References of "Nanophotonics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHyperbolic dispersion metasurfaces for molecular biosensing
Palermo, Giovanna; Sreekanth, Kandammathe Valiyaveedu; Maccaferri, Nicolò UL et al

in Nanophotonics (in press)

Sensor technology has become increasingly crucial in medical research and clinical diagnostics to directly detect small numbers of low-molecular-weight biomolecules relevant for lethal diseases. In recent ... [more ▼]

Sensor technology has become increasingly crucial in medical research and clinical diagnostics to directly detect small numbers of low-molecular-weight biomolecules relevant for lethal diseases. In recent years, various technologies have been developed, a number of them becoming core label-free technologies for detection of cancer biomarkers and viruses. However, to radically improve early disease diagnostics, tracking of disease progression and evaluation of treatments, today’s biosensing techniques still require a radical innovation to deliver high sensitivity, specificity, diffusion-limited transport, and accuracy for both nucleic acids and proteins. In this review, we discuss both scientific and technological aspects of hyperbolic dispersion metasurfaces for molecular biosensing. Optical metasurfaces have offered the tantalizing opportunity to engineer wavefronts while its intrinsic nanoscale patterns promote tremendous molecular interactions and selective binding. Hyperbolic dispersion metasurfaces support high-k modes that proved to be extremely sensitive to minute concentrations of ultralow-molecular-weight proteins and nucleic acids. [less ▲]

Detailed reference viewed: 68 (4 UL)
Full Text
Peer Reviewed
See detailHybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing
Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò UL et al

in Nanophotonics (2018), 7(5), 905-912

We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au direr nanodisks. Combined effects of near ... [more ▼]

We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au direr nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger. [less ▲]

Detailed reference viewed: 64 (2 UL)