![]() Kabiri, Meisam ![]() ![]() ![]() in Sensors (2022), 23(1), 188 Efficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy ... [more ▼] Efficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency (RF)-based approaches to localisation. We review the RF features that can be utilized for localisation and investigate the current methods suitable for Unmanned Vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localisation for both UAVs and UGVs is examined, and the envisioned 5G NR for localisation enhancement, and the future research direction are explored. [less ▲] Detailed reference viewed: 43 (9 UL)![]() Tourani, Ali ![]() ![]() ![]() in Sensors (2022), 22(23), 9297 In recent years, Simultaneous Localization and Mapping (SLAM) systems have shown significant performance, accuracy, and efficiency gain. In this regard, Visual Simultaneous Localization and Mapping (VSLAM ... [more ▼] In recent years, Simultaneous Localization and Mapping (SLAM) systems have shown significant performance, accuracy, and efficiency gain. In this regard, Visual Simultaneous Localization and Mapping (VSLAM) methods refer to the SLAM approaches that employ cameras for pose estimation and map reconstruction and are preferred over Light Detection And Ranging (LiDAR)-based methods due to their lighter weight, lower acquisition costs, and richer environment representation. Hence, several VSLAM approaches have evolved using different camera types (e.g., monocular or stereo), and have been tested on various datasets (e.g., Technische Universität München (TUM) RGB-D or European Robotics Challenge (EuRoC)) and in different conditions (i.e., indoors and outdoors), and employ multiple methodologies to have a better understanding of their surroundings. The mentioned variations have made this topic popular for researchers and have resulted in various methods. In this regard, the primary intent of this paper is to assimilate the wide range of works in VSLAM and present their recent advances, along with discussing the existing challenges and trends. This survey is worthwhile to give a big picture of the current focuses in robotics and VSLAM fields based on the concentrated resolutions and objectives of the state-of-the-art. This paper provides an in-depth literature survey of fifty impactful articles published in the VSLAMs domain. The mentioned manuscripts have been classified by different characteristics, including the novelty domain, objectives, employed algorithms, and semantic level. The paper also discusses the current trends and contemporary directions of VSLAM techniques that may help researchers investigate them. [less ▲] Detailed reference viewed: 45 (5 UL)![]() ; ; et al in Sensors (2022) Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making ... [more ▼] Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog nodes for parallel computation, is a promising concept in task offloading. Parallel offloading suffers from challenges such as sub-task splitting and mapping of sub-tasks to the fog nodes. In this paper, we propose a novel many-to-one matching-based algorithm for the allocation of sub-tasks to fog nodes. We develop preference profiles for IoT nodes and fog nodes to reduce the task computation delay. We also propose a technique to address the externalities problem in the matching algorithm that is caused by the dynamic preference profiles. Furthermore, a detailed evaluation of the proposed technique is presented to show the benefits of each feature of the algorithm. Simulation results show that the proposed matching-based offloading technique outperforms other available techniques from the literature and improves task latency by 52% at high task loads. [less ▲] Detailed reference viewed: 17 (0 UL)![]() Monzon Baeza, Victor ![]() ![]() in Sensors (2022), 22(17), Maritime transport has become important due to its ability to internationally unite all continents. In turn, during the last two years, we have observed that the increase of consumer goods has resulted in ... [more ▼] Maritime transport has become important due to its ability to internationally unite all continents. In turn, during the last two years, we have observed that the increase of consumer goods has resulted in global shipping deadlocks. In addition, the future goes through the role of ports and efficiency in maritime transport to decarbonize its impact on the environment. In order to improve the economy and people’s lives, in this work, we propose to enhance services offered in maritime logistics. To do this, a communications system is designed on the deck of ships to transmit data through a constellation of satellites using interconnected smart devices based on IoT. Among the services, we highlight the monitoring and tracking of refrigerated containers, the transmission of geolocation data from Global Positioning System (GPS), and security through the Automatic Identification System (AIS). This information will be used for a fleet of ships to make better decisions and help guarantee the status of the cargo and maritime safety on the routes. The system design, network dimensioning, and a communications protocol for decision-making will be presented. [less ▲] Detailed reference viewed: 33 (4 UL)![]() ; Solanki, Sourabh ![]() in Sensors (2022), 22(14), 1-19 The search for a highly portable and efficient supply of energy to run small-scale wireless gadgets has captivated the human race for the past few years. As a part of this quest, the idea of realizing a ... [more ▼] The search for a highly portable and efficient supply of energy to run small-scale