References of "Movement Disorders"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDairy Intake and Parkinson's Disease: A Mendelian Randomization Study
Domenighetti, Cloé; Sugier, Pierre-Emmanuel; Ashok Kumar Sreelatha, Ashwin et al

in Movement Disorders (2022)

Abstract Background Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained ... [more ▼]

Abstract Background Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. Objective The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). Methods We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). Results Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95 confidence interval = 1.12–2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37–4.56], P = 0.003; P-difference with women = 0.029). Conclusions Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 59 (3 UL)
Full Text
Peer Reviewed
See detailGP2: The Global Parkinson's Genetics Program
Krüger, Rejko UL; The Global Parkinson's Genetics Program, ; The Global Parkinson's Genetics Program,

in Movement Disorders (2021), 36(4), 842-851

To facilitate the rapid expansion of our understanding of the genetic architecture of PD, both in terms of the depth and global context of this knowledge, we have created the Global Parkinson's Genetics ... [more ▼]

To facilitate the rapid expansion of our understanding of the genetic architecture of PD, both in terms of the depth and global context of this knowledge, we have created the Global Parkinson's Genetics Program (GP2; www.gp2.org). GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative, an audacious effort supporting PD research.9 GP2 is geared toward creating a worldwide collaborative effort that will first dramatically accelerate the identification of genetic contributors to disease and second establish a network of researchers who can best leverage this understanding to research, diagnose, and treat PD worldwide. Here we describe our mission, the path we have proposed to achieve this, and the core principles of data democratization, transparency, and diversity. [less ▲]

Detailed reference viewed: 27 (1 UL)
Full Text
Peer Reviewed
See detailReplication of a Novel Parkinson's Locus in a European Ancestry Population
Grover, Sandeep; Kumar-Sreelatha, Ashwin Ashok; Bobbili, Dheeraj R. et al

in Movement Disorders (2021)

ABSTRACT Background A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. Objectives The objective of this study were to ... [more ▼]

ABSTRACT Background A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. Objectives The objective of this study were to determine whether recently reported novel SV2C and WBSCR17 loci contribute to the risk of developing PD in European and East Asian ancestry populations. Methods We report an association analysis of recently reported variants with PD in the COURAGE-PD cohort (9673 PD patients; 8465 controls) comprising individuals of European and East Asian ancestries. In addition, publicly available summary data (41,386 PD patients; 476,428 controls) were pooled. Results Our findings confirmed the role of the SV2C variant in PD pathogenesis (rs246814, COURAGE-PD PEuropean = 6.64 × 10−4, pooled PD P = 1.15 × 10−11). The WBSCR17 rs9638616 was observed as a significant risk marker in the East Asian pooled population only (P = 1.16 × 10−8). Conclusions Our comprehensive study provides an up-to-date summary of recently detected novel loci in different PD populations and confirmed the role of SV2C locus as a novel risk factor for PD irrespective of the population or ethnic group analyzed. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 51 (2 UL)
Full Text
Peer Reviewed
See detailMitochondrial and Clearance Impairment in p.D620N VPS35 Patient-Derived Neurons
Hanss, Zoé UL; Larsen, Simone UL; Antony, Paul UL et al

in Movement Disorders (2020)

Background: VPS35 is part of the retromer complex and is responsible for the trafficking and recycling of proteins implicated in autophagy and lysosomal degradation, but also takes part in the degradation ... [more ▼]

Background: VPS35 is part of the retromer complex and is responsible for the trafficking and recycling of proteins implicated in autophagy and lysosomal degradation, but also takes part in the degradation of mitochondrial proteins via mitochondria-derived vesicles. The p.D620N mutation of VPS35 causes an autosomal-dominant form of Parkinson’s disease (PD), clinically representing typical PD. Objective: Most of the studies on p.D620N VPS35 were performed on human tumor cell lines, rodent models overexpressing mutant VPS35, or in patient-derived fibroblasts. Here, based on identified target proteins, we investigated the implication of mutant VPS35 in autophagy, lysosomal degradation, and mitochondrial function in induced pluripotent stem cell-derived neurons from a patient harboring the p.D620N mutation. Methods: We reprogrammed fibroblasts from a PD patient carrying the p.D620N mutation in the VPS35 gene and from two healthy donors in induced pluripotent stem cells. These were subsequently differentiated into neuronal precursor cells to finally generate midbrain dopaminergic neurons. Results: We observed a decreased autophagic flux and lysosomal mass associated with an accumulation of α-synuclein in patient-derived neurons compared to controls. Moreover, patient-derived neurons presented a mitochondrial dysfunction with decreased membrane potential, impaired mitochondrial respiration, and increased production of reactive oxygen species associated with a defect in mitochondrial quality control via mitophagy. Conclusion: We describe for the first time the impact of the p.D620N VPS35 mutation on autophago-lysosome pathway and mitochondrial function in stem cell-derived neurons from an affected p.D620N carrier and define neuronal phenotypes for future pharmacological interventions [less ▲]

