Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
See detailNuevos conocimientos sobre el aprendizaje y la enseñanza de los movimientos.
Bund, Andreas UL

Scientific Conference (2003, July)

Detailed reference viewed: 30 (0 UL)
Full Text
Peer Reviewed
See detailNuisance or remedy? The utility of stylistic responding for the identification of data fabrication in surveys
Kemper, Christoph UL; Menold, Natalja

in Methodology: European Journal of Research Methods for the Behavioral and Social Sciences (2014), 10(3), 92-99

Detailed reference viewed: 43 (6 UL)
Full Text
Peer Reviewed
See detailA Null-Space metric for the analysis of partial network observability in sensor location problems
Rinaldi, Marco; Viti, Francesco UL; Corman, Francesco

Scientific Conference (2013)

Detailed reference viewed: 98 (1 UL)
Full Text
Peer Reviewed
See detailNullità di protezione e contratto di lavoro: una convergenza apparente
Ratti, Luca UL

in Variazioni su temi diritto del lavoro (2017), 4

Detailed reference viewed: 49 (2 UL)
Full Text
Peer Reviewed
See detailNullité d'une souscription de parts d'OPCVM pour réticence dolosive, Note sous CA Paris, 30 oct. 2012
Riassetto, Isabelle UL

in Revue de Droit Bancaire et Financier (2013)

Detailed reference viewed: 47 (0 UL)
Full Text
Peer Reviewed
See detailNumber magnitude potentiates action judgements
Badets, Arnaud; Andres, Michael; Di Luca, Samuel UL et al

in Experimental Brain Research (2007), 180(3), 525-34

Motor actions can be simulated and generated through the perception of objects and their characteristics. Such functional characteristics of objects with given action capabilities are called affordances ... [more ▼]

Motor actions can be simulated and generated through the perception of objects and their characteristics. Such functional characteristics of objects with given action capabilities are called affordances. Here we report an interaction between the perception of affordances and the processing of numerical magnitude, and we show that the numerical information calibrates the judgement of action even when no actual action is required. In Experiment 1, participants had to judge whether they would be able to grasp a rod lengthways between their thumb and index finger. The presentation of the rod was preceded by a number or a non-numerical symbol. When a small number preceded the rod, participants overestimated their grasp; conversely, when a large number preceded the rods, they underestimated their grasp. In Experiment 2, participants were requested to judge if two successive rods had the same length, a judgement that did not involve any grasping. The numerical primes had no effect on this judgement, showing that the magnitude/affordance interaction was not due to a simple perceptual effect. Finally, Experiment 3 showed that the interaction was not present with a non-numerical ordered sequence, thereby eliminating sequence order as a potentially confounding variable. [less ▲]

Detailed reference viewed: 62 (0 UL)
Full Text
Peer Reviewed
See detailNumber of maximal partial clones
Schölzel, Karsten UL

in Proceedings of The International Symposium on Multiple-Valued Logic (2010)

All maximal partial clones on 4-element, 5-element, and 6-element sets have been found and are compared to the case of maximal clones of all total functions. Due to the large numbers of maximal partial ... [more ▼]

All maximal partial clones on 4-element, 5-element, and 6-element sets have been found and are compared to the case of maximal clones of all total functions. Due to the large numbers of maximal partial clones other criteria to check for generating systems of all partial functions are analyzed. [less ▲]

Detailed reference viewed: 65 (0 UL)
Full Text
Peer Reviewed
See detailNumber processing and basal ganglia dysfunction: a single case study.
Delazer, Margarete; Domahs, Frank; Lochy, Aliette UL et al

in Neuropsychologia (2004), 42(8), 1050-62

Numerical processing has never been investigated in a case of Fahr's disease (FD) and only rarely in cases of basal ganglia dysfunction. The study describes the cognitive decline of a pre-morbidly high ... [more ▼]

Numerical processing has never been investigated in a case of Fahr's disease (FD) and only rarely in cases of basal ganglia dysfunction. The study describes the cognitive decline of a pre-morbidly high-functioning patient (medical doctor) affected by FD and his difficulties in number processing. A MRI scan revealed bilateral calcifications in the basal ganglia and a brain PET showed a massive reduction of glucose metabolism in the basal ganglia and both frontal lobes, but no other brain abnormalities. The patient's cognitive deficits included impairments in problem solving, in cognitive set shifting and in mental flexibility, as well as in verbal memory. These deficits are attributed to the disruption of the dorsolateral prefrontal circuit involving the basal ganglia. In number processing, the patient showed a severe deficit in the retrieval of multiplication facts, deficits in all tasks of numerical problem solving and in the execution of complex procedures. Importantly, he also showed a dense deficit in conceptual knowledge, which concerned all test conditions and all operations. The findings confirm the predictions of the triple code model in so far, as a disruption of cortico-subcortical loops involving the basal-ganglia may lead to specific deficits in fact retrieval. However, no verbal deficit, as assumed in the triple code model and reported in similar cases, could be observed. The present findings further add to current knowledge on numerical processing, showing how fronto-executive dysfunction may disrupt conceptual understanding of arithmetic. This study shows that not only parietal lesions may lead to severe deficits in conceptual understanding, but that basal ganglia lesions leading to frontal dysfunction may have a devastating effect. [less ▲]

