References of "Rousset, Alban 50025447"
     in
Bookmark and Share    
Full Text
See detailHEAT AND MASS TRANSFER BETWEEN XDEM & OPENFOAM USING PRECICE COUPLING LIBRARY
Adhav, Prasad UL; Besseron, Xavier UL; Estupinan Donoso, Alvaro Antonio UL et al

Scientific Conference (2022, June 09)

This work demonstrates the rapid development of a simulation environment to achieve Heat and Mass Transfer (HMT) between Discrete Element Methods (DEM) and Computa- tional Fluid Dynamics (CFD). The HMT ... [more ▼]

This work demonstrates the rapid development of a simulation environment to achieve Heat and Mass Transfer (HMT) between Discrete Element Methods (DEM) and Computa- tional Fluid Dynamics (CFD). The HMT coupling can be employed to simulate processes such as drying, pyrolysis, combustion, melting, solid-fluid reactions etc and have indus- trial applications such as biomass furnaces, boilers, heat exchangers, and flow through packed beds. This shows that diverse CFD features and solvers need to be coupled with DEM in order to achieve various applications mentioned above. The proposed DEM-CFD Eulerian-Lagrangian coupling for heat and mass transfer is achieved by employing the preCICE coupling library[1] on volumetric meshes. In our prototype, we use the eXtended Discrete Element Method (XDEM)[2] for handling DEM calculations and OpenFOAM for the CFD. The XDEM solver receives various CFD data fields such as fluid properties, and flow conditions exchanged through preCICE, which are used to set boundary conditions for particles. Various heat transfer and mass transfer laws have been implemented in XDEM to steer HMT source term computations. The heat and mass source terms computed by XDEM are transferred to CFD solver and added as source. These source terms represent particles in CFD. The generic coupling interface of preCICE, XDEM and its adapter allows to tackle a di- verse range of applications. We demonstrate the heat, mass & momentum coupling capa- bilities through various test cases and then compared with our legacy XDEM-OpenFOAM coupling and experimental results. [less ▲]

Detailed reference viewed: 323 (24 UL)
Full Text
See detailHPC Multi-physics Biomass Furnace simulations as a Service
Besseron, Xavier UL; Rusche, Henrik; Peters, Bernhard UL et al

Scientific Conference (2020, November)

Detailed reference viewed: 122 (12 UL)
Full Text
Peer Reviewed
See detailProcess analysis in thermal process engineering with high-performance computing using the example of grate firing
Peters, Bernhard UL; Rousset, Alban UL; Besseron, Xavier UL et al

in Scherer, Viktor; Fricker, Neil; Reis, Albino (Eds.) Proceedings of the 12th European Conference on Industrial Furnaces and Boilers (2020, November)

Biomass as a renewable energy source continues to grow in popularity to reduce fossil fuel consumption for environmental and economic benefits. In the present contribution, the combustion chamber of a 16 ... [more ▼]

Biomass as a renewable energy source continues to grow in popularity to reduce fossil fuel consumption for environmental and economic benefits. In the present contribution, the combustion chamber of a 16 MW geothermal steam super-heater, which is part of the Enel Green Power "Cornia 2" power plant, is being investigated with high-performance computing methods. For this purpose, the extended discrete element method (XDEM) developed at the University of Luxembourg is used in a high-performance computing environment, which includes both the moving wooden bed and the combustion chamber above it. The XDEM simulation platform is based on a hybrid four-way coupling between the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD). In this approach, particles are treated as discrete elements that are coupled by heat, mass, and momentum transfer to the surrounding gas as a continuous phase. For individual wood particles, besides the equations of motion, the differential conservation equations for mass, heat, and momentum are solved, which describe the thermodynamic state during thermal conversion. The consistency of the numerical results with the actual system performance is discussed in this paper to determine the potentials and limitations of the approach. [less ▲]

Detailed reference viewed: 259 (57 UL)
Full Text
See detailHigh Performance Parallel Coupling of OpenFOAM+XDEM
Besseron, Xavier UL; Pozzetti, Gabriele; Rousset, Alban UL et al

Presentation (2019, June 21)

Detailed reference viewed: 295 (31 UL)
Full Text
See detailParallel Coupling of CFD-DEM simulations
Besseron, Xavier UL; Pozzetti, Gabriele UL; Rousset, Alban UL et al

Presentation (2018, August 20)

Detailed reference viewed: 112 (6 UL)
Full Text
Peer Reviewed
See detailA Parallel Multiscale DEM-VOF Method For Large-Scale Simulations Of Three-Phase Flows
Pozzetti, Gabriele UL; Besseron, Xavier UL; Rousset, Alban UL et al

in Proceedings of ECCM-ECFD 2018 (2018)

A parallel dual-grid multiscale DEM-VOF coupling is here investigated. Dual- grid multiscale couplings have been recently used to address different engineering problems involving the interaction between ... [more ▼]

A parallel dual-grid multiscale DEM-VOF coupling is here investigated. Dual- grid multiscale couplings have been recently used to address different engineering problems involving the interaction between granular phases and complex fluid flows. Nevertheless, previous studies did not focus on the parallel performance of such a coupling and were, therefore, limited to relatively small applications. In this contribution, we propose an insight into the performance of the dual-grid multiscale DEM-VOF method for three- phase flows when operated in parallel. In particular,we focus on a famous benchmark case for three-phase flows and assess the influence of the partitioning algorithm on the scalability of the dual-grid algorithm. [less ▲]

Detailed reference viewed: 160 (40 UL)