References of "Husch, Andreas 50030581"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDBSegment: Fast and robust segmentation of deep brain structures considering domain generalisation
Baniasadi, Mehri UL; Petersen, Mikkel V.; Goncalves, Jorge UL et al

in Human Brain Mapping (2022)

Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by ... [more ▼]

Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by-registration approach, where subject magnetic resonance imaging (MRIs) are mapped to a template with well-defined segmentations. However, registration-based pipelines are time-consuming, thus, limiting their clinical use. This paper uses deep learning to provide a one-step, robust, and efficient deep brain segmentation solution directly in the native space. The method consists of a preprocessing step to conform all MRI images to the same orientation, followed by a convolutional neural network using the nnU-Net framework. We use a total of 14 datasets from both research and clinical collections. Of these, seven were used for training and validation and seven were retained for testing. We trained the network to segment 30 deep brain structures, as well as a brain mask, using labels generated from a registration-based approach. We evaluated the generalizability of the network by performing a leave-one-dataset-out cross-validation, and independent testing on unseen datasets. Furthermore, we assessed cross-domain transportability by evaluating the results separately on different domains. We achieved an average dice score similarity of 0.89 ± 0.04 on the test datasets when compared to the registration-based gold standard. On our test system, the computation time decreased from 43 min for a reference registration-based pipeline to 1.3 min. Our proposed method is fast, robust, and generalizes with high reliability. It can be extended to the segmentation of other brain structures. It is publicly available on GitHub, and as a pip package for convenient usage. [less ▲]

Detailed reference viewed: 38 (2 UL)
Full Text
Peer Reviewed
See detailGeneralising from conventional pipelines using deep learning in high‑throughput screening workfows
Garcia Santa Cruz, Beatriz UL; Sölter, Jan; Gomez Giro, Gemma UL et al

in Scientific Reports (2022)

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality ... [more ▼]

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fne segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis. [less ▲]

Detailed reference viewed: 224 (18 UL)
See detailImaging-informed BIOmechanical brain tumor forecast MOdelling
Abbad Andaloussi, Meryem UL; Husch, Andreas UL; Urcun, Stephane UL et al

Scientific Conference (2022, June 06)

Grade 3 and 4 Astrocytomas are high grade gliomas (HGG) that usually result from initially less aggressive low grade gliomas (LGG) through malignant transformation (MT). This process has various ... [more ▼]

Grade 3 and 4 Astrocytomas are high grade gliomas (HGG) that usually result from initially less aggressive low grade gliomas (LGG) through malignant transformation (MT). This process has various definitions in the literature, clinical and histopathological, depending on the scale of the study and researchers' interest. We introduce an overview of different aspects of MT: molecular, clinical and the role of the microenvironment in acquiring the malignant phenotype. Furthermore, we introduce a new hypothesis that could explain the spatial progression of low grade astrocytoma (LGA) during MT. The former hypothesis will next be tested on LGA patients through tumor segmentation from Medical Resonance Images (MRI) and a mechanistic growth model. [less ▲]

Detailed reference viewed: 173 (20 UL)
Full Text
Peer Reviewed
See detailThe effect of dataset confounding on predictions of deep neural networks for medical imaging
Garcia Santa Cruz, Beatriz UL; Husch, Andreas UL; Hertel, Frank UL

in Vol. 3 (2022): Proceedings of the Northern Lights Deep Learning Workshop 2022 (2022, April 18)

The use of Convolutional Neural Networks (CNN) in medical imaging has often outperformed previous solutions and even specialists, becoming a promising technology for Computer-aided-Diagnosis (CAD) systems ... [more ▼]

The use of Convolutional Neural Networks (CNN) in medical imaging has often outperformed previous solutions and even specialists, becoming a promising technology for Computer-aided-Diagnosis (CAD) systems. However, recent works suggested that CNN may have poor generalisation on new data, for instance, generated in different hospitals. Uncontrolled confounders have been proposed as a common reason. In this paper, we experimentally demonstrate the impact of confounding data in unknown scenarios. We assessed the effect of four confounding configurations: total, strong, light and balanced. We found the confounding effect is especially prominent in total confounder scenarios, while the effect on light and strong confounding scenarios may depend on the dataset robustness. Our findings indicate that the confounding effect is independent of the architecture employed. These findings might explain why models can report good metrics during the development stage but fail to translate to real-world settings. We highlight the need for thorough consideration of these commonly unattended aspects, to develop safer CNN-based CAD systems. [less ▲]

