References of "Vlasov, Vanja"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDBSegment: Fast and robust segmentation of deep brain structures considering domain generalisation
Baniasadi, Mehri UL; Petersen, Mikkel V.; Goncalves, Jorge UL et al

in Human Brain Mapping (2022)

Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by ... [more ▼]

Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by-registration approach, where subject magnetic resonance imaging (MRIs) are mapped to a template with well-defined segmentations. However, registration-based pipelines are time-consuming, thus, limiting their clinical use. This paper uses deep learning to provide a one-step, robust, and efficient deep brain segmentation solution directly in the native space. The method consists of a preprocessing step to conform all MRI images to the same orientation, followed by a convolutional neural network using the nnU-Net framework. We use a total of 14 datasets from both research and clinical collections. Of these, seven were used for training and validation and seven were retained for testing. We trained the network to segment 30 deep brain structures, as well as a brain mask, using labels generated from a registration-based approach. We evaluated the generalizability of the network by performing a leave-one-dataset-out cross-validation, and independent testing on unseen datasets. Furthermore, we assessed cross-domain transportability by evaluating the results separately on different domains. We achieved an average dice score similarity of 0.89 ± 0.04 on the test datasets when compared to the registration-based gold standard. On our test system, the computation time decreased from 43 min for a reference registration-based pipeline to 1.3 min. Our proposed method is fast, robust, and generalizes with high reliability. It can be extended to the segmentation of other brain structures. It is publicly available on GitHub, and as a pip package for convenient usage. [less ▲]

Detailed reference viewed: 14 (1 UL)
Full Text
See detailLeveraging state-of-the-art architectures by enriching training information - a case study
Sölter, Jan; Proverbio, Daniele; Baniasadi, Mehri et al

Speeches/Talks (2021)

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing ... [more ▼]

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on leveraging the available training data. We did not apply any pre-training nor modi ed the network architecture. First, we enriched training information by generating two additional labels for lung and body area. Lung labels were created with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, we trained three di erent multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice- Score 0.755, Haussdor 95-Score 57.5). To improve robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdor 95- Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner signi cantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between our additional training data (although not human-labelled) and  nal test data and therefore submitted the ensemble without additional data, to yield realistic assessments. [less ▲]

Detailed reference viewed: 41 (9 UL)