References of "Surveys in Geophysics"
     in
Bookmark and Share    
Full Text
See detailEarth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space
Panet, I.; Flury, J.; Biancale, R. et al

in Surveys in Geophysics (2013), 34(2), 141-163

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of ... [more ▼]

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within andbetween the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions. [less ▲]

Detailed reference viewed: 168 (1 UL)
Full Text
Peer Reviewed
See detailImproved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-based Geodetic Observations
King, M.; Altamimi, Z.; Boehm, J. et al

in Surveys in Geophysics (2010), 31(5), 465-507

The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE ... [more ▼]

The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE) data to be used to determine accurate and continent-wide assessments of ice mass change and hydrology. However, modelled GIA isuncertain due to insufficient constraints on our knowledge of past glacial changes and to large simplifications in the underlying Earth models. Consequently, we show differences between models that exceed several mm/year in terms of surface displacement for the two major ice sheets: Greenland and Antarctica. Geodetic measurements of surface displacement offer the potential for new constraints to be made on GIA models, especially when they are used to improve structural features of the Earth’s interior as to allow for a more realistic reconstruction of the glaciation history. We present the distribution of presently available campaign and continuous geodetic measurements in Greenland and Antarctica and summarise surface velocities published to date, showing substantial disagreement between techniques and GIA models alike. We review the current state-of-the-art in ground-based geodesy (GPS, VLBI, DORIS, SLR) in determining accurate and precise surface velocities. In particular, we focus on known areas of need in GPS observation level models and the terrestrial reference frame in order to advance geodetic observation precision/ accuracy toward 0.1 mm/year and therefore further constrain models of GIA and subsequent present-day ice mass change estimates. [less ▲]

Detailed reference viewed: 132 (3 UL)