References of "Neurobiology of aging"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailReduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice
Klaus, Christine; Hansen, Jan N.; Ginolhac, Aurélien UL et al

in Neurobiology of Aging (2020)

Sialic acid-binding receptors (Siglecs) are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced ... [more ▼]

Sialic acid-binding receptors (Siglecs) are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months. A transcriptomic analysis revealed no pro-inflammatory changes indicating an innate homeostatic immune process leading to the removal of synapses and neurons in GNE+/- mice during aging. Crossbreeding with complement C3-deficient mice rescued the earlier onset of neuronal and synaptic loss as well as the changes in microglial arborization. Thus, sialic acids of the glycocalyx contribute to brain homeostasis and act as a recognition system for the innate immune system in the brain. [less ▲]

Detailed reference viewed: 50 (8 UL)
Full Text
Peer Reviewed
See detailInsufficient Evidence for Pathogenicity of SNCA His50Gln (H50Q) in Parkinson's Disease
Krüger, Rejko UL; Blauwendraat, Cornelis; International Parkinson's Disease Genomics Consortium (IPDGC), COURAGE-PD Consortium

in Neurobiology of Aging (2018)

SNCA missense mutations are a rare cause of autosomal dominant Parkinson's disease (PD). To date, 6 missense mutations in SNCA have been nominated as causal. Here, we assess the frequency of these 6 ... [more ▼]

SNCA missense mutations are a rare cause of autosomal dominant Parkinson's disease (PD). To date, 6 missense mutations in SNCA have been nominated as causal. Here, we assess the frequency of these 6 mutations in public population databases and PD case-control data sets to determine their true pathogenicity. We found that 1 of the 6 reported SNCA mutations, His50Gln, was consistently identified in large population databases, and no enrichment was evident in PD cases compared to controls. These results suggest that His50Gln is probably not a pathogenic variant. This information is important to provide counseling for His50Gln carriers and has implications for the interpretation of His50Gln α-synuclein functional investigations. [less ▲]

Detailed reference viewed: 21 (0 UL)
Full Text
Peer Reviewed
See detailAbsence of regulator of G-protein signaling 4 does not protect against dopamine neuron dysfunction and injury in the mouse 6-hydroxydopamine lesion model of Parkinson's disease
Ashrafi, Amer UL; Garcia, Pierre UL; Kollmus, Heike et al

in Neurobiology of Aging (2017), 58

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy ... [more ▼]

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson’s disease (PD). In the case of PD, the main current option for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects, and reduced effectiveness over the long term. Research on new non-dopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection endpoints has not yet been demonstrated. Here, we use the 6-Hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA induced injury, and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a non-dopaminergic target for PD should be approached with caution. [less ▲]

Detailed reference viewed: 241 (31 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 301 (67 UL)
Full Text
Peer Reviewed
See detailEvaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study.
Wang, Lisa; Heckman, Michael G.; Aasly, Jan O. et al

in Neurobiology of aging (2017), 49

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed ... [more ▼]

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed interaction between LRRK2 and PARK16 variants in modifying PD risk using a large multicenter series of PD patients (7715) and controls (8261) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Our data does not support a strong direct interaction between LRRK2 and PARK16 variants; however, given the role of retromer and lysosomal pathways in PD, further studies are warranted. [less ▲]

Detailed reference viewed: 124 (3 UL)
Full Text
Peer Reviewed
See detailThe miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster
Pichler, Sabrina; Gu, Wei UL; Hartl, Daniela et al

in Neurobiology of Aging (2016), 50

MicroRNAs (miRNAs) are small noncoding RNA molecules, with essential functions in RNA silencing and post-transcriptional regulation of gene expression. miRNAs appear to regulate the development and ... [more ▼]

MicroRNAs (miRNAs) are small noncoding RNA molecules, with essential functions in RNA silencing and post-transcriptional regulation of gene expression. miRNAs appear to regulate the development and function of the nervous system. Alterations of miRNA expression have been associated with Alzheimer's disease (AD). To characterize the AD miRNA signature, we examined genome-wide miRNA and mRNA expression patterns in the temporal cortex of AD and control samples. We validated our miRNA results by semiquantitative real-time polymerase chain reaction (PCR) in independent prefrontal cortex. Furthermore, we separated gray and white matter brain sections to identify the cellular origin of the altered miRNA expression. We observed genome-wide downregulation of hsa-miR-132-3p and hsa-miR-212-3p in AD with a stronger decrease in gray matter AD samples. We further identified 10 differently expressed transcripts achieving genome-wide levels of significance. Significantly deregulated miRNAs and mRNAs were correlated and examined for potential binding sites (in silico). This miRNome-wide study in AD provides supportive evidence and corroborates an important contribution of miR-132/212 and corresponding target mRNAs to the pathogenesis of AD. [less ▲]

