References of "Polymers"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIn Situ Strain and Damage Monitoring of GFRP Laminates Incorporating Carbon Nanofibers under Tension
Wang, Yanlei; Wang, Y.S.; Han, B.G. et al

in Polymers (2018)

In this study, conductive carbon nanofibers (CNFs) were dispersed into epoxy resin and then infused into glass fiber fabric to fabricate CNF/glass fiber-reinforced polymer (GFRP) laminates. The electrical ... [more ▼]

In this study, conductive carbon nanofibers (CNFs) were dispersed into epoxy resin and then infused into glass fiber fabric to fabricate CNF/glass fiber-reinforced polymer (GFRP) laminates. The electrical resistance and strain of CNF/GFRP laminates were measured simultaneously during tensile loadings to investigate the in situ strain and damage monitoring capability of CNF/GFRP laminates. The damage evolution and conduction mechanisms of the laminates were also presented. The results indicated that the percolation threshold of CNFs content for CNF/GFRP laminates was 0.86 wt % based on a typical power law. The resistance response during monotonic tensile loading could be classified into three stages corresponding to different damage mechanisms, which demonstrated a good ability of in situ damage monitoring of the CNF/GFRP laminates. In addition, the capacity of in situ strain monitoring of the laminates during small strain stages was also confirmed according to the synchronous and reversible resistance responses to strain under constant cyclic tensile loading. Moreover, the analysis of the resistance responses during incremental amplitude cyclic tensile loading with the maximum strain of 1.5% suggested that in situ strain and damage monitoring of the CNF/GFRP laminates were feasible and stable. [less ▲]

Detailed reference viewed: 25 (2 UL)
Full Text
Peer Reviewed
See detailDeterioration of Basic Properties of the Materials in FRP-Strengthening RC Structures under Ultraviolet Exposure
Zhao, Jun; Cai, Gaochuang UL; Cui, Lu et al

in Polymers (2017)

This paper presents an experimental study of the basic properties of the main materials found in reinforced concrete (RC) structures strengthened by fibre reinforced polymer (FRP) sheets with scope to ... [more ▼]

This paper presents an experimental study of the basic properties of the main materials found in reinforced concrete (RC) structures strengthened by fibre reinforced polymer (FRP) sheets with scope to investigate the effect of ultraviolet (UV) exposure on the degradation of FRP, resin adhesive materials and concrete. The comparison studies focused on the physical change and mechanical properties of FRP sheet, and resin adhesive materials and concrete before and after UV exposure. However, the degradation mechanisms of the materials under UV exposure were not analyzed. The results show that the ultimate tensile strength and modulus of FRP sheets decrease with UV exposure time and the main degradation of FRP-strengthened RC structures is dependent on the degradation of resin adhesive materials. The increase in the number of FRP layers cannot help to reduce the effect of UV exposure on the performance of these materials. However, it was verified that carbon FRP materials have a relatively stable strength and elastic modulus, and the improvement of the compression strength of concrete was also observed after UV exposure. [less ▲]

Detailed reference viewed: 19 (0 UL)