Detailed reference viewed: 82 (5 UL)
Full Text
Peer Reviewed
See detailAge at Onset of LRRK2 p.Gly2019Ser Is Related to Environmental and Lifestyle Factors
Lüth, Theresa; König, Inke R; Grünewald, Anne UL et al

in Movement Disorders (2020), 35(10), 1854-1858

Detailed reference viewed: 50 (3 UL)
Full Text
Peer Reviewed
See detailAutomatic Detection of Nigrosome Degeneration in Susceptibility-Weighted MRI for Computer-Aided Diagnosis of Parkinson’s Disease Using Machine Learning
Garcia Santa Cruz, Beatriz UL; Husch, Andreas UL; Hertel, Frank UL

in Movement Disorders (2020, September 12)

Objective: Automatize the detection of ‘swallow-tail’ appearance in substantia nigra dopaminergic neurons using MRI for more robust tests on Parkinson’s disease (PD) diagnosis. Background: Differential ... [more ▼]

Objective: Automatize the detection of ‘swallow-tail’ appearance in substantia nigra dopaminergic neurons using MRI for more robust tests on Parkinson’s disease (PD) diagnosis. Background: Differential diagnosis of PD is challenging even in specialized centers. The use of imaging techniques can be bene cial for the diagnosis. Although DaTSCAN has been proven to be clinically useful, it is not widely available and has radiation risk and high-cost associated. Therefore, MRI scans for PD diagnosis offer several advantages over DaTSCAN [1]. Recent literature shows strong evidence of high diagnostic accuracy using the ‘swallow-tail’ shape of the dorsolateral substantia nigra in 3T – SWI [2]. Nevertheless, the majority of such studies rely on the subjective opinion of experts and manual methods for the analysis to assess the accuracy of these features. Alternatively, we propose a fully automated solution to evaluate the absence or presence of this feature for computer-aided diagnosis (CAD) of PD. Method: Restrospective study of 27 PD and 18 non-PD was conducted, including standard high-resolution 3D MRI – T1 & SWI sequences (additionally, T2 scans were used to increase the registration references). Firstly, spatial registration and normalization of the images were performed. Then, the ROI was extracted using atlas references. Finally, a supervised machine learning model was built using 5-fold-within-5-fold nested cross-validation. Results: Preliminary results show signi cant sensitivity (0.92) and ROC AUC (0.82), allowing for automated classi cation of patients based on swallow-tail biomarker from MRI. Conclusion: Detection of nigrosome degeneration (swallow-tail biomarker) in accessible brain imaging techniques can be automatized with signi cant accuracy, allowing for computer-aided PD diagnosis. References: [1] Schwarz, S. T., Xing, Y., Naidu, S., Birchall, J., Skelly, R., Perkins, A., ... & Gowland, P. (2017). Protocol of a single group prospective observational study on the diagnostic value of 3T susceptibility weighted MRI of nigrosome-1 in patients with parkinsonian symptoms: the N3iPD study (nigrosomal iron imaging in Parkinson’s disease). BMJ open, 7(12), e016904. [2] – Schwarz, S. T., Afzal, M., Morgan, P. S., Bajaj, N., Gowland, P. A., & Auer, D. P. (2014). The ‘swallow tail’ appearance of the healthy nigrosome –a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PloS one, 9(4). [less ▲]

Detailed reference viewed: 176 (20 UL)
Full Text
Peer Reviewed
See detailGBA variants in Parkinson’s disease: clinical, metabolomic and multimodal neuroimaging phenotypes
Greuel, Andrea; Trezzi, Jean-Pierre UL; Glaab, Enrico UL et al

in Movement Disorders (2020), 35(12), 2201-2210

Background: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson’s disease. Biallelic GBA mutations cause the lysosomal storage disorder Gaucher´s disease ... [more ▼]

