References of "Nguyen-Vinh, H."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExtended finite element method for dynamic fracture of piezo-electric materials
Nguyen-Vinh, H.; Bakar, I.; Msekh, M. A. et al

in Engineering Fracture Mechanics (2012), 92

We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and ... [more ▼]

We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. [less ▲]

Detailed reference viewed: 126 (0 UL)
Full Text
Peer Reviewed
See detailA cell-based smoothed finite element method for kinematic limit analysis
Le, Canh. V.; Nguyen-Xuan, H.; Askes, H. et al

in International Journal for Numerical Methods in Engineering (2010), 83(12), 1651-1674

This paper presents a new numerical procedure for kinematic limit analysis problems, which incorporates the cell-based smoothed finite element method with second-order cone programming. The application of ... [more ▼]

This paper presents a new numerical procedure for kinematic limit analysis problems, which incorporates the cell-based smoothed finite element method with second-order cone programming. The application of a strain smoothing technique to the standard displacement finite element both rules out volumetric locking and also results in an efficient method that can provide accurate solutions with minimal computational effort. The non-smooth optimization problem is formulated as a problem of minimizing a sum of Euclidean norms, ensuring that the resulting optimization problem can be solved by an efficient second-order cone programming algorithm. Plane stress and plane strain problems governed by the von Mises criterion are considered, but extensions to problems with other yield criteria having a similar conic quadratic form or 3D problems can be envisaged. [less ▲]

Detailed reference viewed: 140 (2 UL)