the proposed approach improves the accuracy and reduces the number of iterations required for the iterative solution of the resulting system of equations by 40% for moderately refined meshes and topological enrichment. Moreover, when a fixed enrichment volume is used, the number of iterations required grows at a rate which is reduced by a factor of 2 compared to standard XFEM, diminishing the number of iterations by almost one order of magnitude. [less ▲] Detailed reference viewed: 342 (11 UL)![]() de Boer, Mathijs ![]() Scientific Conference (2008) Detailed reference viewed: 49 (2 UL) |
||