Background: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson’s disease. Biallelic GBA mutations cause the lysosomal storage disorder Gaucher´s disease. The GBA variants p.E365K and p.T408M are associated with Parkinson’s but not with Gaucher´s disease. The pathophysiological role of these variants needs to be further explored. Objective: This study analyzed the clinical, neuropsychological, metabolic and neuroimaging phenotypes of Parkinson’s disease patients carrying the GBA variants p.E365K and p.T408M. Methods: GBA was sequenced in 56 mid-stage Parkinson’s disease patients. Carriers of GBA variants were compared to non-carriers regarding clinical history and symptoms, neuropsychological features, metabolomics and multimodal neuroimaging. Blood plasma gas chromatography coupled to mass spectrometry, [18F]FDopa PET, [18F]FDG PET, and resting-state fMRI were performed. Results: Sequence analysis detected 13 heterozygous GBA variant carriers (seven with p.E365K, six with p.T408M). One patient carried a GBA mutation (p.N409S) and was excluded. Clinical history and symptoms were not significantly different between groups. Global cognitive performance was lower in variant carriers. Metabolomic group differences were suggestive of more severe Parkinson’s disease-related alterations in carriers versus non-carriers. [18F]FDopa and [18F]FDG PET showed signs of a more advanced disease; [18F]FDG PET and fMRI showed similarities with Lewy body dementia and Parkinson’s disease dementia in carriers. Conclusions: This is the first study to comprehensively assess (neuro-)biological phenotypes of GBA variants in Parkinson’s disease. Metabolomics and neuroimaging detected more significant group differences than clinical and behavioral evaluation. These alterations could be promising to monitor effects of disease-modifying treatments targeting glucocerebrosidase metabolism. [less ▲]

Detailed reference viewed: 165 (13 UL)
Full Text
Peer Reviewed
See detailDeep Brain Stimulation for Freezing of Gait in Parkinson’s Disease With Early Motor Complications
Krüger, Rejko UL; EARLYSTIM study group; Barbe, Michael

in Movement Disorders (2019)

Background: Effects of DBS on freezing of gait and other axial signs in PD patients are unclear. Objective: Secondary analysis to assess whether DBS affects these symptoms within a large randomized ... [more ▼]

Background: Effects of DBS on freezing of gait and other axial signs in PD patients are unclear. Objective: Secondary analysis to assess whether DBS affects these symptoms within a large randomized controlled trial comparing DBS of the STN combined with best medical treatment and best medical treatment alone in patients with early motor complications (EARLYSTIMtrial). [less ▲]

Detailed reference viewed: 119 (11 UL)
Full Text
Peer Reviewed
See detailGenotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene Review.
Trinh, Joanne; Zeldenrust, Florentine M. J.; Huang, Jana et al

in Movement Disorders (2018), 33(12), 1857-1870

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total ... [more ▼]

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total of 2,972 citations, and is based on fully curated phenotypic and genotypic data on 937 patients with dominantly inherited PD attributed to 44 different mutations in SNCA, LRRK2, or VPS35. All of these data are also available in an easily searchable online database (www.mdsgene.org), which additionally provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including later onset of disease (median age at onset: ∼49 years) compared to recessive forms of PD of an overall excellent treatment response. Our systematic review validates previous reports showing that SNCA mutation carriers have a younger age at onset compared to LRRK2 and VPS35 (P < 0.001). SNCA mutation carriers often have additional psychiatric symptoms, and although not exclusive to only LRRK2 or VPS35 mutation carriers, LRRK2 mutation carriers have a typical form of PD, and, lastly, VPS35 mutation carriers have good response to l-dopa. [less ▲]

Detailed reference viewed: 63 (3 UL)
Full Text
Peer Reviewed
See detailUnderstanding the role of genetic variability in LRRK2 in Indian population
Krüger, Rejko UL; Kishore, Asha; Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (COURAGE-PD) et al

in Movement Disorders (2018)

Background: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. Objectives: To resolve the role ... [more ▼]

Background: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. Objectives: To resolve the role of LRRK2 in the Indian population. Methods: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. Results: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. Conclusions: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. [less ▲]

