![]() Baniasadi, Mehri ![]() ![]() in Human Brain Mapping (2022) Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by ... [more ▼] Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by-registration approach, where subject magnetic resonance imaging (MRIs) are mapped to a template with well-defined segmentations. However, registration-based pipelines are time-consuming, thus, limiting their clinical use. This paper uses deep learning to provide a one-step, robust, and efficient deep brain segmentation solution directly in the native space. The method consists of a preprocessing step to conform all MRI images to the same orientation, followed by a convolutional neural network using the nnU-Net framework. We use a total of 14 datasets from both research and clinical collections. Of these, seven were used for training and validation and seven were retained for testing. We trained the network to segment 30 deep brain structures, as well as a brain mask, using labels generated from a registration-based approach. We evaluated the generalizability of the network by performing a leave-one-dataset-out cross-validation, and independent testing on unseen datasets. Furthermore, we assessed cross-domain transportability by evaluating the results separately on different domains. We achieved an average dice score similarity of 0.89 ± 0.04 on the test datasets when compared to the registration-based gold standard. On our test system, the computation time decreased from 43 min for a reference registration-based pipeline to 1.3 min. Our proposed method is fast, robust, and generalizes with high reliability. It can be extended to the segmentation of other brain structures. It is publicly available on GitHub, and as a pip package for convenient usage. [less ▲] Detailed reference viewed: 38 (2 UL)![]() Garcia Santa Cruz, Beatriz ![]() ![]() in Scientific Reports (2022) The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality ... [more ▼] The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fne segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis. [less ▲] Detailed reference viewed: 224 (18 UL)![]() Garcia Santa Cruz, Beatriz ![]() ![]() ![]() in Vol. 3 (2022): Proceedings of the Northern Lights Deep Learning Workshop 2022 (2022, April 18) The use of Convolutional Neural Networks (CNN) in medical imaging has often outperformed previous solutions and even specialists, becoming a promising technology for Computer-aided-Diagnosis (CAD) systems ... [more ▼] The use of Convolutional Neural Networks (CNN) in medical imaging has often outperformed previous solutions and even specialists, becoming a promising technology for Computer-aided-Diagnosis (CAD) systems. However, recent works suggested that CNN may have poor generalisation on new data, for instance, generated in different hospitals. Uncontrolled confounders have been proposed as a common reason. In this paper, we experimentally demonstrate the impact of confounding data in unknown scenarios. We assessed the effect of four confounding configurations: total, strong, light and balanced. We found the confounding effect is especially prominent in total confounder scenarios, while the effect on light and strong confounding scenarios may depend on the dataset robustness. Our findings indicate that the confounding effect is independent of the architecture employed. These findings might explain why models can report good metrics during the development stage but fail to translate to real-world settings. We highlight the need for thorough consideration of these commonly unattended aspects, to develop safer CNN-based CAD systems. [less ▲] Detailed reference viewed: 157 (18 UL)![]() Garcia Santa Cruz, Beatriz ![]() ![]() in Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. (2022, April 05) Detailed reference viewed: 45 (3 UL)![]() ![]() Baniasadi, Mehri ![]() ![]() ![]() in Bildverarbeitung für die Medizin 2022 (2022) Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an ... [more ▼] Following the deep brain stimulation (DBS) surgery, the stimulation parameters are manually tuned to reduce symptoms. This procedure can be timeconsuming, especially with directional leads. We propose an automated methodology to initialise contact configurations using imaging techniques. The goal is to maximise the electric field on the target while minimising the spillover, and the electric field on regions of avoidance. By superposing pre-computed electric fields, we solve the optimisation problem in less than a minute, much more efficient compared to finite element methods. Our method offers a robust and rapid solution, and it is expected to considerably reduce the time required for manual parameter tuning. [less ▲] Detailed reference viewed: 96 (12 UL)![]() ![]() Garcia Santa Cruz, Beatriz ![]() ![]() ![]() Scientific Conference (2021, November 16) In this paper, we discuss the importance of considering causal relations in the development of machine learning solutions to prevent factors hampering the robustness and generalisation capacity of the ... [more ▼] In this paper, we discuss the importance of considering causal relations in the development of machine learning solutions to prevent factors hampering the robustness and generalisation capacity of the models, such as induced biases. This issue often arises when the algorithm decision is affected by confounding factors. In this work, we argue that the integration of causal relationships can identify potential confounders. We call for standardised meta-information practices as a crucial step for proper machine learning solutions development, validation, and data sharing. Such practices include detailing the dataset generation process, aiming for automatic integration of causal relationships. [less ▲] Detailed reference viewed: 70 (12 UL)![]() Husch, Andreas ![]() in NeuroImage: Clinical (2018), 17 Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative ... [more ▼] Abstract Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS electrodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The main contribution of this paper is that for the first time we present a highly accurate and fully automated method for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is demonstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode trajectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below 100 μm (0.046 ± 0.025 mm). An implementation of the method is made publicly available such that it can directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead reconstruction into standard clinical care. [less ▲] Detailed reference viewed: 249 (31 UL)![]() Hertel, Frank ![]() ![]() in Stereotactic and Functional Neurosurgery (2015), 93(5), 303-308 Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show ... [more ▼] Background: Deep brain stimulation (DBS) trajectory plan- ning is mostly based on standard 3-D T1-weighted gado- linium-enhanced MRI sequences (T1-Gd). Susceptibility- weighted MRI sequences (SWI) show neurovascular struc- tures without the use of contrast agents. The aim of this study was to investigate whether SWI might be useful in DBS trajectory planning. Methods: We performed bilateral DBS planning using conventional T1-Gd images of 10 patients with different kinds of movement disorders. Afterwards, we matched SWI sequences and compared the visibility of vas- cular structures in both imaging modalities. Results: By ana- lyzing 100 possible trajectories, we found a potential vascu- lar conflict in 13 trajectories based on T1-Gd in contrast to 53 in SWI. Remarkably, all vessels visible in T1-Gd were also de- picted in SWI, whereas SWI showed many additional vascular structures which could not be identified in T1-Gd. Conclu- sion/Discussion: The sensitivity for detecting neurovascular structures for DBS planning seems to be significantly higher in SWI. As SWI does not require a contrast agent, we suggest that SWI may be a valuable alternative to T1-Gd MRI for DBS trajectory planning. Furthermore, the data analysis suggests that vascular interactions of DBS trajectories might be more frequent than expected from the very low incidence of symptomatic bleedings. The explanation for this is currently the subject of debate and merits further studies. [less ▲] Detailed reference viewed: 167 (13 UL)![]() Bernard, Florian ![]() ![]() in The proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015) The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered ... [more ▼] The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered usually iterative methods are used. In practice the iterative methods perform well if the relative transformations between any pair of objects are free of noise. However, if only noisy relative transformations are available (e.g. due to missing data or wrong correspondences) the iterative methods may fail. Based on the observation that the underlying noise-free transformations lie in the null space of a matrix that can directly be obtained from pairwise alignments, this paper presents a novel method for the synchronisation of pairwise transformations such that they are globally consistent. Simulations demonstrate that for a high amount of noise, a large proportion of missing data and even for wrong correspondence assignments the method delivers encouraging results. [less ▲] Detailed reference viewed: 229 (38 UL) |
||