References of "Wahl, Laurent 40020854"
     in
Bookmark and Share    
Full Text
See detailErmüdungseigenschaften des Wabenkerns von sandwichpaneelen aus Aluminium
Wahl, Laurent UL

Doctoral thesis (2013)

In comparison to their weight, honeycomb composite structures have a high bending stiffness, which makes them very suited for every application where little weight is important, like airplanes, railway ... [more ▼]

In comparison to their weight, honeycomb composite structures have a high bending stiffness, which makes them very suited for every application where little weight is important, like airplanes, railway-cars and vehicles. These structures are subjected to cyclic loading. The sandwich panels consist of two thin and stiff aluminium face sheets, which are bonded to a thick and lightweight aluminium honeycomb core. The shear stresses in the core of these structures depend strongly on the angle of the load application, because the core is not homogeneous. The distribution and the level of the shear stresses are investigated using analytical calculations. The load direction which induces highest stresses in the honeycomb core is derived. This direction is not the W-direction, which is the most compliant one. In literature, there are few fatigue properties of the honeycomb core described. The fatigue properties of the core are investigated in this work using the finite element method and experiments. The experimental investigations consist of three-point bending tests, pulsating roller tests, Food-Cart Roller tests and several tests on real components. Depending on the load application, the honeycomb core fails either through core indentation or shear failure. Several fatigue tests were carried out at constant load amplitude and the failure mode is investigated. The sandwich structures were modeled with the ANSYS finite element software. The number of elements is reduced by replacing the honeycomb core with a homogeneous core with orthotropic properties. In order to get the stresses in the honeycomb core at the critical location, a submodel was created. In this work, some equations are derived in order to calculate the real shear stresses from the shear stresses of the homogeneous core. In addition, imperfections are included in the model. Furthermore, buckling analyses were used to examine core indentation failure. Based on these simulations, both failure modes described above can be explained. Core indentation occurs, when the honeycomb cells are buckling due to the load application. The buckling of the cells can be avoided by using a smoother load application. In this case, the core fails in the three-point bending test by shear failure. The fatigue life of the examined specimens is successfully approximated in this manuscript, with the lifetime analysis being based on the FKM-guideline. Every simulation is validated by experimental results. [less ▲]

Detailed reference viewed: 175 (11 UL)