![]() ; ; et al in Computer Methods in Applied Mechanics and Engineering (2019), 349 In this article, a computationally efficient multi-split MsXFEM is proposed to evaluate the elastic properties of heterogeneous materials. The multi-split MsXFEM is the combination of multi-split XFEM ... [more ▼] In this article, a computationally efficient multi-split MsXFEM is proposed to evaluate the elastic properties of heterogeneous materials. The multi-split MsXFEM is the combination of multi-split XFEM with multiscale finite element methods (MsFEM). The multi-split XFEM is capable to model multiple discontinuities in a single element which leads to reduction in the number of mesh elements, whereas MsFEM helps in reducing the computational time. Strain energy based homogenization has been implemented on an RVE (having volume fraction of heterogeneities up to 50%) for evaluating the elastic properties. From macro-element size analysis, we estimate that the RVE edge length must be 5 times the edge length of the macro-element. The directional analysis has been performed to verify the isotropic behavior of the material, whereas contrast analysis has been done to check the numerical accuracy of the proposed scheme. A level set correction (LSC) based on higher order shape functions has been proposed to reduce mapping errors of level set values. It is also observed that multi-split MsXFEM is about 16 times computationally more efficient than MsXFEM for 50% volume of heterogeneities. [less ▲] Detailed reference viewed: 79 (0 UL)![]() ; ; et al in Computer Methods in Applied Mechanics and Engineering (2018) We propose a parallel and computationally efficient multi-split XFEM approach for 3-D analysis of heterogeneous materials. In this approach, multiple discontinuities (pores and reinforcement particles ... [more ▼] We propose a parallel and computationally efficient multi-split XFEM approach for 3-D analysis of heterogeneous materials. In this approach, multiple discontinuities (pores and reinforcement particles) may intersect any given element (we call those elements multi-split elements). These discontinuities are modeled by imposing additional degrees of freedom at the nodes. The main advantage of the proposed scheme is that the mesh size remains independent of the relative distance among the heterogeneities/discontinuities. The pores and reinforcement particles are assumed to be spherical. The simulations are performed for uniform and non-uniform heterogeneity distribution. The Young’s modulus of the heterogeneous material is evaluated for different amount of pores and reinforcement particles. To demonstrate the computational efficiency of the multi-split XFEM, elastic damage analysis is performed for the unit cell with 5% pores and 5% reinforcement particles under uniaxial tensile loading. These simulations show that the Young’s modulus decreases linearly with the increase in the volume fraction of the pores and increases linearly with the increase in volume fraction of reinforcement particles. The multi-split XFEM is found to be at least 1.8 times computationally efficient than standard XFEM and at least 6.7 times computationally efficient than FEM. [less ▲] Detailed reference viewed: 149 (2 UL) |
||