![]() ; Rinaldi, Marco ![]() in Transportation Research Procedia (2020, January), 47 Detailed reference viewed: 69 (5 UL)![]() Rinaldi, Marco ![]() ![]() Scientific Conference (2019, January) Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly achieve ... [more ▼] Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly achieve these goals, careful consideration should be put on the operational cost and management of PT services, in order to promote the adoption of green mobility solutions and advanced management techniques by operators. In this work we develop a dynamic fleet management approach for next generation Public Transportation systems, considering the instance of mixed electric / hybrid fleet. Our objective is that of investigating to what extent electrification, coupled with optimal fleet management, can yield operational cost savings for PT operators, explicitly considering real-time disturbances, including delays, service disruptions etc. We propose a Mixed Integer Linear Program to address the problem of optimal scheduling of a mixed fleet of electric and hybrid / non-electric buses, and employ it as predictor in a Model Predictive Control approach. Test results based upon a real-life scenario showcase how the proposed approach is indeed capable of yielding a sizable reduction in operational costs, even when considerable disturbances arise from the underlying system. [less ▲] Detailed reference viewed: 263 (10 UL)![]() ![]() ; Rinaldi, Marco ![]() ![]() Scientific Conference (2018, September) We are a team of engineers working on a concrete project of Mobility in Luxembourg. We want to solve the problem of optimally determining the sequence of electric and hybrid electric buses, considering ... [more ▼] We are a team of engineers working on a concrete project of Mobility in Luxembourg. We want to solve the problem of optimally determining the sequence of electric and hybrid electric buses, considering both service constraints (schedule adherence) and energy constraints (electric bus charging status, bus recharging scheduling in capacitated facilities) and at the same time ensure a high level of quality of service for the user satisfaction. The problem is formulated as a Mixed Integer Linear Program, with the objective of minimizing the total operational cost for the bus lines in question. System dynamics are captured by twenty sets of constraints, ranging from scheduling adherence to discharge-recharge dynamics. Individual operational costs at the bus level (cost of running an electric / non-electric bus per km, cost of recharging) and at the trip level (penalty due to failed schedule adherence) are fully parametrised, allowing for extensive sensitivity analysis. We investigate a real-life case study based in the city of Luxembourg, where the objective is to reach the all-electric mode for principal urban buses network. Through the model we investigate: the minimum amount of electric buses necessary to perform a day’s schedule for two currently partially electrified lines, without resorting to conventional internal combustion alternatives; the impact of electrifying two additional lines, specifically considering the trade-offs related to either adding new buses or new charging stations at the bus terminal. Finally, we studied how to best decompose the overall problem in several smaller problems, to be able to solve also realistic scenarios and using large real data sets from the Mobility Data owner of Luxembourg. We analysed and compared two kinds of decomposition: a bus line-based decomposition, and a time-based decomposition. [less ▲] Detailed reference viewed: 106 (7 UL)![]() ![]() Rinaldi, Marco ![]() Scientific Conference (2018, July) We consider the problem of optimally determining the sequence of electric and conventional internal combustion buses departing from a multi-line bus terminal, considering both service constraints ... [more ▼] We consider the problem of optimally determining the sequence of electric and conventional internal combustion buses departing from a multi-line bus terminal, considering both service constraints (schedule adherence) and energy constraints (electric bus charging status, bus recharging scheduling in capacitated facilities). The problem is formulated as a Mixed Integer Linear Program, with the objective of minimizing the total operational cost for the bus lines in question. System dynamics are captured by twenty sets of constraints, ranging from scheduling adherence to discharge-recharge dynamics. Individual operational costs at the bus level (cost of running an electric / non electric bus per km, cost of recharging) and at the trip level (penalty due to failed schedule adherence) are fully parametrised, allowing for extensive sensitivity analysis. We investigate a real-life case study based in the city of Luxembourg, where two charging stations have been installed in the central station’s bus terminal. Through the model we investigate: i) the minimum amount of electric buses necessary to perform a day’s schedule for two currently partially electrified lines, without resorting to conventional internal combustion alternatives; ii) the impact of electrifying two additional lines, specifically considering the trade-offs related to either adding new buses or new charging stations at the bus terminal. [less ▲] Detailed reference viewed: 178 (10 UL) |
||