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailThe Levodopa Response Trial and the Parkinson Disease Digital Biomarker Challenge: Monitoring symptoms of Parkinson’s disease in the lab and home using wearable sensors
Daneault, J.; Vergara-Diaz, G.; Costante, G. et al

in Movement Disorders (2018, October 03), 33(S2), 525

Objective: To leverage a community of researchers and shared wearable data to develop algorithms to estimate the severity of PD specific symptoms. Background: People with Parkinson’s disease (PwPD) often ... [more ▼]

Objective: To leverage a community of researchers and shared wearable data to develop algorithms to estimate the severity of PD specific symptoms. Background: People with Parkinson’s disease (PwPD) often experience fluctuations in motor symptom severity. Wearable sensors have the potential to help clinicians monitor symptoms over time, outside the clinic. However, to gather accurate and clinically-relevant measures, there is a need to develop robust algorithms based on clinically- labelled data. Methods: The Levodopa Response Trial captured three-axis acceleration from two wrist-worn sensors and a smartphone located at the waist from 29 PwPD continuously over 4 days. On day 1, in an in-clinic visit, participants performed clinical assessments and motor tasks on their regular medication regimen. During these visits, a clinician also provided symptom severity scores for tremor, bradykinesia, and dyskinesia. On days 2 & 3, sensor data was collected while participants were at home. On day 4, participants returned to the clinic for the same assessments as day 1, but arrived without having taken their medication for at least 10 hours. Leveraging this dataset, Sage Bionetworks, the Michael J Fox Foundation and the Robert Wood Johnson Foundation launched the PD Digital Biomarker DREAM Challenge which made a subset of the data available to researchers to develop robust and accurate algorithms for the estimation of specific symptoms’ severity. Results: Teams participating in the challenge used several technical approaches, from signal processing to deep learning. 35 submissions were received for the estimation of action tremor severity. Teams achieved an area under the precision-recall curve (AUPR) of 0.444 to 0.75. As for dyskinesia during movement, 37 submissions were received and the teams achieved an AUPR of 0.175 to 0.477. Finally, 39 submissions were received for the estimation of bradykinesia and the teams achieved an AUPR of 0.413 to 0.95. Null expectations for the testing datasets were 0.432, 0.195, and 0.266, respectively. Conclusions: Making datasets available to the community leverages the creativity of different groups to develop robust and accurate algorithms for the estimation of PD symptom severity. This will lead to better quality and interpretability of data collected in unsupervised settings within the community. [less ▲]

Detailed reference viewed: 235 (10 UL)
Full Text
Peer Reviewed
See detailFDG-PET and metabolomics in PD-associated GBA variants
Greuel, Andrea; Trezzi, Jean-Pierre; Glaab, Enrico UL et al

in Movement Disorders (2018), 33(2), 599

Detailed reference viewed: 57 (0 UL)
Full Text
Peer Reviewed
See detailDistinct metabolomic signature in cerebrospinal fluid in early parkinson's disease: Early Parkinson'S CSF Metabolic Signature
Trezzi, Jean-Pierre UL; Galozzi, Sara; Jäger, Christian UL et al

in Movement Disorders (2017)

Objective: The purpose of this study was to profile cerebrospinal fluid (CSF) from early-stage PD patients for disease-related metabolic changes and to determine a robust biomarker signature for early ... [more ▼]

Objective: The purpose of this study was to profile cerebrospinal fluid (CSF) from early-stage PD patients for disease-related metabolic changes and to determine a robust biomarker signature for early-stage PD diagnosis. Methods: By applying a non-targeted and mass spectrometry-driven approach, we investigated the CSF metabolome of 44 early-stage sporadic PD patients yet without treatment (DeNoPa cohort). We compared all detected metabolite levels with those measured in CSF of 43 age- and gender-matched healthy controls. After this analysis, we validated the results in an independent PD study cohort (T€ubingen cohort). Results: We identified that dehydroascorbic acid levels were significantly lower and fructose, mannose, and threonic acid levels were significantly higher (P <.05) in PD patients when compared with healthy controls. These changes reflect pathological oxidative stress responses, as well as protein glycation/glycosylation reactions in PD. Using a machine learning approach based on logistic regression, we successfully predicted the origin (PD patients vs healthy controls) in a second (n518) as well as in a third and completely independent validation set (n536). The biomarker signature is composed of the three markers—mannose, threonic acid, and fructose—and allows for sample classification with a sensitivity of 0.790 and a specificity of 0.800. Conclusion: We identified PD-specific metabolic changes in CSF that were associated with antioxidative stress response, glycation, and inflammation. Our results disentangle the complexity of the CSF metabolome to unravel metabolome changes related to earlystage PD. The detected biomarkers help understanding PD pathogenesis and can be applied as biomarkers to increase clinical diagnosis accuracy and patient care in early-stage PD. [less ▲]

