![]() Kaushik, Ankit ![]() ![]() ![]() in Wireless Communications, IEEE Transactions on (2015), PP(99), 14 Secondary access to the licensed spectrum is viable only if the interference is avoided at the primary system. In this regard, different paradigms have been conceptualized in the existing literature ... [more ▼] Secondary access to the licensed spectrum is viable only if the interference is avoided at the primary system. In this regard, different paradigms have been conceptualized in the existing literature. Among these, interweave systems (ISs) that employ spectrum sensing have been widely investigated. Baseline models investigated in the literature characterize the performance of the IS in terms of a sensing-throughput tradeoff, however, this characterization assumes perfect knowledge of the involved channels at the secondary transmitter, which is unavailable in practice. Motivated by this fact, we establish a novel approach that incorporates channel estimation in the system model, and consequently investigate the impact of imperfect channel knowledge on the performance of the IS. More particularly, the variation induced in the detection probability affects the detector’s performance at the secondary transmitter, which may result in severe interference at the primary receivers. In this view, we propose to employ average and outage constraints on the detection probability, in order to capture the performance of the IS. Our analysis reveals that with an appropriate choice of the estimation time determined by the proposed approach, the performance degradation of the IS can be effectively controlled, and subsequently the achievable secondary throughput can be significantly enhanced. [less ▲] Detailed reference viewed: 171 (6 UL)![]() ; ; et al in Wireless Communications, IEEE Transactions on (2014), 13(5), 2646-2658 We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints ... [more ▼] We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation. [less ▲] Detailed reference viewed: 191 (1 UL)![]() ; Christopoulos, Dimitrios ![]() ![]() in Wireless Communications, IEEE Transactions on (2014), 13(11), 6286-6299 Rain attenuation is among the major impairments for satellite systems operating in the K-band and above. In this paper, we investigate the impact of spatially correlated rain attenuation on the ... [more ▼] Rain attenuation is among the major impairments for satellite systems operating in the K-band and above. In this paper, we investigate the impact of spatially correlated rain attenuation on the performance of a multibeam satellite return link. For a comprehensive assessment, an analytical model for the antenna pattern that generates the beams is also proposed. We focus on the outage capacity of the link and obtain analytical approximations at high and low signal-to-noise ratio. The derived approximations provide insights into the effect of key system parameters such as the interuser distance, the satellite beam radius, or the rain intensity, and simulation results show that it fits tightly with the Monte Carlo results. Additionally, the derived expressions can be easily particularized for the single-user case, providing some novel insights. [less ▲] Detailed reference viewed: 186 (21 UL) |
||