![]() ; ; Sensale, Marco ![]() Scientific Conference (2019, December 09) The proposed paper concerns the prediction of the numerical response of a biomechanical structure submitted to an unknown external loading state. The methodology is based on homogeneous and then ... [more ▼] The proposed paper concerns the prediction of the numerical response of a biomechanical structure submitted to an unknown external loading state. The methodology is based on homogeneous and then heterogeneous structures such as healthy or pathological cutaneous tissues that can be mechanically tested in vivo under a patchy knowledge of boundary conditions. Experimental data corresponding to the extension of a piece of skin located between two pads with displacement enslavement, represent input data to the numerical model. Data are reaction force on one pad and displacement field between the two pads and all around. The numerical model consists of a representation of the bi-material domain geometry with neo-hookean behaviors. The boundary conditions and loadings of the experimental extension test are imposed. The materials parameters have been identified by inverse method starting from a constrained cost function minimizing the difference between the calculated displacements field and experimental displacements field obtained by digital image correlation and taking into account the reaction force as a constraint. An analysis of the model sensitivity to material parameters is presented. [less ▲] Detailed reference viewed: 50 (1 UL)![]() ; ; Sensale, Marco ![]() Scientific Conference (2019, December 09) The human skin behaves as an elastic membrane initially prestressed but not uniformly. The presence of anatomical sites favorable to the appearance of some tumors, a keloid in our case, while other sites ... [more ▼] The human skin behaves as an elastic membrane initially prestressed but not uniformly. The presence of anatomical sites favorable to the appearance of some tumors, a keloid in our case, while other sites never develop them attests to the importance of the mechanical environment of the tissue. Thus, a mechanical characterization of the tumored skin is necessary to understand the keloid expansion from a mechanical point of view. Our case study consists in modeling a bi-material structure composed of a keloid skin surrounded by healthy skin located on upper left arm of a young female. From the experimental measurements in vivo, by combining force sensor, displacement sensor and Digital Image Correlation techniques, we perform a mechanical analysis to characterize the mechanical stress fields over the entire area and on the interface ‘healthy skin/keloid skin’. Since the mechanical behavior of the tumorous skin is unknown, many physical models can be implemented and assessed very easily inside the specific digital software to fit with the real data. Once a set of mechanical parameters for both the healthy skin and the keloid skin are identified, the stress fields around the keloid are calculated. Next steps consist in determining matching preferential directions in order to define as precisely as possible the specifications of a device for preventing the growth of keloids. [less ▲] Detailed reference viewed: 55 (3 UL) |
||