References of "Yalcin, Baris Can 50042932"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailProject DragLiner: Harnessing plasma Coulomb drag for satellite deorbiting to keep orbits clean
Genzer, Maria; Janhunen, Pekka; Haukka, Harri et al

Scientific Conference (2023, April)

Detailed reference viewed: 51 (7 UL)
Full Text
Peer Reviewed
See detailEnhancing Rover Teleoperation on the Moon With Proprioceptive Sensors and Machine Learning Techniques
Coloma Chacon, Sofia UL; Martinez Luna, Carol UL; Yalcin, Baris Can UL et al

in IEEE Robotics and Automation Letters (2022)

Geological formations, environmental conditions, and soil mechanics frequently generate undesired effects on rovers’ mobility, such as slippage or sinkage. Underestimating these undesired effects may ... [more ▼]

Geological formations, environmental conditions, and soil mechanics frequently generate undesired effects on rovers’ mobility, such as slippage or sinkage. Underestimating these undesired effects may compromise the rovers’ operation and lead to a premature end of the mission. Minimizing mobility risks becomes a priority for colonising the Moon and Mars. However, addressing this challenge cannot be treated equally for every celestial body since the control strategies may differ; e.g. the low latency EarthMoon communication allows constant monitoring and controls, something not feasible on Mars. This letter proposes a Hazard Information System (HIS) that estimates the rover’s mobility risks (e.g. slippage) using proprioceptive sensors and Machine Learning (supervised and unsupervised). A Graphical User Interface was created to assist human-teleoperation tasks by presenting mobility risk indicators. The system has been developed and evaluated in the lunar analogue facility (LunaLab) at the University of Luxembourg. A real rover and eight participants were part of the experiments. Results demonstrate the benefits of the HIS in the decision-making processes of the operator’s response to overcome hazardous situations. [less ▲]

Detailed reference viewed: 111 (28 UL)
Full Text
Peer Reviewed
See detailEnabling Elements of Simulations Digital Twins and its Applicability for Information Superiority in Defence Domain
Aggarwal, Kapish; Bögel, Elias; La Rosa Betancourt, Manuel et al

Scientific Conference (2022, September 29)

The emerging concept of digital twins is the key enabler for modelling and simulations needs of any future-ready entity. Digital twins enable rapid transformation of requirements into capabilities at much ... [more ▼]

The emerging concept of digital twins is the key enabler for modelling and simulations needs of any future-ready entity. Digital twins enable rapid transformation of requirements into capabilities at much lower costs, compared to conventional methods, through enhancement of modularity and scalability. Elements of a modelling and simulations digital twin are discussed in this paper. These capabilities include, but are not limited to, surrogate modelling, optimization, parallelization, high performance computing, cloud architecture design, etc. These concepts are relevant for the integration of modelling and simulations technologies into a single interface digital twin for rapid prototyping and qualification of engineering systems. Use of these emerging technologies leads to significantly less simulation computation time (reduced from hours/days to seconds or even micro-seconds) compared to the conventional methods. Ease-of-collaboration with all stakeholders, reduced testing time, minimal on-site infrastructure requirements are the key cost-reducing advantages found in this study. Applicability of such intelligent and online digital twins for information superiority to enhance cybersecurity and on-board threat assessment of space-based (defence) services is analysed. The use of these synchronized and interoperable capabilities mitigates both reversible and non-reversible physical and cyber threats to defence space infrastructure. [less ▲]

Detailed reference viewed: 117 (22 UL)
Full Text
See detailHow to catch a space debris
Yalcin, Baris Can UL; Martinez Luna, Carol UL; Hubert Delisle, Maxime UL et al

Poster (2021, November 18)

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage ... [more ▼]

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage of latest advancements in many tech domains, such as gecko like sticky adhesives and energy efficient shape memory alloy materials. [less ▲]

Detailed reference viewed: 147 (51 UL)