References of "Hassani, Saif Alislam 0180252133"
     in
Bookmark and Share    
Full Text
See detailA comparison between conventional Earth Observation Satellites and CubeSats; Requirements, Capabilities and Data Quality
Backes, Dietmar UL; Hassani, Saif Alislam UL; Teferle, Felix Norman UL et al

Scientific Conference (2019, September 11)

From its early beginning as an educational tool in 1999, cubesats have evolved into a popular platform for technology demonstrations and scientific instruments. Ideas and innovations sparked from an ... [more ▼]

From its early beginning as an educational tool in 1999, cubesats have evolved into a popular platform for technology demonstrations and scientific instruments. Ideas and innovations sparked from an enthusiastic community led to the development of new Earth Observation (EO) technology concepts based on large constellations of satellites with high-resolution optical imagers previously considered as infeasible. Probably the most significant constellation today is deployed by Planet who are currently operating a fleet larger than 120 3U Dove satellites, which provide an imaging service with up to 3m Ground Sample Distance (GSD). The number of low-cost EO Cubesat systems is constantly increasing. However, for a number of reasons there still seems to be a reluctance to use such data for many EO applications. A better understanding of the capabilities of the current generation of small Cubesats compared to the traditional well-established bigger operational missions of high and medium resolution EO satellites is required. What are the critical capabilities and quality indicators? Due to the limited size and weight of Cubesats, critical system components, e.g. for navigation and communication, always compete with operational payloads such as optical camera/sensor systems. A functional EO system requires balanced payload, which provides adequate navigational capabilities, that match the requirements of the optical imagers (camera) deployed with the system. This study reviews the current performance and capabilities of Cubesats for optical EO and compares them to the capabilities of conventional, dedicated high and medium resolution EO systems. We summarise key performance parameters and quality indicators to evaluate the difference between the systems. An empirical study compares recent very high-resolution (VHR) imagery from big EO satellite missions with available images from Cubesats for the use case in disaster monitoring. Small and agile Nanosatellites or Cubesats already show remarkable performance. Although it is not expected that their performance and capability will match those of current bigger EO satellite missions, they are expected to provide a valuable tool for EO and remote sensing, in particular for downstream industry applications. [less ▲]

Detailed reference viewed: 338 (47 UL)