Detailed reference viewed: 74 (11 UL)
Full Text
Peer Reviewed
See detailRare variant analysis of the PPMI dataset to uncover the complex genetic architecture of Parkinson’s disease
Bobbili, Dheeraj Reddy UL; May, Patrick UL; Krüger, Rejko UL

in Movement Disorders (2017, June 02), 322(Supplement S2), 405

Objective: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). Background: Parkinson’s ... [more ▼]

Objective: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). Background: Parkinson’s disease (PD) is a complex disease. Besides variants in high-risk genes such as LRRK2 and PARK2, multiple genes associated to sporadic PD were discovered via genome-wide association studies. Yet, there is a large number of genetic factors that need to be deciphered. Methods: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). The dataset comprised of 435 PD cases and 162 ethnically matched controls, respectively. We performed burden tests at single variant, gene and geneset levels on common and rare exonic and splice-variants. We also looked for severity of rare highly deleterious variants (CADD phred score>30) using the CADD score as well as singleton (variants seen in only one individual across cases and controls) rare variants. Additionally, we performed the functional enrichment analysis with the genes harboring rare highly deleterious variants (case uniq genes) that are only present in cases. Results: We observed an increased mutational burden of singleton variants in PD cases compared to the controls in nonsynonymous+LOF variants (empirical P-value 0.005) but not in the synonymous variants (empirical P-value 0.09). We observed a higher significant burden (P-value 0.028) as well as higher significant severity (empirical P-value 0.027) of rare, highly deleterious nonsynonymous variants, but not in the synonymous variants of the candidate genes (P-value 0.686, empirical P-value 0.556 for burden and severity respectively). The network analysis of genes having deleterious variants only present in cases (Case uniq) showed a significant increase in connectivity compared to random networks (P-value 0.0002). Pathway analysis of those genes showed a significant enrichment of pathways and biological process implicated in the nervous system functioning and the etiology of PD. Conclusions: Our study supports the complex disease notion of PD by highlighting the convoluted architecture of PD where case uniq genes including LRRK2 are implicated in several biological processes and pathways related to PD. The main finding of this study is to discover the complex genetics of PD at an exome wide level. [less ▲]

Detailed reference viewed: 273 (31 UL)
Full Text
Peer Reviewed
See detailThe nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder.
Heintz, Anna UL; Pandey, Urvashi; Wicke, Tamara et al

in Movement Disorders (2017)

BACKGROUND: Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD ... [more ▼]

BACKGROUND: Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD patients. It is, however, unknown whether these differences can be observed in individuals at high risk, for example, with idiopathic rapid eye movement sleep behavior disorder, a prodromal condition of alpha-synuclein aggregation disorders including PD. OBJECTIVES: To compare microbiota in carefully preserved nasal wash and stool samples of subjects with idiopathic rapid eye movement sleep behavior disorder, manifest PD, and healthy individuals. METHODS: Microbiota of flash-frozen stool and nasal wash samples from 76 PD patients, 21 idiopathic rapid eye movement sleep behavior disorder patients, and 78 healthy controls were assessed by 16S and 18S ribosomal RNA amplicon sequencing. Seventy variables, related to demographics, clinical parameters including nonmotor symptoms, and sample processing, were analyzed in relation to microbiome variability and controlled differential analyses were performed. RESULTS: Differentially abundant gut microbes, such as Akkermansia, were observed in PD, but no strong differences in nasal microbiota. Eighty percent of the differential gut microbes in PD versus healthy controls showed similar trends in idiopathic rapid eye movement sleep behavior disorder, for example, Anaerotruncus and several Bacteroides spp., and correlated with nonmotor symptoms. Metagenomic sequencing of select samples enabled the reconstruction of genomes of so far uncharacterized differentially abundant organisms. CONCLUSION: Our study reveals differential abundances of gut microbial taxa in PD and its prodrome idiopathic rapid eye movement sleep behavior disorder in comparison to the healthy controls, and highlights the potential of metagenomics to identify and characterize microbial taxa, which are enriched or depleted in PD and/or idiopathic rapid eye movement sleep behavior disorder. (c) 2017 International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 278 (49 UL)
Full Text
Peer Reviewed
See detailCost-Effectiveness of Neurostimulation in Parkinson's Disease With Early Motor Complications
Dams, J; Balzer-Geldsetzer, M; Siebert, U et al

in Movement Disorders (2016), 31(8), 1183-1191

Background: Recent research efforts have focused on the effects of deep brain stimulation of the subthalamic nucleus (STN DBS) for selected patients with mild-to-moderate PD experiencing motor ... [more ▼]