wireless gadgets has captivated the human race for the past few years. As a part of this quest, the idea of realizing a Quantum battery (QB) seems promising. Like any other practically tractable system, the design of QBs also involve several critical challenges. The main problem in this context is to ensure a lossless environment pertaining to the closed-system design of the QB, which is extremely difficult to realize in practice. Herein, we model and optimize various aspects of a Radio-Frequency (RF) Energy Harvesting (EH)-assisted, QB-enabled Internet-of-Things (IoT) system. Several RF-EH modules (in the form of micro- or nano-meter-sized integrated circuits (ICs)) are placed in parallel at the IoT receiver device, and the overall correspondingly harvested energy helps the involved Quantum sources achieve the so-called quasi-stable state. Concretely, the Quantum sources absorb the energy of photons that are emitted by a photon-emitting device controlled by a micro-controller, which also manages the overall harvested energy from the RF-EH ICs. To investigate the considered framework, we first minimize the total transmit power under the constraints on overall harvested energy and the number of RF-EH ICs at the QB-enabled wireless IoT device. Next, we optimize the number of RF-EH ICs, subject to the constraints on total transmit power and overall harvested energy. Correspondingly, we obtain suitable analytical solutions to the above-mentioned problems, respectively, and also cross-validate them using a non-linear program solver. The effectiveness of the proposed technique is reported in the form of numerical results, which are both theoretical and simulations based, by taking a range of operating system parameters into account. [less ▲] Detailed reference viewed: 114 (1 UL)![]() ; Kumar, Atal Anil ![]() ![]() in Sensors (2022), 22(13), 1-17 Detailed reference viewed: 59 (4 UL)![]() Hunegnaw, Addisu ![]() ![]() in Sensors (2022), 22(9), 1-23 o date, no universal modelling technique is available to mitigate the effect of site-specific multipaths in high-precision global navigation satellite system (GNSS) data processing. Multipaths affect both ... [more ▼] o date, no universal modelling technique is available to mitigate the effect of site-specific multipaths in high-precision global navigation satellite system (GNSS) data processing. Multipaths affect both carrier-phase and code/pseudorange measurements, and the errors can propagate and cause position biases. This paper presents the use of an Eccosorb AN-W-79 microwave-absorbing material mounted around a GNSS antenna that reflects less than −17 dB of normal incident energy above a frequency of 600 MHz. To verify the feasibility and effectiveness of the Eccosorb, we installed two close stations by continuously operating multi-GNSS (BeiDou, GLONASS, Galileo and GPS) in a challenging location. One station is equipped with the Eccosorb AN-W-79, covering a square area of 3.35 m2 around the antenna, and the second station operates without it. The standard deviation reductions from single point positioning estimates are significant for all the individual GNSS solutions for the station equipped with microwave-absorbing material. The reductions are as follows: for GPS, between 15% and 23%; for Galileo, between 22% and 45%; for GLONASS, 22%; and for BeiDou, 4%. Furthermore, we assess the influence of multipaths by analysing the linear combinations of code and carrier phase measurements for various GNSS frequencies. The Galileo code multipath shows a reduction of more than 60% for the station with microwave-absorbing material. For GLONASS, particularly for the GLOM3X and GLOM1P code multipath combinations, the reduction reaches 50%, depending on the observation code types. For BeiDou, the reduction is more than 30%, and for GPS, it reaches between 20% and 40%. The Eccosorb AN-W-79 microwave-absorbing material shows convincing results in reducing the code multipath noise level. Again, using microwave-absorbing material leads to an improvement between 15% and 60% in carrier phase cycle slips. The carrier-phase multipath contents on the post-fit residuals from the processed GNSS solutions show a relative RMS reduction of 13% for Galileo and 9% for GLONASS and GPS when using the microwave-absorbing material. This study also presents power spectral contents from residual signal-to-noise ratio time series using Morlet wavelet transformation. The power spectra from the antenna with the Eccosorb AN-W-79 have the smallest magnitude, demonstrating the capacity of microwave-absorbing materials to lessen the multipath influence while not eliminating it. [less ▲] Detailed reference viewed: 55 (2 UL)![]() ; Ortiz Del Castillo, Miguel ![]() in Sensors (2021) Background: The aim of this paper is to implement a system to facilitate the diagnosis of multiple sclerosis (MS) in its initial stages. It does so using a convolutional neural network (CNN) to classify ... [more ▼] Background: The aim of this paper is to implement a system to facilitate the diagnosis of multiple sclerosis (MS) in its initial stages. It does so using a convolutional neural network (CNN) to classify images captured with swept-source optical coherence tomography (SS-OCT). Methods: SS-OCT images from 48 control subjects and 48 recently diagnosed MS patients have been used. These images show the thicknesses (45 × 60 points) of the following structures: complete retina, retinal nerve fiber layer, two ganglion cell layers (GCL+, GCL++) and choroid. The Cohen distance is used to identify the structures and the regions