Detailed reference viewed: 154 (6 UL)
Full Text
Peer Reviewed
See detailMutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease
Wüst, Richard; Maurer, Brigitte; Hauser, Kathrin et al

in Neurobiology of Aging (2016), 39

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known ... [more ▼]

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known for its critical role in mitochondrial homeostasis and early-onset forms of Parkinson’s disease (PD). The identification of a PD-associated variant in the PARL gene (p.Ser77Asn) led us to assess the relevance of PARL for PD pathogenesis using a mutation screening of the coding sequences and adjacent intronic sequences. We investigated 3 single nucleotide polymorphisms (rs3792589, rs13091, and rs3732581), a synonymous base substitution (Leu79Leu) and the previously described p.Ser77Asn mutation, which were subsequently screened in more than 2000 patients and controls. Not detecting the p.Ser77Asn mutation in our cohort, nor a robust association between variations in the PARL gene and PD, the role of disease causing genetic variants in the PARL gene could not be further substantiated in our samples. Our findings indicate that PARL mutations are a rare cause of PD and genetic variants are neither strong nor common risk factors in PD. [less ▲]

Detailed reference viewed: 188 (30 UL)
Full Text
Peer Reviewed
See detailProtective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants.
Heckman, Michael G.; Elbaz, Alexis; Soto-Ortolaza, Alexandra I. et al

in Neurobiology of aging (2014), 35(1), 2665-14

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼]

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲]

Detailed reference viewed: 153 (6 UL)
Peer Reviewed
See detailMortalin mutations are not a frequent cause of early-onset Parkinson disease.
Freimann, Karen; Zschiedrich, Katja; Bruggemann, Norbert et al

in Neurobiology of aging (2013), 34(11), 269419-20

Dysfunctional mitochondria and the mitochondrial chaperone mortalin (HSPA9, GRP75) have been implicated in the pathogenesis of Parkinson disease (PD). We screened 139 early-onset PD (EOPD) patients for ... [more ▼]

Dysfunctional mitochondria and the mitochondrial chaperone mortalin (HSPA9, GRP75) have been implicated in the pathogenesis of Parkinson disease (PD). We screened 139 early-onset PD (EOPD) patients for mutations in mortalin revealing one missense change (p.L358P) that was absent in 279 control individuals. We also found one additional missense variant among the controls (p.T333K). Although both missense changes were predicted to be disease causing, we detected no differences in subcellular localization, mitochondrial morphology, or respiratory function between wild-type and mutant mortalin. These findings suggest that variants in mortalin (1) are not a major cause of EOPD; (2) occur in patients and controls; and (3) do not lead to functional impairment of mitochondria. [less ▲]

Detailed reference viewed: 73 (1 UL)
Full Text
Peer Reviewed
See detailCritical role of cPLA2 in Aβ oligomer-induced neurodegeneration and memory deficit.
Desbène, Cédric; Malaplate-Armand, Catherine; Youssef, Ihsen et al

in Neurobiology of Aging (2012), 33(6), 1123-17-1123-29

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ ... [more ▼]

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ oligomers activate cytosolic phospholipase A2 (cPLA2), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA2 gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aβ oligomers in wild type mice. We further demonstrated that the Aβ oligomer-induced sphingomyelinase activation was suppressed and that phosphorylation of Akt/protein kinase B (PKB) was preserved in neuronal cells isolated from cPLA2−/− mice. Interestingly, expression of the Aβ precursor protein (APP) was reduced in hippocampus homogenates and neuronal cells from cPLA2−/− mice, but the relationship with the resistance of these mice to the Aβ oligomer toxicity requires further investigation. These results therefore show that cPLA2 plays a key role in the Aβ oligomer-associated neurodegeneration, and as such represents a potential therapeutic target for the treatment of Alzheimer's disease. Keywords Alzheimer's disease; Cytosolic phospholipase A2; Soluble beta-amyloid oligomers; Memory; Apoptosis; Synaptotoxicity; Amyloid precursor protein [less ▲]

Detailed reference viewed: 145 (9 UL)
Peer Reviewed
See detailATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome.
Grünewald, Anne UL; Arns, Bjorn; Seibler, Philip et al

in Neurobiology of aging (2012), 33(8), 18431-7

Mutations in ATP13A2 cause autosomal-recessive parkinsonism (Kufor-Rakeb syndrome; KRS). Because several other parkinsonism-associated proteins have been connected to mitochondrial function and mitophagy ... [more ▼]

Mutations in ATP13A2 cause autosomal-recessive parkinsonism (Kufor-Rakeb syndrome; KRS). Because several other parkinsonism-associated proteins have been connected to mitochondrial function and mitophagy, we studied the impact of endogenous mutations in ATPase type 13A2 (ATP13A2) on mitochondria in fibroblasts from KRS patients compared with controls. In patients, we detected decreased adenosine triphosphate (ATP) synthesis rates, increased mitochondrial DNA levels, a higher frequency of mitochondrial DNA lesions, increased oxygen consumption rates, and increased fragmentation of the mitochondrial network. Importantly, overexpression of wild-type ATP13A2 rescued the respiration phenotype. These findings collectively suggest that ATP13A2 contributes to the maintenance of a healthy mitochondrial pool, supporting the hypothesis that impaired mitochondrial clearance represents an important pathogenic mechanism underlying KRS. [less ▲]