Detailed reference viewed: 157 (18 UL)
Peer Reviewed
See detailInitialisation of Deep Brain Stimulation Parameters with Multi-objective Optimisation Using Imaging Data
Baniasadi, Mehri UL; Husch, Andreas UL; Proverbio, Daniele UL et al

in Bildverarbeitung für die Medizin 2022 (2022)

Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an ... [more ▼]

Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an automated methodology to initialise contact configurations using imaging techniques. The goal is to maximise the electric field on the target while minimising the spillover, and the electric field on regions of avoidance. By superposing pre-computed electric fields, we solve the optimisation problem in less than a minute, much more efficient compared to finite element methods. Our method offers a robust and rapid solution, and it is expected to considerably reduce the time required for manual parameter tuning. [less ▲]

Detailed reference viewed: 96 (12 UL)
Full Text
Peer Reviewed
See detailAbstract: The Importance of Dataset Choice Lessons Learned from COVID-19 X-ray Imaging Models
Garcia Santa Cruz, Beatriz UL; Bossa, Matias Nicolas UL; Soelter, Jan et al

in Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. (2022, April 05)

Detailed reference viewed: 45 (3 UL)
Full Text
Peer Reviewed
See detailRapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
Roth, Holger R.; Xu, Ziyue; Diez, Carlos Tor et al

in Medical Image Analysis (2022)

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of ... [more ▼]

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. [less ▲]

Detailed reference viewed: 27 (2 UL)
Full Text
Peer Reviewed
See detailPublic Covid-19 X-ray datasets and their impact on model bias - a systematic review of a significant problem
Garcia Santa Cruz, Beatriz UL; Bossa, Matias Nicolas UL; Sölter, Jan UL et al

in Medical Image Analysis (2021), 74

Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and ... [more ▼]

Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and improper consideration of confounders prevents the translation of prediction models into clinical practice. By adopting established tools for model evaluation to the task of evaluating datasets, this study provides a systematic appraisal of publicly available COVID-19 chest X-ray datasets, determining their potential use and evaluating potential sources of bias. Only 9 out of more than a hundred identified datasets met at least the criteria for proper assessment of the risk of bias and could be analysed in detail. Remarkably most of the datasets utilised in 201 papers published in peer-reviewed journals, are not among these 9 datasets, thus leading to models with a high risk of bias. This raises concerns about the suitability of such models for clinical use. This systematic review highlights the limited description of datasets employed for modelling and aids researchers to select the most suitable datasets for their task. [less ▲]

Detailed reference viewed: 205 (41 UL)
Full Text
Peer Reviewed
See detailPublic Covid-19 X-ray datasets and their impact on model bias - a systematic review of a significant problem
Garcia Santa Cruz, Beatriz UL; Bossa, Matias Nicolas UL; Sölter, Jan UL et al

in Medical Image Analysis (2021), 74

Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and ... [more ▼]

Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and improper consideration of confounders prevents the translation of prediction models into clinical practice. By adopting established tools for model evaluation to the task of evaluating datasets, this study provides a systematic appraisal of publicly available COVID-19 chest X-ray datasets, determining their potential use and evaluating potential sources of bias. Only 9 out of more than a hundred identified datasets met at least the criteria for proper assessment of the risk of bias and could be analysed in detail. Remarkably most of the datasets utilised in 201 papers published in peer-reviewed journals, are not among these 9 datasets, thus leading to models with a high risk of bias. This raises concerns about the suitability of such models for clinical use. This systematic review highlights the limited description of datasets employed for modelling and aids researchers to select the most suitable datasets for their task. [less ▲]

Detailed reference viewed: 205 (41 UL)
Full Text
See detailLeveraging state-of-the-art architectures by enriching training information - a case study
Sölter, Jan; Proverbio, Daniele; Baniasadi, Mehri et al

Speeches/Talks (2021)

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing ... [more ▼]

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on leveraging the available training data. We did not apply any pre-training nor modi ed the network architecture. First, we enriched training information by generating two additional labels for lung and body area. Lung labels were created with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, we trained three di erent multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice- Score 0.755, Haussdor 95-Score 57.5). To improve robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdor 95- Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner signi cantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between our additional training data (although not human-labelled) and  nal test data and therefore submitted the ensemble without additional data, to yield realistic assessments. [less ▲]