within them with greatest discriminant capacity. The original database of OCT images is augmented by a deep convolutional generative adversarial network to expand the CNN’s training set. Results: The retinal structures with greatest discriminant capacity are the GCL++ (44.99% of image points), complete retina (26.71%) and GCL+ (22.93%). Thresholding these images and using them as inputs to a CNN comprising two convolution modules and one classification module obtains sensitivity = specificity = 1.0. Conclusions: Feature pre-selection and the use of a convolutional neural network may be a promising, nonharmful, low-cost, easy-to-perform and effective means of assisting the early diagnosis of MS based on SS-OCT thickness data [less ▲] Detailed reference viewed: 40 (4 UL)![]() ; ; et al in Sensors (2021) Wireless sensor networks (WSNs) are one of the fundamental infrastructures for Internet of Things (IoTs) technology. Efficient energy consumption is one of the greatest challenges in WSNs because of its ... [more ▼] Wireless sensor networks (WSNs) are one of the fundamental infrastructures for Internet of Things (IoTs) technology. Efficient energy consumption is one of the greatest challenges in WSNs because of its resource-constrained sensor nodes (SNs). Clustering techniques can significantly help resolve this issue and extend the network’s lifespan. In clustering, WSN is divided into various clusters, and a cluster head (CH) is selected in each cluster. The selection of appropriate CHs highly influences the clustering technique, and poor cluster structures lead toward the early death of WSNs. In this paper, we propose an energy-efficient clustering and cluster head selection technique for next-generation wireless sensor networks (NG-WSNs). The proposed clustering approach is based on the midpoint technique, considering residual energy and distance among nodes. It distributes the sensors uniformly creating balanced clusters, and uses multihop communication for distant CHs to the base station (BS). We consider a four-layer hierarchical network composed of SNs, CHs, unmanned aerial vehicle (UAV), and BS. The UAV brings the advantage of flexibility and mobility; it shortens the communication range of sensors, which leads to an extended lifetime. Finally, a simulated annealing algorithm is applied for the optimal trajectory of the UAV according to the ground sensor network. The experimental results show that the proposed approach outperforms with respect to energy efficiency and network lifetime when compared with state-of-the-art techniques from recent literature. [less ▲] Detailed reference viewed: 18 (0 UL)![]() Benedick, Paul-Lou ![]() in Sensors (2021) Detailed reference viewed: 46 (1 UL)![]() Gautam, Sumit ![]() ![]() ![]() in Sensors (2021), 21 In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy ... [more ▼] In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP. [less ▲] Detailed reference viewed: 103 (10 UL)![]() ; ; Tran Dinh, Hieu ![]() in Sensors (2021), 21(11), 3847 Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency ... [more ▼] Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-and-forward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static time-switching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSF-SC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal time-switching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis’s correctness and the proposed schemes’ effectiveness. [less ▲] Detailed reference viewed: 42 (0 UL)![]() ; ; et al in Sensors (2021), 21(17 5937), This paper presents a localization system for Unmanned Aerial Vehicles (UAVs) especially designed to be used in infrastructure inspection, where the UAVs have to fly in challenging conditions, such as ... [more ▼] This paper presents a localization system for Unmanned Aerial Vehicles (UAVs) especially designed to be used in infrastructure inspection, where the UAVs have to fly in challenging conditions, such as relatively high altitude (e.g., 15 m), eventually with poor or absent GNSS (Global Navigation Satellite System) signal reception, or the need for a BVLOS (Beyond Visual Line of Sight) operation in some periods. In addition, these infrastructure inspection applications impose the following requirements for the localization system: defect traceability, accuracy, reliability, and fault tolerance. Our system proposes a lightweight solution combining multiple stereo cameras with a robotic total station to comply with these requirements, providing full-state estimation (i.e., position, orientation, and linear and angular velocities) in a fixed and time-persistent reference frame. Moreover, the system can align and fuse all sensor measurements in real-time at high frequency. We have integrated this localization system in our aerial platform, and we have tested its performance for inspection in a real-world viaduct scenario, where the UAV has to operate with poor or absent GNSS signal at high altitude. [less ▲] Detailed reference viewed: 33 (2 UL)![]() ; ; Leiva, Luis A. ![]() in Sensors (2021), 21(9), Detailed reference viewed: 92 (9 UL)![]() ; Tedgue Beltrao, Gabriel ![]() in Sensors (2021) Detailed reference viewed: 13 (0 UL)![]() ; Leiva, Luis A. ![]() in Sensors (2021), 21(17), Detailed reference viewed: 68 (3 UL)![]() Polge, Julien ![]() ![]() ![]() in Sensors (2020), 20(24), With the Industry 4.0 paradigm comes the convergence of the Internet Technologies and Operational Technologies, and concepts, such as Industrial Internet of Things (IIoT), cloud manufacturing, Cyber ... [more ▼] With the