Detailed reference viewed: 7 (0 UL)
Peer Reviewed
See detailNumber sense and mathematical expertise: The strategic view.
Guillaume, Mathieu UL; Nys, Julie; Content, Alain

Poster (2011)

Detailed reference viewed: 22 (0 UL)
See detailNumber-space interactions and how they develop over lifespan
Schiltz, Christine UL

Presentation (2012, December 05)

Detailed reference viewed: 32 (1 UL)
See detailNumbers in grids of intelligibility: Making sense of how educational truth is told
Popkewitz, Thomas S. UL

in Lauder, Hugh; Young, Michael; Daniels, Harry (Eds.) et al Educating for the knowledge economy? Critical perspectives (2012)

Detailed reference viewed: 319 (4 UL)
Full Text
Peer Reviewed
See detailNumbers reorient visuo-spatial attention during cancellation tasks
Di Luca, Samuel UL; Pesenti, Mauro; Vallar, Giuseppe et al

in Experimental Brain Research (2013), 225(4), 549-57

Numbers induce shifts of spatial attention on the left or the right sides of external space as a function of their magnitude. However, whether this number-space association is restricted to the linear ... [more ▼]

Numbers induce shifts of spatial attention on the left or the right sides of external space as a function of their magnitude. However, whether this number-space association is restricted to the linear horizontal extensions, or extends to the whole visual scene, is still an open question. This study investigates, by means of a cancellation paradigm, the influence of numerical magnitude during scanning tasks in which participants freely explore complex visual scenes unconstrained towards either the horizontal or the vertical unidimensional axes. Five cancellation tasks were adapted in which Arabic digits were used as targets or distracters, in structured (lines and columns) or unstructured visual displays, with a smaller (2 or 3 types of distracters) or larger (10 or more types of distracters) sets of stimuli. Results show that the participants' hits distribution was a function of number magnitude: shifted on the left for small and on the right for large numbers. This effect was maximised when numerical cues were sparse, randomly arranged and, critically, irrelevant to the task. Overall, this study provides novel evidence from visuo-spatial exploratory cancellation tasks for an attentional shift induced by number magnitude. [less ▲]

Detailed reference viewed: 87 (0 UL)
See detailNumerical Analysis for the determination of Stress Percolation in Dry-Stacked Wall Systems
Agaajani, Shahriar; Waldmann, Danièle UL; Scholzen, Frank UL et al

in Revue Technique (2016)

This paper comprises a portion of a PhD study concluding on the potential use of a new mortarless and modular masonry system by taking into consideration the outcome of a multidisciplinary study including ... [more ▼]

This paper comprises a portion of a PhD study concluding on the potential use of a new mortarless and modular masonry system by taking into consideration the outcome of a multidisciplinary study including aspects of experimental, numerical and analytical investigations in relation to a practical and economical development of modular load-bearing dry-stacked masonry systems. Different forms of interlocking masonry elements have been modelled and optimised thermo-mechanically. Full-scale masonry walls were assembled and tested experimentally under compressive, flexural, shear, cyclic and long term loads. The overall structural behaviour was compared to conventional masonry systems such as hollow and shuttering blocks. The investigations showed overall relative high structural performances for the developed dry-stacked elements. The effect of dry joint interfaces was extensively investigated experimentally and numerically under FE analysis. Based on the experimental observations, a numeric-analytical failure mechanism of the dry-stacked masonry structure is anticipated under axial and flexural loading. The structural investigations and engineering processes are completed by the development of a package of dry-stacked units consisting of interlocking modular masonries and an accompanying array of various other precast parts. This confirmed the practical issues and solutions towards the exploitation of the developed dry-stacked elements for the construction of ready-to-build, modular and load-bearing walls. The portion of work presented herein proposes a new numerical technique for the determination of stress-percolation in dry stacked load-bearing structures. The model is developed in three steps under a numerical computing environment. First, based on geometrical properties of the dry-stacked elements and with a linear-elastic material behaviour, the load percolation and intensity in dry-stacked masonry walls is determined. In a second step, a phenomenon known as a plastic accommodation which accompanies the redistribution of the stress percolations, is incorporated in the model. This enables the understanding of the evolution of the stress percolations in the post-elastic phase, which is crucial for the determination of the load capacity and stability of the structure in function of an increased external load. This paper also supports the better understanding of early fissuring in dry-stacked masonry structures which has an important influence on the overall stability of the structure. Finally, in a third step, the improvement of dry-stacked structures is pursued by further analysis of the results obtained through the algorithm. This paper represents a new tool for investigating the localized and randomly defined internal stress distribution induced by external compression forces on dry-stacked structures. Furthermore, the algorithm illustrates that experimental investigations on dry-stacked systems may only give real indications on the load capacity of the structure, when the number of joint interfaces and height to length ratio of the block is respected and that results of experimental investigations on reduced prism specimens may not be extrapolated to full sized walls as they may over-evaluate the effective loaded masonry sections and therefore the overall load capacity. [less ▲]

