![]() ; Bordas, Stéphane ![]() E-print/Working paper (2014) We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity ... [more ▼] We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEMis combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D. [less ▲] Detailed reference viewed: 466 (10 UL) |
||