Detailed reference viewed: 100 (4 UL)
Full Text
Peer Reviewed
See detailA large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease.
Krüger, Rejko UL; Sharma, Manu; Riess, Olaf et al

in Neurobiology of aging (2011), 32(3), 5489-18

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the ... [more ▼]

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the association of common Omi/HtrA2 variants in the Genetic Epidemiology of Parkinson's disease (GEO-PD) consortium. GEO-PD sites provided clinical and genetic data including affection status, gender, ethnicity, age at study, age at examination (all subjects); age at onset and family history of PD (patients). Genotyping was performed for the five most informative SNPs spanning the Omi/HtrA2 gene in approximately 2-3 kb intervals (rs10779958, rs2231250, rs72470544, rs1183739, rs2241028). Fixed as well as random effect models were used to provide summary risk estimates of Omi/HtrA2 variants. The 20 GEO-PD sites provided data for 6378 cases and 8880 controls. No overall significant associations for the five Omi/HtrA2 SNPs and PD were observed using either fixed effect or random effect models. The summary odds ratios ranged between 0.98 and 1.08 and the estimates of between-study heterogeneity were not large (non-significant Q statistics for all 5 SNPs; I(2) estimates 0-28%). Trends for association were seen for participants of Scandinavian descent for rs2241028 (OR 1.41, p=0.04) and for rs1183739 for age at examination (cut-off 65 years; OR 1.17, p=0.02), but these would not be significant after adjusting for multiple comparisons and their Bayes factors were only modest. This largest association study performed to define the role of any gene in the pathogenesis of Parkinson's disease revealed no overall strong association of Omi/HtrA2 variants with PD in populations worldwide. [less ▲]

Detailed reference viewed: 108 (1 UL)
Full Text
Peer Reviewed
See detailRole of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease.
Sharma, Manu; Maraganore, Demetrius M.; Ioannidis, John P. A. et al

in Neurobiology of aging (2011), 32(11), 21081-5

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for ... [more ▼]

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for PARK3 locus. A number of studies yielded association of the PARK3 locus with PD, and SPR knockout mice were shown to display parkinsonian features. To evaluate the role of SPR gene polymorphisms in diverse populations in PD, we performed collaborative analyses in the Genetic Epidemiology of Parkinson Disease (GEO-PD) Consortium. A total of 5 single nucleotide polymorphisms (3 in the promoter region and 2 in the 3' untranslated region [UTR]) were genotyped. Fixed as well as random effect models were used to provide summary risk estimates of SPR variants. A total of 19 sites provided data for 6547 cases and 9321 controls. Overall odds ratio estimates varied from 0.92 to 1.01. No overall association with the SPR gene using either fixed effect or random effect model was observed in the studied population. I(2) Metric varied from 0% to 36.2%. There was some evidence for an association for participants of North European/Scandinavian descent with the strongest signal for rs1876487 (odds ratio = 0.82; p value = 0.003). Interestingly, families which were used to map the PARK3 locus, have Scandinavian ancestry suggesting a founder effect. In conclusion, this large association study for the SPR gene revealed no association for PD worldwide. However, taking the initial mapping of the PARK3 into account, the role of a population-specific effect warrants consideration in future studies. [less ▲]

Detailed reference viewed: 122 (0 UL)
Full Text
Peer Reviewed
See detailFurther delineation of the association signal on chromosome 5 from the first whole genome association study in Parkinson's disease.
Sharma, Manu; Lichtner, Peter; Krüger, Rejko UL et al

in Neurobiology of aging (2009), 30(10), 1706-9

A recently published whole genome association study showed the involvement of 13 SNPs in the pathogenesis of Parkinson disease (PD). We performed a replication study to assess their involvement in our ... [more ▼]

A recently published whole genome association study showed the involvement of 13 SNPs in the pathogenesis of Parkinson disease (PD). We performed a replication study to assess their involvement in our sporadic cohort consisting of 663 cases and 1002 controls ascertained from Germany. One of the previously reported SNP, rs7723605, showed evidence of association (p value 0.04) in our sample. We further refined the signal by genotyping additional 22 SNPs around SNP rs7723605. Our refinement analysis, however, did not provide evidence for association in our sample after adjusting for multiple testing by permutation procedure. In conclusion, our study did not lend support to the finding that the reported SNPs are directly influencing the susceptibility to sporadic form of PD at least in our population. [less ▲]

Detailed reference viewed: 115 (0 UL)