Industry 4.0 paradigm comes the convergence of the Internet Technologies and Operational Technologies, and concepts, such as Industrial Internet of Things (IIoT), cloud manufacturing, Cyber-Physical Systems (CPS), and so on. These concepts bring industries into the big data era and allow for them to have access to potentially useful information in order to optimise the Overall Equipment Effectiveness (OEE); however, most European industries still rely on the Computer-Integrated Manufacturing (CIM) model, where the production systems run as independent systems (i.e., without any communication with the upper levels). Those production systems are controlled by a Programmable Logic Controller, in which a static and rigid program is implemented. This program is static and rigid in a sense that the programmed routines cannot evolve over the time unless a human modifies it. However, to go further in terms of flexibility, we are convinced that it requires moving away from the aforementioned old-fashioned and rigid automation to a ML-based automation, i.e., where the control itself is based on the decisions that were taken by ML algorithms. In order to verify this, we applied a time series classification method on a scale model of a factory using real industrial controllers, and widened the variety of parts the production line has to treat. This study shows that satisfactory results can be obtained only at the expense of the human expertise (i.e., in the industrial process and in the ML process). [less ▲] Detailed reference viewed: 100 (9 UL)![]() Sanchez Cuevas, Pedro Jesus ![]() in Sensors (2020) This paper presents the design, modeling and control of a fully actuated aerial robot for infrastructure contact inspection as well as its localization system. Health assessment of transport ... [more ▼] This paper presents the design, modeling and control of a fully actuated aerial robot for infrastructure contact inspection as well as its localization system. Health assessment of transport infrastructure involves measurements with sensors in contact with the bridge and tunnel surfaces and the installation of monitoring sensing devices at specific points. The design of the aerial robot presented in the paper includes a 3DoF lightweight arm with a sensorized passive joint which can measure the contact force to regulate the force applied with the sensor on the structure. The aerial platform has been designed with tilted propellers to be fully actuated, achieving independent attitude and position control. It also mounts a “docking gear” to establish full contact with the infrastructure during the inspection, minimizing the measurement errors derived from the motion of the aerial platform and allowing full contact with the surface regardless of its condition (smooth, rough, ...). The localization system of the aerial robot uses multi-sensor fusion of the measurements of a topographic laser sensor on the ground and a tracking camera and inertial sensors on-board the aerial robot, to be able to fly under the bridge deck or close to the bridge pillars where GNSS satellite signals are not available. The paper also presents the modeling and control of the aerial robot. Validation experiments of the localization system and the control system, and with the aerial robot inspecting a real bridge are also included. [less ▲] Detailed reference viewed: 45 (0 UL)![]() Cazzato, Dario ![]() in Sensors (2020), 20(13), 3739 The automatic detection of eye positions, their temporal consistency, and their mapping into a line of sight in the real world (to find where a person is looking at) is reported in the scientific ... [more ▼] The automatic detection of eye positions, their temporal consistency, and their mapping into a line of sight in the real world (to find where a person is looking at) is reported in the scientific literature as gaze tracking. This has become a very hot topic in the field of computer vision during the last decades, with a surprising and continuously growing number of application fields. A very long journey has been made from the first pioneering works, and this continuous search for more accurate solutions process has been further boosted in the last decade when deep neural networks have revolutionized the whole machine learning area, and gaze tracking as well. In this arena, it is being increasingly useful to find guidance through survey/review articles collecting most relevant works and putting clear pros and cons of existing techniques, also by introducing a precise taxonomy. This kind of manuscripts allows researchers and technicians to choose the better way to move towards their application or scientific goals. In the literature, there exist holistic and specifically technological survey documents (even if not updated), but, unfortunately, there is not an overview discussing how the great advancements in computer vision have impacted gaze tracking. Thus, this work represents an attempt to fill this gap, also introducing a wider point of view that brings to a new taxonomy (extending the consolidated ones) by considering gaze tracking as a more exhaustive task that aims at estimating gaze target from different perspectives: from the eye of the beholder (first-person view), from an external camera framing the beholder’s, from a third-person view looking at the scene where the beholder is placed in, and from an external view independent from the beholder. [less ▲] Detailed reference viewed: 83 (5 UL)![]() Stolfi Rosso, Daniel ![]() ![]() ![]() in Sensors (2020), 20(9), 2566 Detailed reference viewed: 162 (27 UL) |
||