Background: Recent research efforts have focused on the effects of deep brain stimulation of the subthalamic nucleus (STN DBS) for selected patients with mild-to-moderate PD experiencing motor complications. Objectives: We assessed the cost utility of subthalamic DBS compared with the best medical treatment for German patients below the age of 61 with early motor complications of PD. Methods: We applied a previously published Markov model that integrated health utilities based on EuroQoL and direct costs over patients’ lifetime adjusted to the German health care payer perspective (year of costing: 2013). Effectiveness was evaluated using the Parkinson’s Disease Questionnaire 39 summary index. We performed sensitivity analyses to assess uncertainty. Results: In the base-case analysis, the incremental cost-utility ratio for STN DBS compared to best medical treatment was 22,700 Euros per quality-adjusted life year gained. The time to, and costs for, battery exchange had a major effect on the incremental cost-utility ratios, but never exceeded a threshold of 50,000Euros per quality-adjusted life year. Conclusions: Our decision analysis supports the fact that STN DBS at earlier stages of the disease is cost-effective in patients below the age of 61 when compared with the best medical treatment in the German health care system. This finding was supported by detailed sensitivity analyses reporting robust results. Whereas the EARLYSTIM study has shown STN DBS to be superior to medical therapy with respect to quality of life for patients with early motor complications, this further analysis has shown its cost-effectiveness. [less ▲]

Detailed reference viewed: 280 (5 UL)
Full Text
Peer Reviewed
See detailAlpha-synuclein gene variants may predict neurostimulation outcome.
Weiss, D.; Herrmann, S.; Wang, Lin UL et al

in Movement Disorders (2016)

Detailed reference viewed: 181 (15 UL)
Full Text
Peer Reviewed
See detailExploring therapeutic viability of a non-dopaminergic target for Parkinson’s disease
Ashrafi, Amer; Buttini, Manuel UL; Garcia, Pierre UL et al

in Movement Disorders (2016), 31(2), 630

Detailed reference viewed: 70 (3 UL)
Full Text
Peer Reviewed
See detailFailing as Doorman and Disc Jockey at the Same Time: Amygdalar Dysfunction in Parkinson’s Disease
Diederich, Nico UL; Goldman, Jennifer; Stebbins, Glenn et al

in Movement Disorders (2015), 00(00),

In Braak’s model of ascending degeneration in Parkinson’s disease (PD), involvement of the amygdala occurs simultaneously with substantia nigra degeneration. However, the clinical manifestations of ... [more ▼]

In Braak’s model of ascending degeneration in Parkinson’s disease (PD), involvement of the amygdala occurs simultaneously with substantia nigra degeneration. However, the clinical manifestations of amygdalar involvement in PD have not been fully delineated. Considered a multitask manager, the amygdala is a densely connected “hub,” coordinating and integrating tasks ranging from prompt, multisensorial emotion recognition to adequate emotional responses and emotional tuning of memories. Although phylogenetically predisposed to handle fear, the amygdala handles both aversive and positive emotional inputs. In PD, neuropathological and in vivo studies suggest primarily amygdalar hypofunction. However, as dopamine acts as an inverted U-shaped amygdalar modulator, medicationinduced hyperactivity of the amygdala can occur.We propose that amygdalar (network) dysfunction contributes to reduced recognition of negative emotional face expressions, impaired theory of mind, reactive hypomimia, and impaired decision making. Similarly, impulse control disorders in predisposed individuals, hallucinations, anxiety, and panic attacks may be related to amygdalar dysfunction. When available, we discuss amygdala-independent trigger mechanisms of these symptoms. Although dopaminergic agents have mostly an activation effect on amygdalar function, adaptive and compensatory network changes may occur as well, but these have not been sufficiently explored. In conclusion, our model of amygdalar involvement brings together several elements of Parkinson’s disease phenomenology heretofore left unexplained and provides a framework for testable hypotheses in patients during life and in autopsy analyses. VC 2015 International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 116 (2 UL)