Detailed reference viewed: 45 (9 UL)
Full Text
See detailOn the Composition and Limitations of Publicly Available COVID-19 X-Ray Imaging Datasets
Garcia Santa Cruz, Beatriz UL; Sölter, Jan UL; Bossa, Matias Nicolas UL et al

E-print/Working paper (2020)

 Machine learning based methods for diagnosis and progression prediction of COVID-19 from imaging data have gained significant attention in the last months, in particular by the use of deep learning ... [more ▼]

 Machine learning based methods for diagnosis and progression prediction of COVID-19 from imaging data have gained significant attention in the last months, in particular by the use of deep learning models. In this context hundreds of models where proposed with the majority of them trained on public datasets. Data scarcity, mismatch between training and target population, group imbalance, and lack of documentation are important sources of bias, hindering the applicability of these models to real-world clinical practice. Considering that datasets are an essential part of model building and evaluation, a deeper understanding of the current landscape is needed. This paper presents an overview of the currently public available COVID-19 chest X-ray datasets. Each dataset is briefly described and potential strength, limitations and interactions between datasets are identified. In particular, some key properties of current datasets that could be potential sources of bias, impairing models trained on them are pointed out. These descriptions are useful for model building on those datasets, to choose the best dataset according the model goal, to take into account the specific limitations to avoid reporting overconfident benchmark results, and to discuss their impact on the generalisation capabilities in a specific clinical setting. [less ▲]

Detailed reference viewed: 355 (10 UL)
Full Text
Peer Reviewed
See detailPaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
Husch, Andreas UL; Petersen, Mikkel V.; Gemmar, Peter et al

in NeuroImage: Clinical (2018), 17

Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative ... [more ▼]

Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. [less ▲]

Detailed reference viewed: 249 (31 UL)
Full Text
Peer Reviewed
See detailSusceptibility-Weighted MRI for Deep Brain Stimulation: Potentials in Trajectory Planning
Hertel, Frank UL; Husch, Andreas UL; Dooms, Georges et al

in Stereotactic and Functional Neurosurgery (2015), 93(5), 303-308

Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show ... [more ▼]

Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show neurovascular struc- tures without the use of contrast agents. The aim of this study was to investigate whether SWI might be useful in DBS trajectory planning. Methods: We performed bilateral DBS planning using conventional T1-Gd images of 10 patients with different kinds of movement disorders. Afterwards, we matched SWI sequences and compared the visibility of vas- cular structures in both imaging modalities. Results: By ana- lyzing 100 possible trajectories, we found a potential vascu- lar conflict in 13 trajectories based on T1-Gd in contrast to 53 in SWI. Remarkably, all vessels visible in T1-Gd were also de- picted in SWI, whereas SWI showed many additional vascular structures which could not be identified in T1-Gd. Conclu- sion/Discussion: The sensitivity for detecting neurovascular structures for DBS planning seems to be significantly higher in SWI. As SWI does not require a contrast agent, we suggest that SWI may be a valuable alternative to T1-Gd MRI for DBS trajectory planning. Furthermore, the data analysis suggests that vascular interactions of DBS trajectories might be more frequent than expected from the very low incidence of symptomatic bleedings. The explanation for this is currently the subject of debate and merits further studies. [less ▲]

Detailed reference viewed: 167 (13 UL)
Full Text
Peer Reviewed
See detailA solution for Multi-Alignment by Transformation Synchronisation
Bernard, Florian UL; Thunberg, Johan UL; Gemmar, Peter et al

in The proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered ... [more ▼]

The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered usually iterative methods are used. In practice the iterative methods perform well if the relative transformations between any pair of objects are free of noise. However, if only noisy relative transformations are available (e.g. due to missing data or wrong correspondences) the iterative methods may fail. Based on the observation that the underlying noise-free transformations lie in the null space of a matrix that can directly be obtained from pairwise alignments, this paper presents a novel method for the synchronisation of pairwise transformations such that they are globally consistent. Simulations demonstrate that for a high amount of noise, a large proportion of missing data and even for wrong correspondence assignments the method delivers encouraging results. [less ▲]

Detailed reference viewed: 229 (38 UL)