Detailed reference viewed: 154 (25 UL)
Full Text
Peer Reviewed
See detailNumerical Analysis for the determination of Stress Percolation in Dry-Stacked Wall Systems
Agaajani, Shahriar; Waldmann, Danièle UL; Scholzen, Frank UL et al

in Masonry International (2016)

This paper comprises a portion of a PhD study concluding on the potential use of a new mortarless and modular masonry system by taking into consideration the outcome of a multidisciplinary study including ... [more ▼]

This paper comprises a portion of a PhD study concluding on the potential use of a new mortarless and modular masonry system by taking into consideration the outcome of a multidisciplinary study including aspects of experimental, numerical and analytical investigations in relation to a practical and economical development of modular load-bearing dry-stacked masonry systems. Different forms of interlocking masonry elements have been modelled and optimised thermo-mechanically. Full-scale masonry walls were assembled and tested experimentally under compressive, flexural, shear, cyclic and long term loads. The overall structural behaviour was compared to conventional masonry systems such as hollow and shuttering blocks. The investigations showed overall relative high structural performances for the developed dry-stacked elements. The effect of dry joint interfaces was extensively investigated experimentally and numerically under FE analysis. Based on the experimental observations, a numeric-analytical failure mechanism of the dry-stacked masonry structure is anticipated under axial and flexural loading. The structural investigations and engineering processes are completed by the development of a package of dry-stacked units consisting of interlocking modular masonries and an accompanying array of various other precast parts. This confirmed the practical issues and solutions towards the exploitation of the developed dry-stacked elements for the construction of ready-to-build, modular and load-bearing walls. The portion of work presented herein proposes a new numerical technique for the determination of stress-percolation in dry stacked load-bearing structures. The model is developed in three steps under a numerical computing environment. First, based on geometrical properties of the dry-stacked elements and with a linear-elastic material behaviour, the load percolation and intensity in dry-stacked masonry walls is determined. In a second step, a phenomenon known as a plastic accommodation which accompanies the redistribution of the stress percolations, is incorporated in the model. This enables the understanding of the evolution of the stress percolations in the post-elastic phase, which is crucial for the determination of the load capacity and stability of the structure in function of an increased external load. This paper also supports the better understanding of early fissuring in dry-stacked masonry structures which has an important influence on the overall stability of the structure. Finally, in a third step, the improvement of dry-stacked structures is pursued by further analysis of the results obtained through the algorithm. This paper represents a new tool for investigating the localized and randomly defined internal stress distribution induced by external compression forces on dry-stacked structures. Furthermore, the algorithm illustrates that experimental investigations on dry-stacked systems may only give real indications on the load capacity of the structure, when the number of joint interfaces and height to length ratio of the block is respected and that results of experimental investigations on reduced prism specimens may not be extrapolated to full sized walls as they may over-evaluate the effective loaded masonry sections and therefore the overall load capacity. [less ▲]

Detailed reference viewed: 170 (39 UL)
Full Text
See detailNumerical analysis of free-surface flow through rotating machines
Schippke, Henning; Zilian, Andreas UL

Presentation (2013)

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on ... [more ▼]

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on fossil burnings. Therefore, in the future most of the energy shall be gained by harvesting power from sun, wind or water, geothermal heat or biomass. In case of converting energy from wind into electrical power wind turbines are used in general, while hydropower turbines are the state-of-the-art machinery to derive energy from running water. In order to convert the potential energy from running water as well water wheels pose the method of choice. Turbines in air or water represent mechanically a two-field system, in which the structure of the turbine is surrounded by a streaming fluid. Due to the elasticity of the rotor blades the stresses of the fluid onto the structure deform the blades, which in return yield a time-dependent flow domain. Therefore turbines in a streaming fluid represent a typical example of fluid-structure interaction. Furthermore, in case of water wheels the surrounding air as third field and additional fluid phase comes into play introducing a free surface. In this contribution the governing equations of incompressible fluid flow are presented using primal variables and discretised via the space-time finite element method [3]. The discretised model equations of the fluid are stabilised using an SUPG/PSPG approach. Shape and test functions are continuous within the space-time slabs, while across the space- time slabs the shape and test functions are continuous only in space, but discontinuous in time yielding a time-discontinuous Galerkin approach. Due to the moving rotor blades a mesh moving technique needs to be incorporated into the computational set-up. Considering the occurring large but regular displacements of the flow boundary arising from the rotating rotor blades the shear-slip mesh update method (SSMUM) [1] as discontinuous mesh moving technique is applied. In case of water wheels the free surface is described implicitly via a Level-Set function [2] yielding a single fluid phase with almost discontinuous density and viscosity. The verification and validation of the developed numerical scheme is carried out with the help of computing classical benchmark problems as well as via a comparison to existing experimental data. [less ▲]

Detailed reference viewed: 84 (3 UL)