References of "Eccleston, L. J."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBimodal and hysteretic expression in mammalian cells from a synthetic gene circuit
May, T.; Eccleston, L. J.; Markusic, D. et al

in Public Library of Science ONE (2008), 3(6),

In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with ... [more ▼]

In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with natural pathways. Alternatively, they may be interlinked with endogenous pathways to create artificial networks of higher complexity. While these approaches have been already successful in prokaryotes and lower eukaryotes, the implementation of such synthetic cassettes in mammalian systems and even animals is still a major obstacle. This is mainly due to the lack of methods that reliably and efficiently transduce synthetic modules without compromising their regulation properties. To pave the way for implementation of synthetic regulation modules in mammalian systems we utilized lentiviral transduction of synthetic modules. A synthetic positive feedback loop, based on the Tetracycline regulation system was implemented in a lentiviral vector system and stably integrated in mammalian cells. This gene regulation circuit yields a bimodal expression response. Based on experimental data a mathematical model based on stochasticity was developed which matched and described the experimental findings. Modelling predicted a hysteretic expression responsewhich was verified experimentally. Thereby supporting the idea that the system is driven by stochasticity. The results presented here highlight that the combination of three independent tools/methodologies facilitate the reliable installation of synthetic gene circuits with predictable expression characteristics in mammalian cells and organisms. [less ▲]

Detailed reference viewed: 109 (0 UL)
Full Text
Peer Reviewed
See detailDynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks
Howes, R.; Eccleston, L. J.; Goncalves, Jorge UL et al

in The proceedings of the 47th IEEE Conference on Decision and Control (2008)

Network reconstruction, i.e. obtaining network structure from input-output information, is a central theme in systems biology. A variety of approaches aim to obtaining structural information from ... [more ▼]

Network reconstruction, i.e. obtaining network structure from input-output information, is a central theme in systems biology. A variety of approaches aim to obtaining structural information from available data. Previous work has introduced dynamical structure functions as a tool for posing and solving the network reconstruction problem. Even for linear time invariant systems, reconstruction requires specific additional information not generated in the typical system identification process. This paper demonstrates that such extra information can be obtained through a limited sequence of system identification experiments on structurally modified systems, analogous to gene silencing and overexpression experiments. In the absence of such extra information, we discuss whether combined assumptions of network sparsity and minimality contribute to the recovery of the network dynamical structure. We provide sufficient conditions for a transfer function to have a completely decoupled minimal realization, and demonstrate that every transfer function is arbitrarily close to one that admits a perfectly decoupled minimal realization. This indicates that the assumptions of sparsity and minimality alone do not lend insight into the network structure. [less ▲]

Detailed reference viewed: 108 (1 UL)