![]() Kremer, Paul ![]() ![]() ![]() in IEEE Access (2023) Detailed reference viewed: 47 (2 UL)![]() Kremer, Paul ![]() Doctoral thesis (2022) Improvised Explosive Devices (IEDs) are an ever-growing worldwide threat. The disposal of IEDs is typically performed by experts of the police or the armed forces with the help of specialized ground ... [more ▼] Improvised Explosive Devices (IEDs) are an ever-growing worldwide threat. The disposal of IEDs is typically performed by experts of the police or the armed forces with the help of specialized ground Ordnance Disposal Robots (ODRs). Unlike aerial robots, those ODRs have poor mobility, and their deployment in complex environments can be challenging or even impossible. Endowed with manipulation capabilities, aerial robots can perform complex manipulation tasks akin to ground robots. This thesis leverages the manipulation skills and the high mobility of aerial robots to perform aerial disposal of IEDs. Being, in essence, an aerial manipulation task, this work presents numerous contributions to the broader field of aerial manipulation. This thesis presents the mechatronic concept of an aerial ODR and a high-level view of the fundamental building blocks developed throughout this thesis. Starting with the system dynamics, a new hybrid modeling approach for aerial manipulators (AMs) is proposed that provides the closed-form dynamics of any given open-chain AM. Next, a highly integrated, lightweight Universal Gripper (called TRIGGER) customized for aerial manipulation is introduced to improve grasping performance in unstructured environments. The gripper (attached to a multicopter) is tested under laboratory conditions by performing a pick-and-release task. Finally, an autonomous grasping solution is presented alongside its control architecture featuring computer vision and trajectory optimization. To conclude, the grasping concept is validated in a simulated IED disposal scenario. [less ▲] Detailed reference viewed: 42 (3 UL)![]() Kremer, Paul ![]() ![]() ![]() E-print/Working paper (2022) Soft robotic grippers have numerous advantages that address challenges in dynamic aerial grasping. Typical multi-fingered soft grippers recently showcased for aerial grasping are highly dependent on the ... [more ▼] Soft robotic grippers have numerous advantages that address challenges in dynamic aerial grasping. Typical multi-fingered soft grippers recently showcased for aerial grasping are highly dependent on the direction of the target object for successful grasping. This study pushes the boundaries of dynamic aerial grasping by developing an omnidirectional system for autonomous aerial manipulation. In particular, the paper investigates the design, fabrication, and experimental verification of a novel, highly integrated, modular, sensor-rich, universal jamming gripper specifically designed for aerial applications. Leveraging recent developments in particle jamming and soft granular materials, the presented gripper produces a substantial holding force while being very lightweight, energy-efficient and only requiring a low activation force. We show that the holding force can be improved by up to 50% by adding an additive to the membrane’s silicone mixture. The experiments show that our lightweight gripper can develop up to 15N of holding force with an activation force as low as 2.5N, even without geometric interlocking. Finally, a pick and release task is performed under real-world conditions by mounting the gripper onto a multi-copter. The developed aerial grasping system features many useful properties, such as resilience and robustness to collisions and the inherent passive compliance which decouples the UAV from the environment. [less ▲] Detailed reference viewed: 37 (1 UL) |
||